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Abstract— The main contribution of this paper is the charac-
terization of reachability problem associated to stochastic hy-
brid systems in terms of imprecise probabilities. This provides
the connection between reachability problem and Bayesian
statistics. Using generalised Bayesian statistical inference, a new
concept of conditional reach set probabilities is defined. Then
possible algorithms to compute the reach set probabilities are
derived.

Keywords: reachability problem, stochastic hybrid automata,
Markov process, Choquet capacity, Bayesian inference.

I. INTRODUCTION

Within the Hybridge project [18] we have modeled the
Air Traffic Control (ATC) using the stochastic hybrid system
paradigm. The centralised ATC is in complete control of the
air traffic and ultimately responsible for the aircraft safety.
The main objective of ATC is to maintain safe separation
between aircraft. To improve the ATC performance, research
effort has spent in the last decade to create tools for Conflict
Detection and Conflict Resolution. Conflict Detection means
the evaluation of the possibility of future conflict starting
from the current state of the airspace and taking into account
the uncertainty in the future position of the aircraft while
they follow given nominal paths. A possible approach is
to determine the conflict probability over a certain time
horizon, i.e. the probability that two aircraft come closer
than a minimum allowed distance. If this probability can be
computed, an alert can be issued when it exceeds a certain
threshold. Conflict Resolution means to calculate suitable
maneuvers to avoid a predicted conflict.
In the context of stochastic hybrid systems, the computation
of the conflict probability reduces to a reachability problem:
computing the probability that the stochastic hybrid process
modelling the aircraft motion reaches an unsafe part of
the state space (where two aircraft come closer than the
minimum allowed distance).

In a probabilistic framework, the stochastic reachability
problem consists of determining the probability that the
system trajectories enter some prespecified set starting from
a certain set of initial conditions with a given probability
distribution.

It has been proven [4], [5] that for the reach set proba-
bilities it is hard to find analytical formulas. At least, one
might get upper bounds of these, but again these bounds
can not be easily computed. Then, it seems to be the case
to set up a statistics framework which will allow us to find
suitable algorithms to compute these probabilities. In this
paper we characterize the stochastic reachability in terms
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of Bayesian statistics. This will permit us to employ statis-
tical inference rules to compute the reach set probabilities
which appear in the formulation of stochastic reachability
problem. To achieve this task, the stochastic reachability
concept will be expressed in terms of imprecise probabilities.
Here, imprecision in probability assessments is modeled
through convex sets of probability measures. This is possible
since we consider only stochastic hybrid systems whose
realizations are Markov processes with nice properties. Then
the reach set probabilities define a Choquet capacity. The
later concept is widely used in decision theory [11], [25],
robust Bayesian inference [16] and is closely related to
other concepts modelling different kinds of probability sets
as: lower probabilities [12], belief functions [11], lower
envelopes [16], lower expectations, lower previsions [28].

The paper is organized as follows. Section II presents the
necessary background on capacities. In section III, we give
a general concept of stochastic hybrid automaton and define
the corresponding stochastic reachability problem. Then the
later problem is characterized in terms of Choquet capacities.
Different algorithms used in statistical inference (for the
computation of conditional upper expectations) are proposed
to calculate the reach set probabilities. The paper ends with
some conclusions.

II. PRELIMINARIES

Decision theory starts from the states, acts and utilities that
have to be specified by the acting agent. Making a decision
is deciding which possible act to follow. Bayesian theory has
been very successful in this regard as a prescription for what
a rational agent should do [23]. The Bayesian framework
essentially says that:
• Given the states of nature θi, there is a single probability
distribution p(θ) that summarizes the beliefs of the agent
about which θi obtains.
• An act with high expected utility is preferred to an act
with lower expected utility.

The Bayesian framework is derived from a number of
axioms that are supposed to apply to decision making.

The next step is to start with similar, but more general
set of axioms and generate a convex set of probability
distributions, called credal set [21]. In this context, Bayesian
theory is a particular case in which we assume that the
agent always has a single distribution (the convex set of
distributions has a single member).

The theory of sets of probabilities advocates that a rational
agent chooses an act based on expected loss considerations.
Expected loss are defined by:
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1. A loss function, which translates the preferences of the
agent. Some people use the term utility for the reverse of
loss, i.e. loss with a minus sign. But loss and utility are
essentially the same thing.
2. A set of probability distributions called credal set. Usually
a credal set is assumed to be a convex set of probability
distributions. A credal set conveys the beliefs of an agent
about the possible states of the world.

Usually, a theory of sets of probabilities is a normative
theory of decision making. So the purpose is to explain how
an agent should make decisions. The agent starts with a prior
credal set, uses a likelihood credal set and reaches a posterior
credal set. Then the agent picks an option that minimizes
expected loss.

A number of theories of inference advocate close convex
sets of probability measures as an accurate representation for
imprecise belief [21], [19]. Several other theories employ
special types of convex sets of probability measures, for
example the theory of lower probability [12] and the of
inner/outer measures [27]. Others are based on Choquet
capacities, monotone (convex) capacities, 2-monotone capac-
ities, infinitely monotone capacities (belief functions) [16].
The theory of coherent lower previsions (lower expectations)
put forward by Walley is an example of a complete theory of
inference that can be viewed as a theory of sets of probability
measures [28]. There are also theories of inference that add
imprecision in utility judgements to the modelling process
[26]. Theories are normative because they only offer some
sensible guidelines; they are not supposed to be a description
of how real agents work.

In the following we present the concept of capacity and
the Bayes theorem for capacities.

A. Capacities

For every space X and algebra A of subsets of X a set-
function c : A → [0, 1] is called a normalized capacity if it
satisfies the following: (i) c(∅) = 0, c(X) = 1, (ii) ∀A, B ∈
A: A ⊂ B ⇒ c(A) ≤ c(B).

A capacity is called convex (or supermodular) if in addi-
tion to (i)-(ii) it satisfies the property
(iii) ∀A, B ∈ A: c(A ∪ B) ≥ c(A) + c(B) − c(A ∩ B).

A special type of convex capacities are the belief functions
presented and discussed by Dempster [11] and Shafer [24]. A
capacity becomes a probability if (iii) holds everywhere with
equality, i.e. it is additive. If a capacity satisfies the inverse
inequality in (iii) then it is called submodular or strongly
subadditive.

If X is a topological space, c is a Choquet capacity if
c(Fn) ↓ c(F ) for each sequence of closed sets Fn ↓ F .

Since we allow the possibility that c is not additive, we
can not use the integral in the Lebesgue sense to integrate
w.r.t. c. The notion of integral we will use is due originally
to Choquet [7] and it was independently rediscovered and
extended by Schmeidler [25]. If f : X → R is a bounded A-
measurable function and c is any capacity on X , the Choquet

integral of f w.r.t. c is defined as follows

c(f) =
∫

X

f(x)dc(x) = c(f) + c(f)

c(f) =
∫ ∞

0

c({x ∈ X |f(x) ≥ α})dα

c(f) =
∫ 0

−∞
[c({x ∈ X |f(x) ≥ α}) − 1]dα

where the integrals are taken in the sense of Riemann.
Then c(f) can be thought of as an expected utility without
additivity [25].

B. Bayes Theorem for Capacities

Let (X,B) a Polish space, i.e. the topology for X is
complete, separable, and metrizable, and B is the Borel σ-
algebra of X . Denote by Bb(X) the set of all bounded,
nonnegative, real-valued, measurable functions defined on
X . Let (Px|x ∈ X) be a set of probability measures on
a sample space (Ω,F). Assume that each Px has a density
p(x|ω) w.r.t. some σ-finite measure and let L(x) = p(x|ω)
be the likelihood function for x having observed ω ∈ Ω. We
assume that L ∈ Bb(X).

Let P be a nonempty set of prior probabilities on B and
define the upper and lower prior probability functions by

µ(A) = sup
µ∈P

µ(A), µ(A) = inf
µ∈P

µ(A) (1)

Clearly, µ(A) = 1 − µ(X\A), then it is enough to study
only µ. Suppose that P is convex. µ can be thought of as
the capacity c generated by the family P (the upper envelope
of P). For each f ∈ Bb(X), define the upper expectation of
f by

E(f) = sup
µ∈P

µ(f) (2)

where µ(f) =
∫

f(x)µ(dx). Analogously, the lower expec-
tation E(f) can be defined.
In a similar way, one can define the upper Choquet integral
of f defined by

cu(f) = c(f) =
∫ ∞

0

µ({x ∈ X |f(x) ≥ α})dα

and the lower Choquet integral of f by

cl(f) =
∫ ∞

0

µ({x ∈ X |f(x) ≥ α})dα

We say that P is closed w.r.t. majorization, or is m-close, if
µ ≤ µ implies that µ ∈ P .

For a prior probability µ ∈ P , for which µ(L) > 0, the
posterior probability of a subset A, after observing ω and
applying Bayes’ theorem, may be expressed as

µ(A|ω) =
µ(LA)

µ(LA) + µ(LAc)

where LA(x) = L(x)IA(x) and IA is the indicator function
of A.
We denote P(·|ω) = {µ(·|ω)|µ ∈ P with µ(L) > 0}.
Next we give the Bayes theorem for Choquet capacities as
a particular case of the main result of [29].
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Theorem 1: Let P be a nonempty m-close set of prior
probabilities on B and let P(·|ω) be the corresponding
class of posterior probabilities. If P generates a submodular
Choquet capacity c, then for each A ∈ B, the capacity
generated as the upper envelope of P(·|ω) can be computed
as follows

c(A|ω) =
E(LA)

E(LA) + E(LAc)

=
cu(LA)

cu(LA) + cl(LAc)

when the ratios are well defined.
Remark 1: If in Th.1, the capacity c is not a Choquet

capacity, then both equals should be replaced by ‘≤’. Then,
in this case, the Bayes theorem for capacities gives upper
bounds of the conditional capacity c(·|ω).

III. STATISTICAL INFERENCE FOR STOCHASTIC

REACHABILITY ANALYSIS

In this section we give the concept of stochastic hybrid
automaton (SHA), in a general setting. In most of the cases
of stochastic hybrid automata studied in the literature [4], [5],
[22], [2], the realisation of a stochastic hybrid automaton is
a Markov process with nice properties. We briefly present
the construction of the sample probability space of an SHA
realisation and of the Choquet capacity associated. To the
reader less interested in the rigour of the mathematical
foundations of this method we propose a reading path that
skips the subsection III-C and uses only the formula (8).
Then we link the concept of stochastic reachability defined
in [4] with the concept of capacity. This connection is of
crucial importance for the purpose of computing reach set
probabilities because it allows one to make use of Bayesian
inference techniques.

A. Stochastic Hybrid Systems

Formally, a stochastic hybrid automaton (SHA) is defined
as a tuple H = (Q,X , F, R, λ)
• Q is a countable set of discrete variables;
• X : Q → R

d(.) maps each q ∈ Q into a mode (an open
subset) Xq of R

d(q), where d(q) is the Euclidean dimension
of the corresponding mode;
• F : Q → 2FSDE specifies the continuous evolution of the
automaton in terms of stochastic differential equations over
the continuous state xq for each mode;
• R = (Rq)q∈Q a family of stochastic kernels Rq :
X

q× ∪
j∈Q\{q}

B(Xj) → [0, 1];

• λ : ∪
j∈Q

X
j → R

+ is a transition rate function which gives

the probability distributions of the jumping times.
The executions of an SHA can be described as follows:

start with an initial point x0 ∈ Xq, follow a solution of
the SDE associated to Xq, jump when this trajectory hits
the boundary or according with the transition rate λ (the
jump time is the minimum of the boundary hitting time
and the time which is exponentially distributed with the
transition rate λ). Under standard assumptions, for each

initial condition x ∈ ∪
j∈Q

Xj , the possible trajectories, which

start from x, form a stochastic process. Moreover, for all
initial conditions x, the realizations of an SHA make up
a family of Markov processes, which can be thought a
Markov process in a general approaching (see [10] for more
explanations).

Let us consider M = (Ω,F ,Ft, xt, Px), the realization
of a stochastic hybrid system H , as a family of Markov
processes with the state space (X,B) (X is the union of
modes and B is its Borel σ-algebra). That means
• F0

t denotes the natural filtration, i.e. F0
t = σ{xt, s ≤ t}

for all t ∈ [0,∞].
• Px : (Ω,F) → [0, 1] is a probability measure (called
Wiener probability) such that Px(xt ∈ E) is B-measurable
in x ∈ X for each t ≥ 0 and E ∈ B.
• If µ is a probability on (X,B) then we can define

Pµ(Λ) =
∫

X

Px(Λ)µ(dx), Λ ∈ F .

We then denote by Ft the completion of F0
t w.r.t. all Pµ.

• (Ω,F , Px) will be the sample probability space of a
Markov process of this family with the initial probability
distribution Px(x0 = x) = 1.

B. Stochastic Reachability Problem

Let us consider M = (Ω,F ,Ft, xt, Px), the realization of
a stochastic hybrid automaton H . To address the reachability
problem assume that we have a given set A ∈ B(X) and a
time horizon T > 0. Let us to define:

ReachT (A) = {ω ∈ Ω | ∃t ∈ [0, T ] : xt(ω) ∈ A}
Reach∞(A) = {ω ∈ Ω | ∃t ≥ 0 : xt(ω) ∈ A}. (3)

These two sets are the sets of trajectories of H , which reach
the set A (the flow that enters A) in the interval of time [0, T ]
or [0,∞). The reachability problem consists of determining
the probability measures of such sets

Px(ReachT (A)) and Px(Reach∞(A)). (4)

The reachability problem is well-defined, i.e. ReachT (A)
and Reach∞(A) are indeed measurable sets [4], [5].

The probabilities (4) can be expresses as

Ex sup
t∈[0,T ]

IA(xt) and Ex sup
t≥0

IA(xt) (5)

where Ex is the expectation w.r.t. Px. The computation of the
reach set probabilities (4) is equivalent to the computation
of the following probabilities

Px(TA < T ) or Px(TA < ∞) (6)

for each initial state x ∈ X , where TA is the first hitting
time of A, i.e.

TA = inf{t > 0|xt ∈ A}.

Though the reach set probability expressions (5) are given
as expectations of some measurable functions defined along
the trajectories their computations is not easy. The main
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difficulty is that the integrands do not have any monotonicity,
they only ‘account’ the trajectories which enter A in the
time interval [0, T ] or [0,∞). As well, it is hard to give an
analytical expression of these integrands.
Moreover, the expressions (5) or (6) of reach set probabilities
show that these measures as functions of the target A are not
additive. It can be easily checked that

Px(ReachT (A∪B)) ≤ Px(ReachT (A))+Px(ReachT (B))

and a similar inequality for Px(Reach∞(A)). Then, the idea
to ‘approximate’ these with set of additive measures seems
to be natural. This will be mathematically described in the
next subsections.

C. Analysis of SHA Realisation

Hypothesis

We assume without loss of generality that the realization of
an SHA M = (Ω,F ,Ft, xt, Px) is a Borel right Markov
process with the state space (X,B). This is the case with
the most of models for stochastic hybrid systems existing in
the literature [22]. This means that
1. M is a strong Markov process with paths that are right-
continuous with left limits (cadlag property),
2. X is a separable metric space homeomorphic to a Borel
subset of some compact metric space, equipped with Borel
σ-algebra B(X) or shortly B. That means X is a Lusin state
space and it will be equipped with a σ-finite measure m.
3. the operator semigroup of M (given by Ptf(x) =
Exf(xt), where Ex is the expectation w.r.t. Px) maps Bb

(the lattice of bounded real measurable functions defined on
X) into itself.
We assume also that M is transient. This means that there
exists a strictly positive Borel function q such that Uq is
bounded (where Uf =

∫ ∞
0

Ptfdt is the kernel operator).
More, we suppose that supx∈X U1(x) < ∞. The transience
of M means that any process trajectory which will visit a
Borel set of the state space it will leave it after a finite time.

Representation of the sample probability space

Let ∆ be the cemetery point for X , which is an adjoined
point to X , X∆ = X ∪ {∆}. The existence of ∆ is
assumed in order to have a probabilistic interpretation of
Px(xt ∈ X) < 1, i.e. at some ‘termination time’ ζ(ω) when
the process M escapes to and is trapped at ∆. One can
take the sample space Ω for M to be the set of all paths
(0,∞) � t �→ ωt ∈ X∆ such that (i) t �→ ωt is X-valued and
cadlag on (0, ζ(ω)) where ζ(ω) := inf{s > 0|ω(s) = ∆},
(ii) ωt = ∆ for all t ≥ ζ(ω), and (iii) ζ(ω) < ∞. In
this way, M is realized as the coordinate process on Ω:
xt(ω) = ωt, t > 0. We complete the definition of M by
declaring x0(ω) =lim

t↘0
ωt, t > 0. Then, the trajectories

of the process M can be thought of as elements in the
sample probability space, that means each ω ∈ Ω is a process
evolution, i.e. ω = (ωt)t≥0.

The process (xt) can be viewed as the signal process and
(ωt) as the observable process.

The global probability measure P

Because of transience condition, the measure m is purely
excessive [15]:

lim
t→∞(m < Pt >)(A) = 0, ∀A ∈ B with m(A) < ∞,

where (m < Pt >)(A) =
∫

pt(x, A)m(dx) and

pt(x, A) = Pt(IA)(x) = Px(xt ∈ A). (7)

Consequently, there is a unique entrance law (µt)t>0 (a
family of σ-finite measures on (X,B) with µt < Ps >=
µt+s for all t, s > 0) such that

m(A) =
∫ ∞

0

µt(A)dt, ∀A ∈ B.

See, for example [15], for more details. Then there is a σ-
finite measure P on (Ω,F0

t ) under which the coordinate
process (xt)t>0 is Markovian with transition semigroup
(Pt)t≥0 and one-dimensional distributions

P(xt ∈ A) = µt(A), ∀A ∈ B, t > 0.

The contruction of the capacity

The capacity associated to M is defined as follows (see [14]
and the references therein): for all B ∈ B

CapM (B) = P(TB < ∞), (8)

where TB is the first hitting time of B.
The initial definition of this notion gives the capacity CapM

as an upper envelope of a non-empty class of probabil-
ity measures on B. It can be shown that this capacity
is monotone increasing, submodular, countably subadditive
[14]. Then its conjugate Cap∗M [25], defined by Cap∗M (B) =
1 − CapM (Bc) is a belief function in sense of [24] (here,
Bc = X−B). Beliefs about the evolution process (ωt) con-
form to a time-homogeneous Markov structure. In standard
models, this would involve a stochastic kernel giving condi-
tional probabilities. We assume that beliefs conditional on ωt

are too vague to be represented by a probability measure and
are represented instead by a family of probability measures
whose lower envelope is Cap∗M .

Let us consider PM the family of all probability measures
on (X,B) dominated by CapM . Then, it is known from [16],

CapM (A) = µM (A) = sup
µ∈PM

µ(A). (9)

D. Generalized Bayes Rule for Stochastic Reachability

The construction of the ‘global’ probability measure P

defined on the sample probability space of M allows us to
replace (6) by

P(TA < T ) or P(TA < ∞).

where A ∈ B is a target set and T > 0. In this way, the
reachability problem is related with the computation of the
capacities associated to the processes MT and M , where MT
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is the process M “killed” after the time T (see [10] for the
details about the killed process), i.e.

P(ReachT (A)) = CapMT (A)
P(Reach∞(A)) = CapM (A)

Then the computation of the reach set probabilities asso-
ciated to A reduces to the calculating of the capacity of A.
Since CapM is a submodular Choquet capacity, the Theorem
1 (Bayes theorem for capacities) is applicable under some
mild conditions as follows.

Let suppose that
• Each Px has a density p(x|ω) w.r.t. some σ-finite measure
on (Ω,F). Then the likelihood function L(x) = p(x|ω) is
constructed as in the subsection II-B. Considering the time
horizon T > 0, we will also consider the likelihood function
LT (x) = p(ωT , x) for x having observed ωT (the evolution
process until T ).
• P = PM (resp. PT = PMT ) be a m−close convex
family of probability measures (i.e. a credal set) on (X,B)
dominated by CapM (resp. CapMT ).

Following [13], for each µ ∈ P there exists a measurable
function fµ, with 0 ≤ fµ ≤ 1 such that

µ(fµ) = CapM (fµ). (10)

and for each bounded measurable function f there exists
µf ∈ P such that

µf (f) = CapM (f). (11)

Similar results are true for any µ ∈ PT .
Applying Th.1 to CapM (resp. CapMT ), we get the

following estimations

CapM (A|ω) =
E(LA)

E(LA) + E(LAc)
(12)

CapM (A|ωT ) =
ET (LT,A)

ET (LT,A) + ET (LT,Ac)
(13)

where ET is the upper expectation defined w.r.t. PT .
Note that

CapM (LA) =
∫

p(x|ω)IA(x)µLA
(dx)

where µLA
is defined as in (11).

The formulas (12) and (13) give the idea to introduce
expressions for conditional reach set probabilities (i.e. the
probabilities to reach A having observed the trajectory ωT

or ω)

P(ReachT (A|ωT )) = CapMT (A|ωT )
P(Reach∞(A|ω)) = CapM (A|ω) (14)

In the following we consider only the reachability problem
in infinite time horizon and respectively only the capacity
CapM . The case of the reachability problem with finite time
horizon can be treated in a similar way taking the process
MT . The ‘conditional capacity’ formula (12) can be extended

for the case we have a set of trajectories E observed (after
a ‘learning process’). We get

P(Reach∞(A|E)) = CapM (A|E) (15)

=
E(LA,E)

E(LA,E) + E(LAc,E)

=
Capu

M (LA,E)
Capu

M (LA,E) + Capl
M (LAc,E)

where LA,E(x) = p(x|ω)IA(x)IE(ω) and LAc,E(x) =
p(x|ω)IAc(x)IE(ω).

E. Computing Reach Set Probabilities

Let us consider an agent as an SHA, H as in subsection
III-A with the realization described by a Markov process
M . Suppose that the hypothesis of subsection III-C are
satisfied. In the remain of this section we propose some well-
established statistical algorithms which might be employed
in order to compute the reach set probabilities.
Solution 1. Let consider that we have given a credal set K,
which contains all probability densities of random variables
xt, t ≥ 0. For a target set A ∈ B, we define the measurable
function

ϕ := sup
t≥0

IA(xt) (16)

Consider µ an arbitrary element of K and µ, µ given by (1).
If µ(E) > 0, where E is an event in the sample probability
space (a set of trajectories) the value of µ(ϕ|E) can be
computed by the generalized Bayes’ rule (first proposed in
[28]):

µ(ϕ|E) is the unique value of ρ such that
µ[(ϕ − ρ)IE ] = 0.

In this case, one can apply Lavine’s algorithm, which is a
bracketing scheme applied to the generalized Bayes’ rule,
whose objective is to compute upper expectations [20].
Define ρ

0
= inf ϕIE and ρ0 = supϕIE . Define m(ρ) =

µ[(ϕ−ρ)IE ]; note that m(ρ) must attain zero in the interval
[ρ

0
, ρ0]. Now bracket this interval by repeating (for i ≥ 0):

1. Stop if |ρi − ρ
i
| < ε for some positive value ε; or

2. Choose ρi in (ρ
i
, ρi) and, if m(ρi) > 0, take ρ

i+1
= ρ

i
and ρi+1 = ρi; if m(ρi) < 0 take ρ

i+1
= ρ

i
and ρi+1 = ρi.

The value m(ρi) can provide also information on when to
stop the bracketing iteration [9].

The main inconvenient in applying Lavine’s algorithm is
that the function (16) is hard to compute. Another iteration
scheme, also based on the generalized Bayes’ rule, has been
proposed by Walley [28] (Note 6.4.1). Both, Lavine and
Walley algorithms have linear convergence.
Solution 2. We consider that the agent H has some beliefs
w.r.t. the reach set probabilities, described by a m−close
convex family P of probability measures on (X,B) dom-
inated by CapM . It should be clear that the credal set P
depends on the random variables xt, t ≥ 0, which compose
the process M . For example, P could contain the transition
probabilities defined by (7).
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Since the Choquet capacity associated to M (the realiza-
tion of H) is the upper envelope of the family of probability
measures dominated by CapM , the conditional reach set
probability (14) is, in fact, obtained conditioning the upper
probability µM defined by (9).

Credal sets represented by supermodular (and dual by
submodular) capacities have been studied in the literature
(see [8] and the references therein). These credal sets have
closed-form expressions for upper posterior probabilities.
The algorithms, developed in [8], to compute the conditional
upper (resp. lower) posterior probabilities are based on the
Möbius Transform of an upper (resp. lower) probabilities.
These algorithms seem to be the most suitable candidates
which can be used to compute the reach set probabilities. In
this paper, there is no room to give the necessary background
for the understanding of these algorithms, and to present
concretely how they can be used in the reachability analysis
study. This will constitute the subject of a following paper.

There is a considerable debate about how an agent makes
a decision using sets [1], [17]. We consider that an agent
represented by an SHA should optimize the expected utility,
an approach known in Robust Statistics under the name of
Γ-minimax [17].

IV. CONCLUSIONS

The contribution of this paper is twofold:
1. We give a Bayesian framework for stochastic hybrid
automata, which allow us to characterize the corresponding
stochastic reachability problem in terms of upper probabili-
ties or Choquet capacities.
2. Then the problem of computation of reach set probabil-
ities finds new solutions using different Bayesian inference
algorithms already studied in the literature.

In the first instance, this is a theoretical work, but practical
implications of this approach are various and impressive.
The benefits of this new representation of the stochastic
reachability for ATC modelling are very important: Bayesian
inference can be used to compute conflict probability and
decision theory can be employed to derive algorithms for
Conflict Resolution.
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