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Abstract— This paper deals with two problems on stabiliza-
tion of linear systems by static feedbacks which are bounded
and time-delayed, namely global asymptotic stabilization and
finite gain Lp−stabilization, p ∈ [1,∞]. Regarding the first
issue, we provide, under standard necessary conditions, two
types of solutions for arbitrary small bound on the control
and large (constant) delay. The first solution is based on the
knowledge of a static stabilizing feedback in the zero-delay
case and the second solution is of nested saturation type, which
extends results of [2]. For the finite-gain Lp−stabilization issue,
we assume that the system is neutrally stable. We show the
existence of a linear feedback such that, for arbitrary small
bound on the control and large (constant) delay, finite gain
Lp−stability holds with respect to every Lp−norm, p ∈ [1,∞].
Moreover, the corresponding Lp−gain is delay-independent.

I. INTRODUCTION

In this paper, we address two issues relative to the stabi-
lization for continuous-time delay linear systems subject to
input saturation, of the type

(S) : ẋ(t) = Ax(t) + Bu(t − h), (1)

where
(i)A ∈ R

n×n and B ∈ R
n×m, with n the dimension of

the system and m the number of inputs;
(ii) the control u verifies ‖u‖ ≤ r, where r ∈ (0, 1] only

depends on (S);
(iii) there is an arbitrary constant delay h ≥ 0 appears in

the input.
We use (S)r

h, r ∈ (0, 1], h > 0, to denote the control
system (S) with input bound r and input time delay h. We
omit the index r if it is equal to one and, similarly for the
index h if it is equal to zero.

The first problem is that of globally asymptotically stabi-
lizing (S) to the origin by mean of a static feedback. We
then seek u as

u(t − h) = −rσ (F r
h(x(t − h))) , (2)

where the non-linearity σ is of “saturation” type (definitions
are given in section (2)) and the function F r

h : R
n −→ R

m is
at least locally Lipschitz (to obtain at least locally solutions).

In the zero–delay case, the stabilization of linear systems
with saturating actuators has been widely investigated in the
last years: static feedbacks of nested saturation type (see [11]
and [12]) or based on maximal ellipsoid saturation (see [4])
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can be used. It is well-known that such a global asymptotic
stabilization is possible if and only if (S) satisfies

(C) :

⎧⎨
⎩

(i)A is neutrally stable ,

(ii) the pair (A,B) is stabilizable .

It is trivial to see that condition (C) is also necessary in
the case of non zero delay and it seems natural to expect
condition (C) to be also sufficient. In that regard, partial
results have been recently obtained by Mazenc, Mondie and
Niculescu. To state the results, we define the unrestricted
GAS property. We say that (S)r

h is unrestricted GAS if,
for arbitrary delay h > 0 and any input rate r ∈ (0, 1]
small enough, (S)r

h is global asymptotic stabilizable. The
nested saturation construction is used to show that (S)r

h is
unrestricted GAS if A is nilpotent ([2]) and for the two-
dimensional oscillator ([3]). One of our main results is to
complete that line of work, namely to show that condition
(C) is sufficient for unrestricted GAS.

We will actually provide two different ways to solve the
GAS problem. The first one is based on the knowledge
of a globally Lipschitz static stabilizing feedback F in the
zero–delay case. From it, one can build a static stabilizing
feedback for (S)h∗ , with h∗ > 0 only depending on A,B, σ
and KF , the Lipschitz constant of F . If, in addition, an extra
hypothesis holds on stabilizing feedbacks of (S)r, for r small
enough, unrestricted GAS holds. It turns out that the nested
saturated feedbacks of [11] verify these hypotheses, and thus
we conclude, see [14].

The second solution for unrestricted GAS directly uses
the nested saturated feedbacks of [11] and can be seen as
a generalization of [2], [3]. However, the argument is an
extension to the non-zero delay case of that of [11]. Recall
that, at the heart of the argument of [11], lies a result
on finite-gain L∞-stability for one and two dimensional
neutrally stable linear systems subject to input saturation.
Such an argument was first introduced in [1], where was
addressed the issue of finite-gain Lp-stability of neutrally
stable linear systems subject to input saturation.

It is therefore natural to consider the Lp-stability question.
We extend to the non-zero delay cases results of [1]. Our
objective here consists in showing that the results of [1] carry
over to continuous linear time-delay systems. More specif-
ically, we show that, for neutrally stable continuous linear
time-delay systems subject to input saturation, finite-gain Lp-
stabilization can be achieved by the use of linear feedbacks,
for every p ∈ [1,∞]. While many of the arguments of
the present paper are conceptually similar to those of [1],
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there are technical aspects that are different and not obvious.
Indeed, as in [1], the proof to get finite gain Lp-stability relies
on passivity techniques. We determine a suitable “storage”
function Vp and establish for it a “dissipation inequality” of
the form dVp(xu(t))

dt ≤ −‖xu(t)‖p + λp‖u(t)‖p, for some
constant λp > 0 possibly depending on the input bound r
and the delay h. For more discussion on passivity, see [13]
for instance. Recall that the “storage function” in [1], V 0

p is
non-smooth. In the present situation, the “storage function”
Vp will be the sum of a term similar to V 0

p and a Lyapunov-
Krasovskii functional, in order to take care of the delay.
However, unlike in [1], the saturation in (1) needs to be
multiplied by a small factor r dependent on the delay h
in order to insure finite-gain Lp-stability. In addition, by
choosing carefully the factor r and the linear feedback inside
the saturation, we are able to provide upper bounds for the
Lp-gains of (S)r

h which are independent of r ∈ (0, 1] and
h > 0. We refer to that property as the unrestricted finite-
gain Lp-stability.

The argument corresponding to that uniformity result is
specific to the non-zero delay case and constitutes the most
technical part of [15]. To establish it, we first start with the
single-input case where it amounts in estimating the behavior
of the solution Pr of a parameterized Lyapunov equation
(Lr), r ∈ (0, 1], as the parameter r tends to zero. The
multi-input case requires additional work. We first rewrite
the original system as an appropriate cascade of single-input
subsystems, all of them except one being perturbed by an
external disturbance, appearing outside the saturation (see
Theorem 5). We then proceed by an inductive argument
on the number of distinct algebraic multiplicities of the
eigenvalues of A.

Generally speaking, our treatment of the aforementioned
issues on time-delay systems follows a common pattern. We
always try to reformulate them as problems for perturbed
delay-free systems and handle the perturbation by Lyapunov
techniques. One of the reasons for which that strategy works
well lies in the fact that the input saturation makes the
perturbation uniformly bounded with respect to the delay.

The complete proofs of the results presented in this paper
are contained in [14] for stabilization and [15] for finite-gain
stabilizability.

II. NOTATIONS AND STATEMENT OF THE MAIN RESULTS

A. Notations

For x ∈ R
n, ‖x‖ and xT denote respectively the Euclidean

norm of x and the transpose of x. Similarly, for any n×m
matrix K, KT and ‖K‖ denote respectively the transpose
of K and the induced 2−norm of K. Moreover, λmin(K)
and λmax(K) denote the minimal and the maximal singular
values of the matrix K. If f(.) and g(.) are two real-valued
functions, we mean by f(r) �0 g(r), that there are positive
constants ξ1 and ξ2 independent of r small enough, such that
the inequalities

ξ1g(r) ≤ f(r) ≤ ξ2g(r),

are valid. Initial conditions for delayed systems are contin-
uous vectors-valued functions defined on [−h, 0] and taking
values in R

n. For h > 0, let Ch := C([−h, 0], Rn);
xt(θ) := x(t + θ), for −h ≤ θ ≤ 0 and ‖xt‖h :=
sup−h≤θ≤0 ‖x(t + θ)‖.

Definition 1: (Saturation function) We call σ : R −→ R a
saturation function (“S-function” for short) if there exist two
real numbers 0 < a ≤ Kσ such that for all t, t′ ∈ R

(i) |σ(t) − σ(t′)| ≤ Kσ inf(1, |t − t′|),
(ii) |σ(t) − at| ≤ Kσtσ(t).
(iii) σ(t) = t when |t| ≤ a.
It is assumed here that the function is normalized at the
origin, i.e. a = σ′(0) = 1. The global lipschitzness of σ
implies that for every real numbers x, y,

|x[σ(x + y) − σ(x)]| ≤ K|y|.
For an m−tuple k = (k1, . . . , km) of nonnegative integers,
define |k| = k1 + . . .+km. We say that σ is an R

|k|− valued
S-function if

σ = (σ1, . . . , σ|k|)
= (σ1

1 , . . . , σ1
k1

, . . . , σm
1 , . . . , σm

km
)

=
(
(σ1

i )1≤i≤k1 , (σ
2
i )1≤i≤k2 , . . . , (σ

m
i )1≤i≤km

)
,

where, for 1 ≤ j ≤ m, (σj
i )1≤i≤kj is an R

kj -valued S-
function (i.e : (σj

i )1≤i≤kj
= (σj

1, . . . , σ
j
kj

) where each

component σj
i , 1 ≤ i ≤ kj is an S-function and

(σj
i )1≤i≤kj (x) =

(
σj

1(x1), . . . , σ
j
kj

(xkj )
)

,

for x = (x1, . . . , xkj )
T ∈ R

kj . Here we use (. . .)T to denote
the transpose of the vector (. . .).)

Definition 2: Consider the functional differential equation
of retarded type

(Σ)h :

⎧⎨
⎩

ẋ(t) = f(xt), for t ≥ t0;

xt0(θ) = Ψ(θ),∀θ ∈ [−h, 0].

It is assumed that Ψ ∈ Ch, the map f is continuous
and Lipschitz in Ψ and f(0) = 0. We say that (Σ)h

is globally asymptotically stable (GAS for short) if the
following conditions hold:

(i) for every ε > 0, there exists a δ > 0 such that, for
any Ψ ∈ Ch, with ‖Ψ‖h ≤ δ, there exists t0 ≥ 0, such that
the solution x(Ψ) of (Σ)h satisfies ‖xt(Ψ)‖h ≤ ε, for all
t ≥ t0;

(ii) for all Ψ ∈ Ch, the trajectory of (Σ)h with the initial
condition Ψ and defined on [t0,∞) converges to zero as
t → ∞.

B. GAS using a stabilizing feedback in the zero delay case

Our objective is to relate the asymptotic stability properties
of the system (S) with those of the delay-free system
provided that it is globally asymptotically stable. The study is
then extended to investigate conditions which ensure that the
class of linear controllers, stabilizing the delay-free system,
also stabilize (S) by stating the problem as an asymptotic
stability problem. For this purpose, the delayed system (S) is
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considered as a perturbation of that of the delay-free system.
We now state our first result.

Theorem 1: Assume (H)0 : There exists F : R
n −→ R

m

globally Lipschitz, with Lipschitz constant KF such that the
system

(S)0 : ẋ = Ax − Bσ(F (x)),

is globally asymptotically stable with respect to 0.
Then, there exists h∗ = h(A,B, σ,KF ) > 0 such that, for
all h ∈ [0, h∗], there exists Fh : R

n −→ R
m that globally

asymptotically stabilizes the system

(S)h : ẋ = Ax − Bσ(Fh(x(t − h))),

with respect to zero.
Sketch of proof. Let Fh(x(t)) = F (Φ(t, t−h, x(t))), where
Φ is the flow of the equation (S)0. We rewrite (S)h as ẋ(t) =
Ax(t)−Bσ(F (x(t)))−Bε(t), where ε(t) as a perturbation
of (S)0. The perturbation ε may cause instability but we
show that ‖ε(x(t))‖ ≤ K̃e−λt for some K̃ (that may depend
on ε) and t ≥ 0. Using Lemma 3.1 in [6], we are able to
conclude.

The second result completes the stability result of Theorem
1 to get unrestricted global asymptotic stability (unrestricted
GAS). It is stated as follows:

Theorem 2: Assume (H)r0 : For each r ∈]0, 1], there
exists a globally Lipschitz function F r : R

n −→ R
m, with

Lipschitz constant KF r , such that

(i) (S)r
0 : ẋ = Ax − rBσ(F r(x)),

is GAS with respect to zero ,

(ii) rKF r → 0 if r → 0.

Then, for all h ≥ 0, there exists r∗(h) ∈]0, 1], such that for
any r ∈]0, r∗(h)], a function F r

h : R
n −→ R

m exists for
which the system

(S)r
h : ẋ = Ax − rBσ(F r

h(x(t − h))),

is globally asymptotically stable with respect to zero.

C. Feedbacks of nested saturation type

We next determine two explicit expressions of globally
asymptotically stabilizing feedbacks for general time-delay
linear systems, both of nested saturation type, according to
the results of the stabilization of delay free-system. The
above problem was first studied for delay-free continuous-
time systems. It was shown in [11] that, under condition
(C), there exists explicit expressions of globally asymptoti-
cally stabilizing feedbacks. Then, it is natural to investigate
whether this technique can be extended to the case where
there is a delay in the input. In this section, we will take
for simplicity the initial state to be zero. We start by giving
some definitions, first introduced in [11] and adapted here to
the delay case.

Definition 3: For a retarded system ẋ(t) = f(x(t),
u(t − h)), x ∈ R

n, u ∈ R
m, we say that a feedback u(.) =

k(x(.)) is stabilizing if zero is a globally asymptotically

stable equilibrium of the system ẋ(t) = f(x(t), k(x((t −
h))).

Definition 4: ( cf. [11]) For a square matrix A, let
N(A) = s(A) + z(A), where s(A) is the number of
conjugate pairs of nonzero purely imaginary eigenvalues of
A (counting multiplicity) and z(A) is the multiplicity of zero
as an eigenvalue of A.

Theorem 3: Assume that condition (C) holds for (S)r
h.

Let N = N(A) and σ = (σ1, . . . , σN ) be an arbitrary
sequence of S-functions. Then, for all h > 0, there exist a
number r∗(h) ∈ (0, 1], an m−tuple k = (k1, . . . , km) of non
negative integers such that |k| = N and for each 1 ≤ j ≤ m,
linear functions f j

h,i, g
j
h,i : R

n −→ R, 1 ≤ i ≤ kj , such that
for all r ∈ (0, r∗(h)], there are stabilizing feedbacks

(∗) uj(t − h) = −rσj
kj
{f j

h,kj
(x(t − h))+

+ αj
kj−1σ

j
kj−1[f

j
h,kj−1(x(t − h))+

+ . . . + αj
1σ

j
1(f

j
h,1(x(t − h))) . . .]},

(3)
where αj

i ≥ 0, for all i ∈ [1, kj − 1], and

(∗∗) uj(t − h) = −r
[
βj

kj
σj

kj

(
gj

h,kj
(x(t − h))

)
+

+ βj
kj−1σ

j
kj−1

(
gj

h,kj−1(x(t − h))
)
+

+ . . . + βj
1σ

j
1

(
gj

h,1(x(t − h))
)]

,

(4)
where βj

1, . . . , β
j
kj

are nonnegative constants such that βj
1 +

. . . + βj
kj

≤ 1.
Sketch of proof. The argument of follows the strategy of
proof of the principal result of [11]. We start therefore with
the single-input case and prove the theorem by induction on
the dimension of the system. In order to facilitate the analysis
of the stabilizability properties by bounded feedback of (S)r

h,
a linear transformation is carried out in [11].

Lemma 1: ( cf. [11]) Let (S1)r
h : ẋ(t) = Ax(t)+bu(t−h)

be an n-dimensional linear single-input system. Suppose that
(A, b) is a controllable pair and all eigenvalues of A are
critical.

(i) If 0 is an eigenvalue of A, then there exists a linear
coordinate transformation y = Sx which transforms (S1)r

h

into ⎧⎨
⎩

˙̄y(t) = A1ȳ(t) + (yn(t) + u(t − h)) b1,

ẏn(t) = u(t − h),
(5)

where the pair (A1, b1) is controllable, yn is a scalar variable,
and ȳ = (y1, . . . , yn−1)T .

(ii) If A has an eigenvalue of the form iω, with ω > 0, then
there is a linear change of coordinates Sx = (y1, . . . , yn)T =
(ȳT , yn−1, yn)T of R

n that puts (S1)r
h in the form:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

˙̄y(t) = A1ȳ(t) + (yn(t) + u(t − h)) b1,

ẏn−1(t) = ωyn(t),

ẏn(t) = −ωyn−1(t) + u(t − h),

(6)

where the pair (A1, b1) is controllable and yn−1, yn are scalar
variables.
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The following lemma is the key technical point of the
proof.

Lemma 2: Let ρ > 0 and σ be an S-function. Then, for all
h > 0 there exist r∗(h) ∈]0, 1] and an 2× 1 matrix Fh such
that, for any two bounded measurable functions α(t), β(t)
converges both to zero as t −→ ∞ and for all r ∈]0, r∗(h)],
the control system

(S2)r
h :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = ρx2(t) + rα(t),

ẋ2(t) = −ρx1(t) − rσ(FT
h x(t − h)

+ u(t − h)) + rv(t − h) + rβ(t),

x0 = ((x1)0, (x2)0)
T = 0̄, on [−h, 0],

with 0̄ the zero function in Ch, and u, v ∈
L∞([−h,∞), R), with ‖v‖L∞ ≤ v∗, (v∗ independent of r)
verifies:

(i) There exists a finite constant M∞ > 0 independent of
r, such that

lim sup
t→∞

‖x(t)‖ ≤ M∞ (‖u‖L∞ + ‖v‖L∞ + ‖f‖L∞) , (7)

where x = (x1, x2)T , f = (α, β)T .
(ii) In the absence of u, v and f , the equilibrium (x, y) =

(0, 0) is globally asymptotically stable.
Sketch of proof. We consider the linear feedback Fh =

e−ρA0hb, where A0 =
(

0 1
−1 0

)
and b = (0, 1)T . The

argument here is the simplest case of the more general
result given in Proposition 1 for the single input case, see
the corresponding sketch of proof below. More precisely, it
corresponds to p = 2, A = A0 and b is defined above. Note
that in this case, the matrix Pr can be computed explicitly
as well as λmax(Pr) and λmin(Pr).

D. Finite gain stabilizability

Finite-gain stability results for various p−norms are pre-
sented. We start with definitions.

Lp−Stability. For p ∈ [1,∞] and 0 ≤ h, we use Lp to
denote Lp(−h,∞) and we let ‖y‖Lp denote the Lp−norm:

‖y‖Lp =
(∫ ∞

−h
‖y(t)‖pdt

) 1
p

, if p < ∞ and ‖y‖L∞ =
ess sup−h≤t<∞ ‖y(t)‖.

Consider the control system with delay in the input given
by

(Σ)h : ẋ(t) = f(x(t), u(t − h)), for t ≥ 0,

where the state x and the control u take respectively values
in R

n and R
m and f : R

n ×R
m → R

n, is locally Lipschitz
in (x, u), with f(0, 0) = 0. Trajectories of (Σ)h starting at
an initial condition x0 ∈ Ch and corresponding to an input
u ∈ Lp are defined for a time interval I of R

+ (which may
depend on x0 and u) and verify the equation (Σ)h for almost
every t ∈ I. Let 0̄ be the zero function in Ch.

Definition 5: (Lp−stability): Given p ∈ [1,∞], the
continuous-time delay system (Σ)h is said to be Lp−stable
if, for every u ∈ Lp, we have xu ∈ Lp, where xu denotes

the solution of (Σ)h corresponding to u with initial condition
x0 = 0̄.

Definition 6: (Finite-gain Lp− stability) : Given p ∈
[1,∞], the continuous-time delay system (Σ)h is said to be
finite-gain Lp−stable if it is Lp−stable, and there exists a
positive constant Mp such that, for every u ∈ Lp,

‖xu‖Lp ≤ Mp‖u‖Lp .

Furthermore, the infimum of such numbers Mp will be called
the Lp−gain of the system.
We next give our main results.

Theorem 4: Let A,B be n × n, n × m matrices respec-
tively. Let σ be an R

m−valued S−function. Assume that A
be neutrally stable and (A,B) controllable. Then, for every
h ≥ 0, there exists an n×m matrix Fh such that the system,

(S)r
h : ẋ = Ax − rBσ(FT

h x(t − h) + u(t − h)), for t ≥ 0,

has the unrestricted finite gain Lp-stability property for every
p ∈ [1,∞], i.e., for every h > 0, there exists r∗(h) ∈ (0, 1]
such that for every p ∈ [1,∞], (S)r

h, r ∈ (0, r∗(h)], is finite-
gain Lp-stable.

Remark 1: In the absence of u, the equilibrium point 0̄ is
globally asymptotically stable for the delayed system ẋ(t) =
Ax(t) − rBσ(FT

h x(t − h)).
Theorem 4 is a particular case of a stronger result given next.

Theorem 5: With the same hypothesis on A, B and σ,
consider the following delayed system (still denoted (S)r

h)

(S)r
h : ẋ(t) = Ax(t)−rBσ

(
FT

h x(t−h)+u1(t−h)
)

+ ru2(t − h), for t ≥ 0,

where Fh is defined as in Theorem 4 and the input u2 takes
values in R

n. then, there exist a constant C0 > 0 and,
for every 1 ≤ p ≤ ∞, a constant Mp > 0 such that,
for every h > 0 there is an r∗(h) ∈ (0, 1], for which the
trajectories xu1,u2 of (S)r

h, r ∈ (0, r∗(h)], starting at 0̄ and
corresponding to u1, u2 ∈ Lp with ‖u2‖L∞ ≤ C0, verify

‖xu1,u2‖Lp ≤ Mp (‖u1‖Lp + ‖u2‖Lp) . (8)
Remark 2: It will be clear from our argument that we can

in fact obtain the following stronger Input-To-State-Stable
(ISS for short)-like property ([9] and references there):

‖xψ
u1,u2

‖Lp ≤ θp(‖ψ‖h) + Mp(‖u1‖Lp + ‖u2‖Lp), (9)

where ψ ∈ Ch is the initial condition for the trajectory xψ
u1,u2

corresponding to u1, u2 and θp is a K-function (i.e. θp :
R+ → R+, is continuous, strictly increasing and satisfies
θp(0) = 0.).
Sketch of proof of Theorem 5. From elementary linear
algebra, a neutrally stable matrix A is similar to a matrix(

A1 0
0 A2

)
, where A1 is an q × q Hurwitz matrix and

A2 is an (n−q)× (n−q) skew-symmetric matrix. So, up to
a change of coordinates, we may assume that A is already
in this form. In this coordinates, we write B = (BT

1 BT
2 )T ,

where B2 is an (n− q)×m matrix and we write vectors as
x = (xT

1 , xT
2 )T and u2 = (uT

21, u
T
22)

T .
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For r ∈ (0, 1] and h > 0, consider the feedback law
(0, FT

h ). Then system (S)r
h, with this choice of FT

h , can be
written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = A1x1(t) − rB1σ(FT
h x2(t − h)

+ u1(t − h)) + ru21(t − h),

ẋ2(t) = A2x2(t) − rB2σ(FT
h x2(t − h)

+ u1(t − h)) + ru22(t − h).

Since A1 is Hurwitz, it will be sufficient to show that there
exists an r∗(h) ∈ (0, 1], such that the x2− subsystem is
finite gain Lp−stable, for all r ∈ (0, r∗(h)].

The controllability assumption on (A,B) implies that the
pair (A2, B2) is also controllable. Therefore, the theorem is
a consequence of the following proposition.

Proposition 1: Let σ, u1, u2 be as in Theorem 5. Let
(A,B) a controllable pair with A skew-symmetric. Then,
for every h ≥ 0, there exist an n × m matrix Fh and
r∗(h) ∈ (0, 1], such that, for every r ∈ (0, r∗(h)], the system

(S)r
h : ẋ(t) = Ax(t) − rBσ[FT

h x(t − h)

+ u1(t − h)] + ru2(t − h), for t ≥ 0,

verifies the conclusion of Theorem 5.
Sketch of proof. We start the proof by zooming on the

single-input case. The general proof first starts with algebraic
transformations and proceeds by induction on the number of
distinct algebraic multiplicities of the eigenvalues of A.

1) The single-input case: The principal idea is to rephrase
the delay systems as problems for perturbed delay-free
systems and handle the perturbation by Lyapunov techniques.
For this, Let h > 0 and consider y the solution of⎧⎨
⎩

ẏ(t) = (A − rbbT )y(t) + ru2(t − h), for t ≥ 0,

y0 = 0̄, on [−h, 0].
(10)

Since A is skew-symmetric, the matrix Ar := A − rbbT

is Hurwitz for every r > 0. Then (10) is Lp−stable for any
1 ≤ p ≤ ∞. Let γp be it is Lp−gain, so ‖y‖Lp ≤ γp‖u2‖Lp .

Let x be the solution of (S)r
h starting at 0̄ ∈ Ch and

corresponding to u1, u2. Set z := x − y. Then, z satisfies,
for t ≥ 0,⎧⎨
⎩

ż(t) = Az(t) − rb
[
σ

(
FT

h z(t − h) + ũ(t − h)
) − ṽ(t)

]
,

z0 = 0̄, on [−h, 0].
(11)

where ũ(t−h) = FT
h y(t−h)+u1(t−h) and ṽ(t) = bT y(t).

From (11), we have

z(t) = eAhz(t − h) − r
∫ t

t−h
eA(t−ξ)b[σ(FT

h z(ξ − h)+

+ ũ(ξ − h)) − ṽ(ξ)]dξ.

Then,

FT
h z(t − h) + ũ(t − h) = bT z(t) + d̃(t),

where

d̃(t) = ũ(t − h) + r
∫ t

t−h
bT eA(t−ξ)b[σ(FT

h z(ξ − h)+

+ ũ(ξ − h)) − ṽ(ξ)]dξ.

Consider the Lyapunov function defined by

Vp,r(t, z) := λp,r
‖z(t)‖p+1

p+1 + (zT (t)Prz(t))
p
2

+ µp,r

∫ t

t−2h
(
∫ t

s
‖z(l)‖pdl)ds,

where Pr is the unique positive-definite solution to the
Lyapunov equation

X(A − rbbT ) + (A − rbbT )T X = −Idn.

The appropriate choice of λp,r and µp,r requires careful
estimates on Pr as r tends to zero.

We need the next lemma (in order to show ultimately the
independence of Mp with respect the parameters r and h).

Lemma 3:. Let A and b be as in Proposition 1. Then, the
following properties hold.

There exists a r∗ ∈ (0, 1] such that for all t ≥ 0,

C ′
1e

−C′
2rt ≤ ||e(A−rbbT )t|| ≤ C1e

−C2rt, ∀r ∈ (0, r∗],
(12)

for some positive constants C1, C ′
1, C2 and C ′

2 independent
of r, and

λmax(Pr) �0 λmin(Pr) �0
1
r
. (13)

We determine a dissipation inequality for Vp,r, i.e., we take
the time derivative of Vp,r(t, x(t)) along trajectories of (S)r

h.
After some computation we get

V̇p,r(z(t)) ≤ −C1(r)‖z(t)‖p+

+ C2(r)‖z(t)‖p−1[‖ũ(t − h)‖ + ‖ṽ(t)‖+

+ rC3

∫ t

t−h
(‖ũ(ξ − h)‖ + ‖ṽ(ξ)‖) dξ],

(14)
where C1(r), C2(r) and C3 denote constants that are depen-
dent and independent or r.

For every t ≥ 0, integrating (14) from 0 to t and applying
Hölder’s inequality, we get

Vp(z(t))+C1(r)‖z‖p
Lp[0,t] ≤ (1+rhC3)C2(r)‖z‖p−1

Lp[0,t]

× (‖ũ‖Lp +‖ṽ‖Lp).
(15)

Since Vp,r ≥ 0 and⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

‖ṽ‖Lp ≤ ‖b‖‖y‖Lp ≤ γp‖b‖‖u2‖Lp ,

‖ũ‖Lp ≤ ‖u1‖Lp + γp‖b‖‖u2‖Lp ,

‖z‖Lp ≥ ‖x‖Lp − ‖y‖Lp ≥ ‖x‖Lp − γp‖u2‖Lp ,

we get that x ∈ Lp([0,∞), Rn) and

‖x‖Lp ≤ Mp(‖u1‖Lp + ‖u2‖Lp), (16)
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where

Mp = max{C2(r)
C1(r)

(1 + rhC3),

γp

[
1 + 2‖b‖C2(r)

C1(r)
(1 + rhC3)

]
}.

(17)

A careful computation shows that

C2(r)
C1(r)

�0 (
λmax(Pr)
λmin(Pr)

)|
p
2−1| �0 1, (18)

thanks to Lemma 3 and by choosing rh ≤ 1. In that way,
the Lp−gain Mp is delay-independent.

2) The general case: Complete details of the argument of
this case are given in [15]

Remark 3: In the single input case (m = 1), Fh can be
chosen as e−AhB, which corresponds, up to the delay h, to
the linear feedback law suggested by the passivity approach
and used in [1]. A simple adaptation of the proof to the multi-
input case shows that such a feedback can also be used to
get Lp−stability but the corresponding Lp−gain is delay-
independent only for single-input systems. The difference
between the single and the multi-input case shows up in
(13). In the multi-input case, there are n eigenvalues of Ar =
A−rBBT , λ1(r), . . . , λn(r), defining continuous functions,
which are not analytic in general. These functions, though,
can be written as Puiseux series (cf. [7]),

λi(r) = λi(0) +
∞∑

j=1

α
(i)
j r

j
pi ,

where λi(0) is a root of multiplicity ξ of A and pi is positive
integers eventually larger than one. It implies that

λmax(Pr) �0 (
1
r
)smax and λmin(Pr) �0 (

1
r
)smin ,

for positive constants 1 ≤ smin ≤ smax. Therefore, by
equation (18) the Lp−gain Mp cannot be delay-independent.
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