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Abstract— This paper presents the application of a predictive
controller with simultaneous identification to a solar air con-
ditioning plant. The time varying nature of the process makes
necessary an adjustment of the controller parameters to the
varying operational conditions. The main novelty with respect
to classic adaptive MPC scheme is to penalize the identification
error in the cost function used for control. The behaviour of the
controller is illustrated by simulations and experimental results.
The integration of identification and control avoids the tedious
identification procedure that is necessary before the start-up
of any predictive controller. This new adaptive MPC scheme
shows its effectiveness in controlling the outlet temperature in
the solar thermal plant.

I. INTRODUCTION

Model Predictive Control (MPC) has developed conside-
rably over the last years, both within the research control
community and in industry [1]. This success can be attributed
to the fact that MPC is, perhaps, the most general way of
posing the process control problem in the time domain. MPC

formulation integrates optimal control, stochastic control,
control of processes with dead time, multivariable control
and future references when available. Another advantage
of MPC is that because of the finite control horizon used,
constraints and, in general nonlinear processes which are
frequently found in industry, can be handled.

However, one of the major drawbacks of this type of
control strategy is the need to obtain a dynamic model of the
plant. Most of the success of commercial predictive contro-
llers such as Dynamic Matrix Control DMC [2] comes from
its ability to use a step response model of the plant, which
can be easily identified with experimental tests. However,
the identification phase needs a lot of expertise and time to
perform the experiments and this is usually done only once,
at the process start-up. The model is not updated frequently
even if process dynamics changes along time.

Model updating is particularly important in processes
with changing operating conditions, where the process pa-
rameters are continually evolving. In processes involving
mass transportation (as the one controlled in this work),
the characteristic time constant and delay are affected by
flow changes, giving rise to a process dynamics that changes
during variable operating regimes.
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Model uncertainty and disturbances are important con-
cerns in MPC and have been thoroughly studied in recent
years. The main approaches to the subject appear in the
fields of adaptive control and robust control. There is a lot of
work done in robust MPC, with significant contributions in
the min-max environment which, in spite of their theoretical
importance, are difficult to be implemented in practice [3].

Adaptive MPC has also been widely studied by a number
of authors, for example [4] [5]. The application of a self-
tuning controller with a recursive least squares identification
algorithm gives rise to a solution that is easily implementable
but shows numerical problems when the excitation vanishes
[6]. A supervisory level is needed which makes the procedure
more complex. This can be solved with the methodology
proposed by Shouche et al. [7], Model Predictive Control and
Identification MPCI, which is an adaptive MPC scheme that
employs the persistent excitation condition [8] to guarantee
identifiability. The main drawback of this method is that
the use of the persistent excitation condition deteriorates the
control performance. Although the identification capabilities
of the method are very good, the fact that the control
signals are calculated in order to guarantee excitation gives
poor control features. In addition, there are no reports of
applications to real plants. The method presented here tries
to overcome this problem.

Solar thermal plants are usually difficult to control because
the energy source (solar radiation) is not manipulable [5] and
is continually changing. This makes constant flow changes
necessary for reference tracking, provoking sudden process
dynamics changes. Lots of control strategies have been
applied to these plants, ranging from classical PIDs to MPC

[9]. In this paper, a method that uses predictive control and
identification simultaneously has been tested on a solar air
conditioning plant.

The proposed method makes use of a cost function that
includes tracking error and control effort (as any predictive
controller) as well as the identification error in a past rece-
ding horizon. This is a combination of the control problem
and the identification problem in just one cost function. This
method is in the framework of the dual control [10]. The
problem is not too costly and has been implemented on an
industrial low-cost SCADA.

The paper is organized as follows. In section II a descrip-
tion of the solar plant is presented. Section III describes the
proposed control strategy, which is tested under simulation
and compared to a self-tuning MPC in section IV. The results
of applying the proposed controller to the real plant are
shown in section V and finally the conclusions are drawn.
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II. PLANT DESCRIPTION

The solar air conditioning plant is located in Seville
(Spain). It is used to cool the Laboratories of the System
Engineering and Automatic Control Department of the Uni-
versity of Seville. It consists of a solar field that produces
hot water which feeds an absorption machine generating
chilled water and injects it into the air conditioning system,
achieving a cooling power of 35 kW.
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Solar system

VM1

CC1 CC2 CC3 CC4
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Irr
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Accumulation
system

Fig. 1. Plant description

The solar plant can be analyzed as an air conditioning
installation that uses thermal energy to produce cold air. A
complete description of the plant can be found in [9].

The overall control objective is to supply chilled water to
the air distribution system at the required temperature. This
is accomplished by controlling the temperature of the hot
water supplied by the solar field. Since the primary energy
(solar radiation) is not manipulable, the desired temperature
is achieved by acting on the circulating flow. The solar
contribution, in addition to radiation seasonal and daily cy-
clic variations, is also dependent on atmospheric conditions
such as cloud cover, humidity, and air transparency. It is
important to maintain a constant outlet temperature as the
solar conditions change, and the only means available for
achieving this is via adjustment of the fluid flow.

The control problem addressed in this paper is the re-
gulation of the solar field outlet temperature (Tfo). Figure
1 shows the main components of the plant, which are the
following:

a) Solar system, composed of a set of flat solar collectors.
The primary source of energy is solar radiation which is
used by the solar collectors to increase the temperature
of the circulating water. The solar field is composed of
151 m2 of flat collectors which work within the range
of 60 to 100 ◦C and supply a nominal power of 50 kW.

b) Accumulation system, composed of two 2500-liter tanks
working in parallel. This system acts as a buffer, storing

hot water to be used in transient situations where the
solar radiation does not allow the desired temperature
to be obtained at the end of the hot water circuit.

The objective of the control system is to maintain the
outlet oil temperature Tfo at a desired level in spite of
disturbances such as changes in the solar irradiance level
(caused by clouds), mirror reflectivity or inlet water tem-
perature. This is accomplished by varying the flow of the
fluid through the field manipulating the three-way valve
(VM1). The field exhibits a variable delay time that de-
pends on the control variable (flow). The transfer function
of the process varies with factors such as irradiance level
or water inlet temperature. The maintenance of a constant
outlet temperature throughout the day as the solar conditions
change requires a wide variation in the operational flow level.
This leads to substantial variations in the general dynamic
performance and in particular, from the control viewpoint,
gives rise to a system time delay which varies significantly.
The controller parameters need to be adjusted to suit the
operating conditions, and the proposed method offers one
approach which can accommodate such a requirement.

The proposed control strategy is implemented on a small-
size Distributed Control System (DCS) as a routine that
communicates through the standard interface OLE for Process
Control (OPC). OPC facilitates the interoperability between
automation and control applications.

III. CONTROL STRATEGY

This section is dedicated to describing the proposed con-
trol strategy. The predictive controller with simultaneous
identification on-line is based on Generalized Predictive
Control (GPC), that consists of applying a control sequence
that minimizes a multistage cost function that considers both
tracking error and control effort.

For control purposes a simple, linear model is required
which relates changes in fluid flow to changes in outlet
temperature. In this section the theoretical development for
n-order systems is shown and the use of first-order systems
is justified.

A. n-order systems

The proposed controller extends the cost function of the
original GPC ([11]) with an identification error term added
in the following way:

min
x

J =
N2∑

j=N1

δ(j)[ŷ(t + j | t) − w(t + j)]2 + (1)

+
Nu∑
j=1

λ(j)[∆u(t + j − 1)]2 +

+
N3∑
j=1

γ(j)[y(t − j + 1 | t) − φθ]2

s.t ∆umax ≤ ∆u ≤ ∆umin, umax ≤ u ≤ umin

ymax ≤ y ≤ ymin, aimax
≤ ai ≤ aimin

bkmax
≤ bk ≤ bkmin

, dmax ≤ d ≤ dmin
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∀i = 1 . . . na and ∀k = 1 . . . nb, where N1 and N2 are
the minimum and maximum predictions horizons (taken
as N1 = d + 1 and N2 = d + N ), Nu is the control
horizon and N3 is the identification horizon, d is the delay
of the input-output process model and δ(j), λ(j) and γ(j)
are weighting sequences. w(t + j) is a future set-point or
reference sequence, �u(t) is the incremental control action
(�u(t) = u(t) − u(t − 1)), ŷ(t + j | t) is the j-step ahead
prediction of the system output on data up to time t and
y(t − j + 1 | t) is the j-step backwards of the system real
output on data up to time t. φ is the regression matrix, θ is
the parameter vector to be identified and finally ai, bi, d, are
the transfer function parameters of the discrete polynomials
of degree na and nb as shown below.

If a CARIMA model is used to model the random distur-
bances in the system and the noise polynomial is chosen to
be 1, the following equations are obtained1:

A(z−1)y(t) = z−dB(z−1)u(t) +
ε(t)
∆

(2)

Where A and B are the following polynomials in the
backward shift operator z−1:

A(z−1) = 1 + a1z
−1 + a2z

−2 + . . . + anaz−na (3)

B(z−1) = b0 + b1z
−1 + b2z

−2 + . . . + bnbz
−nb

then the best expected value for the output prediction ŷ(t+
d + j | t) is given by,

ŷ(t + d + j|t) = (1 − a1)ŷ(t + d + j − 1 | t) + (4)

(a1 − a2)ŷ(t + d + j − 2 | t) + . . . +
anaŷ(t + d + j − na − 1 | t) + b0∆u(t + j − 1) +

b1∆u(t + j − 2) + . . . + bnb∆u(t + j − 1 − nb)

If equation (4) is applied recursively for j = 1, 2, . . . , N ,
the prediction vector is given by the following equation
expressed in condensed form as:

ŷ = Gu+ + Sŷ− + Hu− (5)

Where ŷ, u+, ŷ− and u− are vectors of sizes N ×1, Nu×1,
(na + 1) × 1 and nb × 1 respectively.

ŷ =

⎡
⎢⎢⎣

ŷ(t + d + 1 | t)
ŷ(t + d + 2 | t)

. . .
ŷ(t + d + N | t)

⎤
⎥⎥⎦u+ =

⎡
⎢⎢⎣

∆u(t)
∆u(t + 1)

. . .
∆u(t + Nu − 1)

⎤
⎥⎥⎦

ŷ− =

⎡
⎢⎢⎣

ŷ(t + d | t)
ŷ(t + d − 1 | t)

. . .
ŷ(t + d − na | t)

⎤
⎥⎥⎦u− =

⎡
⎢⎢⎣

∆u(t − 1)
∆u(t − 2)

. . .
∆u(t − nb)

⎤
⎥⎥⎦

And G, S and H are matrices of dimensions N ×Nu, N ×
(na + 1) and N × nb, respectively. The following equations
show how the matrices G and S can be obtained for n-order
systems in a standard form.

1Parameters ai, bi and d are time-dependant.

G is a lower triangular matrix which takes the form:

G =

⎡
⎢⎢⎢⎣

g0 0 . . . 0
g1 g0 . . . 0
...

...
...

...
gN gN−1 . . . g0

⎤
⎥⎥⎥⎦

and their elements are given by

g0 = b0

gj =
j∑

i=1

aigj−i +
j−1∑
i=0

bi j = 1, . . . , N (6)

If j < 0 ⇒ gj = 0

S is given by

s1,j = −ãj+1, j = 1, . . . , nã

si,j =
i−1∑
k=1

s1,ksi−k,j (7)

i = 2, . . . , N ; j = 1, . . . , nã

Where ã and nã are the elements and degree respectively
of the polynomial Ã(z−1), that is, Ã(z−1) = ∆A(z−1) =
(1 − z−1)A(z−1).

H is given by

h1,j = bj , j = 1, . . . , nb

hi,j =
i−1∑
k=1

(ãk+1hi−k,j) + h1,i+j−1 (8)

i = 2, . . . , N ; j = 1, . . . , nb

And finally φ is the regression matrix of dimension N3 ×
(na + nb + 1) and θ is the parameter vector to be identified
of dimension (na+nb+1)×1, which is calculated at every
sampling time using the receding horizon identification.

φ = [y(t − j | t) y(t − j − 1 | t) . . . y(t − j − na | t)
∆u(t − d − j | t) . . . ∆u(t − d − j − nb | t)] (9)

θ = [ 1 − a1(t) a1(t) − a2(t) . . . ana(t) (10)

b0(t) . . . bnb(t)]T

The decision variables of the problem proposed are the
following:

x = [a1(t) . . . ana(t) b0(t) . . . bnb(t) d(t) (11)

∆u(t) ∆u(t + 1) . . . ∆u(t + Nu − 1) ]T

The algorithm complexity grows with regard to order
system and control horizon.

B. First-order systems

Most processes in industry, when considering small chan-
ges around an operating point can be described by a linear
model of, normally, very high order. This is because most in-
dustrial processes are composed of many dynamic elements,
usually first order, so the full model is of an order equal
to the number of elements. In fact, each mass or energy
storage element in the process provides a first-order element
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in the model. Consider, for instance, a long pipe used for heat
exchanging purposes, as the case of solar collector. The pipe
can be modelled by breaking it into a set of small pieces,
each of which can be considered a first-order system. The
resulting model will have an order equal to the number of
pieces used to model the pipe, that is, a very high-order
model. These very high-order models would be difficult to
use for control purposes but, fortunately, as shown in [12], it
is possible to approximate the behaviour of such high-order
processes by a system with one time constant and a dead
time.

The plant to be controlled can be described by this kind
of model. If the sampling time is an integer multiple of the
delay, the discrete transfer function is given by:

G(z−1) =
bz−1

1 − az−1
z−d

In this case na = 1 and nb = 1 and the methodology
shown above is reduced considerably. Therefore φ and θ are
reduced to dimensions N3 × 3 and 3 × 1 respectively:

φ = [y(t−j−1 | t) y(t−j−2 | t) ∆u(t−d−j | t)] (12)

θ =
[

1 − a(t) a(t) b(t)
]T

(13)

And the decision variables number becomes 3 + Nu:

x = [ a(t) b(t) d(t) ∆u(t) ∆u(t + 1) (14)

. . . ∆u(t + Nu − 1) ]T

Consequently the optimization problem is also reduced
and now the algorithm complexity grows linearly with the
control horizon. The algorithm complexity is independent on
the system parameters.

C. Optimization problem

The optimization problem is composed of a bilinear ob-
jective function (control and estimation cannot be designed
separately, the estimation is affected by the control) subject
to inequality constraints (the ones that can be handled by
any MPC plus those imposed on model parameters) in the
presence of continuous and integer variables (dead time
d). Therefore it is a non-convex Mixed Integer Non-Linear
Programming (MINLP) problem.

This kind of problem has a high computational burden,
mainly if the global minimum want to be found. There are
Branch&Bound algorithms available in the market that solve
this optimization problem with the help of the user, who
can influence the choice of branching variable by providing
priorities for the integer variables. Anyway, this is not an
easy problem to be solved on-line.

In order to simplify the method so that can be used in real
time, two approximation have been used:

a) A simpler optimization algorithm has been used. The
Matlab Optimization Toolbox function (fmincon) has
been used to solve the problem. fmincon uses derivative-
based search algorithm and do not guarantee a glo-
bal minimum. All the parameters of the optimization

function can be modified in order to reach an accepta-
ble compromise between execution time and the sub-
optimal solution of the algorithm.

b) On the other hand, the problem has been relaxed treating
the integer variable as real, that is, it is converted into
Non-Linear Programming with real varaibles. The value
given by the algorithm is truncated in order to satisfy
the requirements of the system.

The only tuning parameters of the controller are:

1) Control horizon: Nu.
2) Prediction horizon: N1 = d + 1, N2 = d + N .
3) Identification horizon: N3.
4) Output weighting factor: δi.
5) Input weighting factor: λi.
6) Identification weighting factor: γi.

IV. SIMULATIONS RESULTS

In order to test the proposed method before the final
implementation and to compare it with others controllers,
a simulation study was made. This section shows simulation
of the proposed controller compared to a standard approach
using an self-tunig GPC with RLS identification and to the
MPCI proposed by Shouche et al. [7].

The nominal model used for the design is the following
first order linear system with a dead time of three sampling
periods:

Gm(z−1) =
−0.009546z−1

1 − 0.89654z−1
z−4 (15)

The following figures show the behaviour of the process
output, which is the solar field outlet temperature (Tfo) and
the manipulated variable, which is valve opening (VM1)as
well as model parameters a, b and d. The tuning values for
the predictive controllers are: Nu = 10, N = 60, N3 = 60,
λ = 1, δ = 1, γ = 1000, being the sampling time Ts = 40s.
All the decision variables have an initial value equal to zero,
that is, the controller does not know the process model. And
the maximum and minimum values of the variables are 100
and −100.

Fig 2 shows a comparison of the evolution of the pro-
cess output responses under a self-tuning GPC with a RLS

identification procedure (thin solid line) and the proposed
method GPC with simultaneous identification (bold line).
This simulation was performed in order to illustrate the
behaviour of both controllers under changes in the operating
point and set-point. Initially, the model parameters are a =
−0.89654, b = −0.009546 and d = 3. They are changed
from their nominal values at t = 159, taking the new values
a = −0.627, b = −1. The dead time was not changed so that
both controllers could work in the same conditions, since the
self-tuning controller does not estimate this value.

As can be seen, both controllers behave well in the
nominal case, but the proposed controller is able con go on
controlling with the new values of the parameters while the
self-tuning GPC behaves worst. The RLS finds new values of
the parameters that make the self-tuning controller behave
well, although they are not the true ones. At t = 340, the
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Fig. 2. Simulation I

MPC with adaptation modifies the values parameters. This
effect is based on the absence of Persistent Excitation in
closed loop identification [13]. At t = 351, where a step
change in the reference is performed, the proposed strategy
gives a good closed loop response while the MPC with
adaptation is fluctuating during 100 samples.

The following simulation (figure 3) presents the results of
a test performed to show how the proposed strategy is able
to identify the plant dead time, apart from the other model
parameters.
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Fig. 3. Simulation II

In this case the comparison has been carried out with a
fixed GPC. The GPC logically behaves worst, since it is not
able to adapt to this change. The model used in the simulation
has been changed from the one in equation (15) to

Gm(z−1) =
−0.9z−1

1 − 0.6723z−1
z−1

Note how, in spite of the great variation of the parameters
(even dead time), the strategy described in this paper is able
to meet the new model parameters without the need of a
Persistent Excitation. It is able to track the set-point in steady
state and when it is changed. The standard GPC is not able
to meet these changes.

The last simulation compares the proposed method with
the MPCI proposed by Shouche et al.. The model is taken
from case study (B) of [7] and is given by:

y(t) = ay(t − 1) + bu(t − 1) + e(t)

Where the initial model parameters are a = 0.4, b = 0.4 and
e = −0.05. The true parameters are a = 0.6, b = 0.2 and
e = 0, which perfectly identified by both controllers.

Table I shows the tracking capabilities of both controllers
quantified as IAE (Integral of Absolute Error) and ISE (Inte-
gral of Square Error). Both controllers find good estimates of
the true values, but MPCI imposes constraints on the input in
order to have Persistent Excitation, deteriorating the tracking
capabilities of the controller. The difference in controllers
performance is clearly shown.

TABLE I

MPCI VS PROPOSED MPC

Controller IAE ISE
MPCI 0.0817 2.5017 ×10−5

Proposed MPC 1.3279 ×10−4 6.6304×10−11

V. EXPERIMENTAL RESULTS

Several experiments have been performed on the solar
plant to show the behaviour of the proposed controller. The
tuning values used are: Nu = 10, N = 60, N3 = 150,
λ = 1, δ = 10, γ = 100. All the decision variables
start with a initial value equal to zero, that is, there is no
previous knowledge of the plant dynamics. The bounds of
all the variables are 100 and −100 except ∆umax = 20 and
∆umin = −20. The following graphics show the actual solar
field outlet temperature (Tfo) together with its reference,
valve opening, solar radiation, field inlet temperature, which
is the accumulators output temperature (Tac) as well as
model parameters a, b and d.

Figure 4 presents the result of the experiment carried out
to show reference tracking capabilities. The experiment takes
over three hours, and corresponds to a clear day (see solar
radiation).

There exists a slow variation in the solar radiation and inlet
temperature Tac during all day which gives rise to changes in
process dynamics. In this case the delay remains unchanged
(d = 5), but the other parameters (a and b), are modified by
the controller in order to obtain a good closed loop behaviour.

One of the most appealing features of this method, as is
it capability of starting to control without prior knowledge
of the plant, is shown in the next experiment.

Figure 5 shows the evolution of the plant at the beginning
of the day. During the start-up phase, the control strategy is
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Fig. 4. Experimental results I

able to drive the plant towards the desired operating regime
and track the setpoint, even with changes in radiation. In
this case the parameters constraints are: amax = −0.6,
amin = −1, bmax = 1, bmin = −0.9, dmax = 10, dmin = 1.
Notice that some of these constraints are active during the
experiment, showing that a constrained MPC is solved on
line.

The results obtained in both experiments are good in spite
of the varying conditions, showing that the proposed method
is a good candidate to control this kind of plants.

VI. CONCLUSIONS

The paper has shown the application of a predictive
controller with simultaneous identification to a solar plant.
The control strategy allows the start-up of the plant without
a tedious identification procedure and has shown good per-
formance in changing operating conditions. The use of a
sub-optimal solution of the MINLP problem allows its use
in real time with low computational requirements. While
the applicability of the method has been illustrated, future
investigation is needed relating the optimization procedure
and stability issues.
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