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Abstract— The system representation in data space, which
was proposed recently, leads to a new control strategy for
a linear time-invariant plant. The control input is computed
directly from the input-output data of the plant without using
any traditional mathematical model, such as transfer function
or state space equation. In this paper, a dead-beat tracking
for arbitrary reference signals is considered for multi-input
multi-output systems, and the control input which minimizes a
quadratic performance index is computed in that framework.

I. INTRODUCTION

Behaviors of a plant contain rich knowledge of its dy-
namics, and the plant can be represented by the behaviors
themselves. That is, if we start from input-output data of
the plant, we do not have to introduce any traditional
mathematical models of the plant such as a transfer function,
a state equation [1], or a kernel representation [2]. Based on
a sufficient number of the observed data, we can derive a
control input directly [3].

From this point of view, a system representation and a
control strategy in data space are proposed recently in [3],
[4], [5], [6]. This approach employs a data based system
representation of the plant, where the plant dynamics is
represented as a set of basis vectors whose elements are
input-output data of the plant. That is, the plant dynamics
is represented by its behaviors themselves. Then, with this
system representation, dead-beat optimal regulation is inves-
tigated in [4], while dead-beat optimal tracking is considered
in [5], [6].

We here focus our attention on dead-beat optimal tracking
in [5], [6], which is a control that makes tracking error
for arbitrary reference signal zero within a finite number
of time steps. This problem has been considered, under the
assumption that the relative degree of the plant is given,
for general single-input single-output (SISO) plants [5], and
for a class of multi-input multi-output (MIMO) plants [6]
with uniform rank [7]. However, one of the advantage of
data based method is to proceed a control strategy without a
special knowledge of the plant. Thus, it is desirable to extend
the control strategy for general MIMO plants with unknown
relative degree.

T. Kai was with Graduate School of Science and Technology, Kobe
University. He is currently with Brother Industries, Ltd..

Y. Fujisaki is with Department of Computer and Systems En-
gineering, Kobe University, Nada, Kobe 657-8501, Japan. E-mail:
fujisaki@cs.kobe-u.ac.jp

This paper follows this line of research. The objective of
this paper is to show that, in the framework of data based
system representation, dead-beat optimal tracking is actually
possible for MIMO plants without the assumptions. To this
end, in the first part of this paper, we investigate a structure of
the data space which is useful for dead-beat optimal tracking.
Then, in the second part of this paper, we actually give a
procedure for computing the control input which minimizes a
quadratic performance index subject to dead-beat tracking. It
is also shown that the vector representing the plant dynamics
should be longer than that of the previous literature where
the relative degree of the plant is assumed to be known. The
proofs of the theorems are given in the appendix.

In closing this section, we remark that the control strategy
proposed in this paper requires neither the mathematical
model of the plant nor that of the controller. This is a
significant feature relative to the other results [8], [9], [10],
[11] concerning optimal control based on input-output data,
which are interested in deriving a difference equation of the
controller.

II. SYSTEM REPRESENTATION IN DATA SPACE

A. Data Space

In this paper, we consider a causal, finite dimensional,
linear, discrete time, shift invariant plant with p inputs and
m outputs. Throughout the paper, n denotes the MacMillan
degree of the plant. We assume that the plant is right invert-
ible, which is a necessary condition for dead-beat tracking,
independently of system representation of the plant.

Let us introduce a data vector which consists of input-
output data with � steps from time k

z =
[

yT
k yT

k+1 · · · yT
k+�−1 uT

k uT
k+1 · · · uT

k+�−1

]T
(1)

where yk ∈ Rm is the output at time k, uk ∈ Rp is the input
at time k. We call the set of all z generated by the plant the
data space, which is denoted by Z .

We remark that input data to time k+�−1 are considered
as [4], while input data to time k + � − r − 1 have been
considered in [5], [6], where the relative degree r of the
plant has been assumed to be known.

All admissible data are constrained by the plant dynamics,
thus Z belongs to a subspace of the �(m + p) dimensional
vector space R�(m+p). Here, we state the following fact [4].
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Proposition 1: If � ≥ µ, then

dim(Z) = �p + n

where µ ∈ N, one of which exists in [n/m, n].
We therefore see that any data vector can be represented

as a linear combination of a basis of Z if � ≥ µ. This means
that we can regard a set of �p + n basis vector of Z as a
system representation of the plant.

Based on this system representation, we further develop a
comprehensive framework as dynamical system theory and
consider a dead-beat optimal tracking control strategy.

Throughout this paper, we assume that data vectors consist
of a time series with � steps. Furthermore, we use µ as a
constant defined by Proposition 1 and assume � ≥ µ.

B. Reachable Data Space

We define the initial series of a data vector as its inputs
and outputs in the first µ steps. Let us consider a data vector
whose initial series is 0, i.e.,

zF =
[

0 · · · 0 yT
k+µ · · · yT

k+�−1

0 · · · 0 uT
k+µ · · · uT

k+�−1

]T
. (2)

We call the set of all zF generated by the plant the reachable
data space, which is denoted by ZF .

Obviously, ZF is a subspace of Z . We can obtain the
following fact [4].

Proposition 2:

dim(ZF ) = (� − µ)p.

That is, the dimension of ZF is identical to the degrees
of freedom of uk in zF .

If we rewrite the data space Z as a direct sum

Z = ZI ⊕ZF (3)

then, from Proposition 1 and 2,

dim(ZI) = µp + n.

The relation (3) means that any data vector z has a unique
decomposition

z = zI + zF

where zI ∈ ZI whose initial series is identical to that of z,
and zF ∈ ZF whose initial series is 0.

C. Output Controllable Data Space

We define the output terminal series of an data vector as its
outputs in the last s steps where s ∈ N. This output terminal
series denotes arbitrary reference signal in dead-beat tracking
control, and its length denotes time interval whose outputs is
forced to the reference signal. Let us consider a data vector
whose output terminal series is 0, i.e.,

zPy =
[

yT
k · · · yT

k+�−s−1 0 · · · 0

uT
k uT

k+1 · · · uT
k+�−1

]T
(4)

where we assume � ≥ s. We call the set of all zPy generated
by the plant the output controllable data space, which is
denoted by ZPy .

Obviously, ZPy is a subspace of Z . We can obtain the
following theorem.

Theorem 1: If � ≥ ν + s, then

dim(ZPy) = �p + n − sm

where ν ∈ N, one of which exists in [n/p, n].
If we rewrite the data space Z as a direct sum

Z = ZTy ⊕ZPy (5)

then, from Proposition 1 and Theorem 1,

dim(ZTy) = sm.

The relation (5) means that any data vector z has a unique
decomposition

z = zTy + zPy

where zTy ∈ ZTy whose output terminal series is identical
to that of z, and zPy ∈ ZPy whose output terminal series is
0.

D. Intersection of Reachable and Output Controllable Data
Spaces

Let us consider a behavior which concatenates a given
initial series and a given output terminal series. Notice first
that we can prove the following theorem.

Theorem 2: If � ≥ µ + ν + s, then

dim(ZF ∩ ZPy) = (� − µ)p − sm.

We therefore see that

dim(ZF + ZPy)

= dim(ZF ) + dim(ZPy) − dim(ZF ∩ ZPy)

= dim(Z)

from Propositions 1-2 and Theorem 1 when the condition in
Theorem 2 is satisfied. This implies

Z = ZF + ZPy.

Then, we rewrite the data space Z as a direct sum

Z = ZIPy ⊕ZTyF ⊕ZCy (6)

under the condition of Theorem 2 where

ZCy = ZPy ∩ ZF

and the subspaces ZIPy and ZTyF satisfy

ZPy = ZIPy ∩ ZCy

ZF = ZTyF ∩ ZCy.

Here, from Proposition 2 and Theorems 1-2, the dimensions
of the subspaces are

dim(ZIPy) = µp + n

dim(ZTyF ) = sm.
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The relation (6) means that any data vector z has a unique
decomposition

z = zIPy + zTyF + zCy (7)

where zIPy ∈ ZIPy whose initial series is identical to that
of z and whose output terminal series is 0, zTyF ∈ ZTyF

whose initial series is 0 and whose output terminal series
is identical to that of z, and zCy ∈ ZCy whose initial and
output terminal series are both 0. Utilizing this fact, we can
solve a dead-beat optimal tracking control problem based on
the system representation in data space.

Remark 1: The minimums of µ and ν such that Proposi-
tions 1-2 and Theorems 1-2 hold are observability index µ∗

and controllability index ν∗ for a minimal realization of the
plant, which can be seen in the proofs of these theorems.
For an SISO plant, m = p = 1, thus µ∗ = ν∗ = n. On the
other hand, µ∗ ≤ n and ν∗ ≤ n for an MIMO plant, and µ∗

and ν∗ are less than n in general.
Remark 2: Note that µ ≤ n and ν ≤ n. Thus, regardless

of whether µ and ν are unknown or not, we see that
Propositions 1-2 hold for � ≥ n, Theorem 1 holds for
� ≥ n + s, and Theorem 2 holds for � ≥ 2n + s.

Remark 3: For the case the relative degree is unknown,
ZC �= 0 even if � is selected as the minimum µ∗ + ν∗ + s in
Theorem 2. That is, a behavior concatenating a given initial
series and a given output terminal series is not uniquely
determined. On the other hand, for the case of the relative
degree of the plant is known, it can be shown that the
behavior is determined uniquely if data vector is shortened
by the relative degree. The details can be found in [5], [6].

Remark 4: The condition in Theorem 1 is related to the
number of the constraints between output terminal series and
input data from time k to k + � − 1. It also appears in the
context of “a delayed inverse [12]” of the plant.

III. OPTIMAL TRACKING VIA DATA BASED SYSTEM

REPRESENTATION

A. Optimal Tracking in Data Space

In this section, based on the structures of the data space,
we consider dead-beat optimal tracking control as an optimal
control with finite horizon. We use a performance index

J = (zR − z)TQ(zR − z) (8)

where z ∈ Z is a data vector of the plant, zR ∈ R�(m+p) is
a given reference data vector, and Q ∈ R�(m+p)×�(m+p) is
a given positive definite matrix.

Hereinafter, we assume � ≥ µ + ν + s. Suppose that
the plant have behaved until the time k + µ, which means
that the initial series of the plant is specified. Then, we
consider forcing the output from k + � − s to k + � − 1
to a reference signal, that is, the given output terminal
series. In this case, ẑIPy ∈ ZIPy and ẑTyF ∈ ZTyF in

(7) is uniquely determined. Then, dead-beat optimal tracking
control problem is formulated as follows.

Problem 1: For given zR ∈ R�(m+p), ẑIPy ∈ ZIPy and
ẑTyF ∈ ZTyF , find the optimal data vector zopt ∈ Z which
minimizes the performance index J of (8) subject to

z = ẑIPy + ẑTyF + zCy (9)

where zCy ∈ ZCy is the decision variable.
Since the quadratic form xTQx can be regarded as a

metric in the inner product space R�(m+p), the optimal data
vector zCyopt ∈ ZCy which minimizes the performance
index J of (8) can be represented as

zCyopt = PCy(zR − ẑIPy − ẑTyF )

where PCy is the orthogonal projection onto ZCy in
R�(m+p). It is given by

PCy = HCy(HT
CyQHCy)−1HT

CyQ (10)

where HCy is a matrix whose columns consists of a basis
of ZCy . Then, we can obtain the following theorem.

Theorem 3: For given zR ∈ R�(m+p), ẑIPy ∈ ZIPy

and ẑTyF ∈ ZTyF , there exists a unique zopt ∈ Z which
minimizes the performance index J of (8) subject to (9),
and it is given by

zopt = (I − PCy)(ẑIPy + ẑTyF ) + PCyzR.
The elements of zopt corresponding to uk+µ, uk+µ+1, . . .,

are the optimal inputs at the times k + µ, k + µ + 1, . . ..

B. Bases of Data Spaces

We give procedures to derive the bases of the data space
which are used in the proposed control strategy.

Let us introduce a block Hankel matrix of yi and ui

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0 y1 · · · yi · · ·
y1 y2 · · · yi+1 · · ·
...

...
... · · ·

y�−1 y� · · · yi+�−1 · · ·
u0 u1 · · · ui · · ·
u1 u2 · · · ui+1 · · ·
...

...
... · · ·

u�−1 u� · · · ui+�−1 · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

When a sufficient number of data are available, we can select
�p+n independent columns of H from Proposition 1. Then,
we set HZ ∈ R�(m+p)×(�p+n) whose column consist of the
vectors. Here we can derive the following theorem, from
Proposition 2 and Theorems 1-2.

Theorem 4: If � satisfies the condition in Theorem 2, then
a column-equivalent matrix HZ given by elementary column
operations is represented as

[
HIPy HTyF HCy

]
=

⎡
⎢⎢⎢⎢⎣

UIy 0 0
∗ ∗ ∗
0 Ism 0

UIu 0 0
∗ ∗ ∗

⎤
⎥⎥⎥⎥⎦
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where HIPy , HTyF and HCy are bases of ZIPy , ZTyF and
ZCy respectively. The matrices UIy ∈ Rµm×(µp+n), UIu ∈
Rµp×(µp+n) and ∗ are appropriate ones determined by the
operations, and

rank(UI) = µp + n, UI =
[

UIy

UIu

]
.

From this theorem, we obtain PCy . Suppose that time is
k + µ. Then, based on the data obtained by this time, we
define initial series vector as

xI =
[

yT
k yT

k+1 · · · yT
k+µ−1

uT
k uT

k+1 · · · uT
k+µ−1

]T
.

Then, we have

ẑIPy = HIPy(UT
I UI)−1UT

I xI .

Similarly, if a desirable output terminal series vector

xTy =
[

yT
k+�−s yT

k+�−s+1 · · · yT
k+�−1

]T
is given, we have

ẑTyF = HTyF xTy.

Using these formulae, for given zR and these we can find
the solution zopt of Problem 1 based on Theorem 4.

IV. NUMERICAL EXAMPLE

In this section, we summarize the procedure proposed in
this paper thorough a numerical example. We here consider a
plant of the MacMillan degree 3 with 2 inputs and 2 outputs.

Let us consider an input series to the plant

u0 =
[−1
−1

]
, u1 =

[−1
1

]
, u2 =

[−1
1

]
,

u3 =
[
1
1

]
, u4 =

[−1
1

]
, u5 =

[
1
−1

]
,

u6 =
[−1

1

]
, u7 =

[
1
−1

]
, u8 =

[−1
1

]
,

u9 =
[

1
−1

]
, u10 =

[
1
−1

]
, u11 =

[−1
−1

]
,

u12 =
[
1
1

]
, u13 =

[
1
−1

]
, u14 =

[−1
−1

]
,

u15 =
[−1
−1

]
, u16 =

[−1
−1

]
, u17 =

[
1
−1

]
,

u18 =
[

1
−1

]
, u19 =

[−1
1

]
, u20 =

[−1
1

]
,

u21 =
[−1
−1

]
, u22 =

[
1
−1

]
, u23 =

[−1
1

]
,

u24 =
[

1
−1

]
, u25 =

[
1
1

]
, u26 =

[−1
1

]
(12)

and corresponding output series

y0 =
[
0
0

]
, y1 =

[−2.00
1.00

]
, y2 =

[−0.70
−1.50

]
,

y3 =
[−0.59
−0.25

]
, y4 =

[−0.64
−0.88

]
, y5 =

[−0.69
−0.56

]
,

y6 =
[−0.72

1.28

]
, y7 =

[
1.87
−1.64

]
, y8 =

[−1.32
1.82

]
,

y9 =
[−0.41
−1.91

]
, y10 =

[−0.46
1.96

]
, y11 =

[−1.98
0.02

]
,

y12 =
[−0.64

0.99

]
, y13 =

[
2.05
−1.49

]
, y14 =

[−1.20
1.75

]
,

y15 =
[−0.35

0.13

]
, y16 =

[
0.18
0.94

]
, y17 =

[
0.46
0.53

]
,

y18 =
[
0.60
0.73

]
, y19 =

[−1.32
0.63

]
, y20 =

[
1.71
−1.32

]
,

y21 =
[

0.63
−0.34

]
, y22 =

[−0.03
1.17

]
, y23 =

[−1.78
0.41

]
,

y24 =
[−0.55
−1.21

]
, y25 =

[−2.50
1.60

]
, y26 =

[
1.00
−1.80

]
.

(13)

In the following, we compute an input series for dead-beat
optimal control directly from the data (12) and (13).

We set � = 8, and substitute these data into yk and uk

of H in (11). Then, the matrix H with 19 columns is of
full column rank. Since �p + n = 19, we can set this H

as HZ . Choosing µ = ν = n and s = 2, we can derive
a column-equivalent matrix of HZ with elementary column
operations as is shown in Theorem 4. When we choose Q

in the performance index as

Q = block diag{I�m, 2I�p}

we can compute the orthogonal projection PCy onto ZCy in
R�(m+p) using (10). We choose the reference data vector zR

as

zR =
[

0 0 0.5 0.5 1 1 0.5 0.5 0 0

−0.5 −0.5 −1 −1 −0.5 −0.5 0 · · · 0
]T

.

Since the data by the time 26 is available, input-output data
from the time 24 to the time 26 is the initial series and we
start the optimal control from the time 27, i.e., the initial
series vector xI is

xI =
[

1 −1 1 1 −1 1

−0.55 −1.21 −2.50 1.60 1.00 −1.80
]T

.

Moreover, we choose s = 2, then the terminal series vector
xTy is

xTy =
[ −1 −1 −0.5 −0.5

]T
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from the series of the reference signal contained in zR. Using
the above, we can obtain the solution zopt of Problem 1 from
Theorem 3 as

zopt =
[ −0.55 −1.21 −2.50 1.60 1.00 −1.80

0.25 −0.10 −0.14 −0.17 −1.02

0.48 −1 −1 −0.5 −0.5

−1 −1 1 1 −1 1 −0.13

0.22 −0.41 −0.40 −1.34

0.76 −0.79 1.00 0 0
]T

.

That is, the optimal control inputs from the time 27 to the
time 31 are

u27 =
[−0.13

0.22

]
, u28 =

[−0.41
−0.40

]
, u29 =

[−1.34
0.76

]
,

u30 =
[−0.79

1.00

]
, u31 =

[
0
0

]
.

V. CONCLUDING REMARKS

In this paper, we have shown that dead-beat optimal
tracking for MIMO plants can be solved via the data based
system representation.

We have only assumed that the plant is right invertible,
while in the literature [5], [6] it is further assumed that the
relative degree of the plant is given. Then, we have shown
that the dimensions of each data spaces can be calculated if
the data vector is long enough. A similar condition appears in
delayed inverse construction, where some finite delay should
be introduced in order to obtain a causal (approximate)
inverse of the plant.
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APPENDIX

The dynamical system to be studied can also be repre-
sented as a minimal realization

xk+1 = Axk + Buk

yk = Cxk + Duk

(14)

where uk ∈ Rp is the input, xk ∈ Rn is the state, yk ∈ Rm

is the output, and A, B, C, D are constant matrices.
Define a i × j block matrix Γi,j as

Γi,j =

⎡
⎢⎢⎢⎣

CAj−i−1B · · · D 0 · · · 0
CAj−iB · · · CB D · · · 0

... · · · ...
...

. . .
...

CAj−2B · · · CAi−2B CAi−2B · · · D

⎤
⎥⎥⎥⎦

where CA−1B is regarded as D. Define a block matrix Oi

as
Oi =

[
CT (CA)T · · · (CAi−1)T

]T
.

For U ∈ Rq×s̃, we introduce U⊥ satisfying

U⊥ ∈ R(q−r)×q, U⊥U = 0, U⊥(U⊥)T > 0

where rank(U) = r. Furthermore, Mi,j denotes an appro-
priate i × j block matrix.

From the state space equation (14), for all data vector z

and state xk, [
I�m −Γ�,�

]
z = O�xk. (15)

If µ ≥ µ∗, where µ∗ is observability index, rank(O�) = n

from � ≥ µ and (C, A) is an observable pair. In fact, xk is
uniquely determined by z. This implies we can eliminate
xk from the equation (15). Multiplying (15) by O⊥

� ∈
R(�m−n)×�m, we have

Θz = 0 (16)

where
Θ = O⊥

�

[
I�m −Γ�,�

]
. (17)

We need a preliminary lemma about Γi, j .
Lemma 1: If the plant is right invertible, then

rank(Γs, ν∗+s) = sm, ∀s ∈ N

where ν∗ ∈ [n/p, n] is controllability index which is the
smallest number satisfying

rank
[

Aν∗−1B · · · AB B
]

= n.
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proof: We first note that, if the plant is right invertible, then

rank(Γs, s+n) = sm, ∀s ∈ N.

This fact can be obtained by tracing the proof in Theorem 3
in [12]. Define a block matrix

Vi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I

Tν∗−1
. . .

...
. . . I 0

T0 Tν∗−1 I

0
. . .

... 0
. . .

. . . T0
. . .

... 0
...

...
. . .

. . .
0 · · · 0 0 · · · 0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where T0, . . . , Tν∗−1 are the matrices such that
[

Aν∗
B Aν∗−1B · · · B

] [
I Tν∗−1 · · · T0

]T
= 0.

Then,

Γs, s+nVs+n =
[

0s,n−ν∗ Γs, s+ν∗
]
.

Since Vi is non-singular, Γs, s+ν∗ is of full row rank if and
only if Γs, s+n is row full rank. This completes the proof of
Lemma 1. �

(Proof of Proposition 1) From the constraint of (16),

Z = Ker Θ.

Since O⊥
� is full row rank, rank Θ = �m − n. Hence,

dim(Z) = �p + n.
(Proof of Proposition 2) Define

JF = block diag{Iµm, 0(�−µ)m, Iµp, 0(�−µ)p} (18)

corresponding to zF of (2). Then, since the constraint that
initial series is 0 is given by

JF zF = 0,

we have
ZF = Ker Θ ∩ KerJF .

We rewrite the matrices of (15) as block matrices

O� =
[ Oµ

O�−µAµ

]
, Γ�,� =

[
Γµ,µ 0
Mi,j Γ�−µ,�−µ

]
.

Since Oµ is of full column rank if µ ≥ µ∗, we can choose

O⊥
� =

[ O⊥
µ 0

−O�−µAµO+
µ I(�−µ)m

]
. (19)

Then, substituting this into (17), we have

Θ =
[ ∗ 0 ∗ 0

∗ I(�−µ)m ∗ ∗
]

where ∗ is appropriate ones determined by the operations.
Noting the structure of JF , we see that

rank
[

Θ
JF

]
= �m + µp.

Hence, dim(ZF ) = (� − µ)p.
(Proof of Theorem 1) Define

JPy = block diag{0(�−s)m, Ism, 0�p} (20)

corresponding to zPy of (4). Since the constraint that output
terminal series is 0 is given by

JPyzPy = 0,

we have
ZPy = Ker Θ ∩ KerJPy.

We write O⊥
� = [ X1 X2 ] where X1 ∈ R(�m−n)×(�−s)m

and X2 ∈ R(�m−n)×sm. We rewrite the matrices of (15) as
block matrices

Γ�,� =
[

M�−s,�

Γs,�

]
.

Then, we have

rank
[

Θ
JPy

]
= rank

[
X1 X2 −X1M�−s, � − X2Γs, �

0 Ism 0

]

= rank
[

X1 −X2Γs, �

]
+ sm

= rank
(
O⊥

�

[
I(�−s)m 0

0 −Γs, �

])
+ sm.

By Lemma 1, Γs,� is of full row rank if ν ≥ ν∗ and � ≥ ν+s.
Noting that O⊥

� is of full row rank, we see

rank
[

Θ
JPy

]
= �m + sm − n.

Hence, dim(ZPy) = �p + n − sm.
(Proof of Theorem 2) From JF of (18) and JPy of (20)

ZCy = Ker Θ ∩ Ker JPy ∩ Ker JF .

We rewrite the matrices of (15) as block matrices

Γ�,� =

⎡
⎣ Γµ,µ 0

M�−µ−s,µ M�−µ−s,�−µ

Ms,µ Γs,�−µ

⎤
⎦ .

Substituting this and O⊥
� of (19) into (17), we obtain

Θ =

⎡
⎣ ∗ 0 0 ∗ 0

∗ I(�−µ−s)m 0 ∗ ∗
∗ 0 ∗ ∗ Γs,�−µ

⎤
⎦ .

By Lemma 1, the matrix Γs,�−µ is of full row rank if ν ≥ ν∗

and � ≥ µ + ν + s. Noting the structure of JF and JPy , we
see

rank

⎡
⎣ Θ

JPy

JF

⎤
⎦ = �m + µp + sm.

Hence, dim(ZCy) = (� − µ)p − sm.
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