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Abstract— This paper addresses the safety verification of
systems with time-delay. It extends the barrier certificate
methodology previously proposed for safety verification of
systems described by ordinary differential equations to the
functional differential equations setting. For verifying the safety
of a time-delay system, a functional of states is used as a barrier
certificate. The forms of the functionals resemble the Lyapunov-
Razumikhin functions or the Lyapunov-Krasovskii functionals
used in stability analysis of time-delay systems. When the
description of the system is given in terms of polynomials,
such a barrier certificate can be searched using sum of squares
programming.

I. INTRODUCTION

Safety verification addresses the question whether an
“unsafe” or “bad” region in the state space is reachable by
some system trajectories starting from a given set of possible
initial states. The need for safety verification arises as the
complexity of the system increases, and is also underscored
by the safety critical nature of the system. For discrete
state systems, such as finite automata, this problem has
been studied extensively in the computer science literature
(see, e.g., [4]) and has applications in, for example, the
verification of correctness of computer protocols, algorithms,
and software.

In the recent years, there has been a great interest in safety
verification of systems with continuous or hybrid (i.e., mixed
discrete-continuous) states [1]–[3], [8], [20], [21]. This is
motivated by the fact that many safety critical applications
such as air traffic control [21] or life support systems [5]
involve continuous or even hybrid states. Various methods
have been proposed for safety verification of continuous or
hybrid systems, many of which require computing the propa-
gation of initial states (see e.g. [1], [3], [21]). Unfortunately,
although these methods allow us to compute an exact or
near exact approximation of reachable sets, it is difficult
to perform such a computation due to the uncountability of
the state space. The computation is harder when the system
is nonlinear and uncertain, and clearly becomes even more
intractable if the state space is infinite dimensional.

Infinite dimensional state space is encountered, for ex-
ample, when there are time-delay elements in the system.
Time-delay systems appear in various application areas such
as communications [19], process control [18], and biology
[10]. Many systems in these areas are safety critical, and
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we expect that many more safety critical systems involving
time-delay will be introduced in the future when control
is performed over communication channels. While the field
of time-delay systems is a mature area (see, e.g., [6], [7],
[11]), most of the available analysis results are focused on
stability, robustness, or input-output properties — and not on
safety or reachability. This is what motivates us to develop
a methodology for safety verification of time-delay systems
in this paper.

In previous work [13], [14], we proposed a framework
based on functions of states termed barrier certificates com-
bined with deductive inference to prove safety. A barrier
certificate is a function of state satisfying some inequalities
on both the function itself and its time derivative along the
flow of the system. The idea here is to prove that the system
is safe by finding a proper barrier certificate, without the
need to compute the flow of the system or to propagate
sets of states. Computation of barrier certificates can be
performed using sum of squares programming [15] when the
system is described in terms of polynomials. This method
can be extended for handling time-delay systems by using
functionals of states as barrier certificates, which we will
present in this paper.

The outline of the paper is as follows. In Section II, we
will give a brief overview of the previous results on safety
verification using barrier certificates. The methodology will
be extended to the time-delay setting in Section III. An
example will be studied in Section IV, and finally the paper
will be ended by some conclusions in Section V.

A. Notations

We denote the spaces of m-times continuously differen-
tiable functions mapping X ⊆ R

n to R
� by Cm(X , R�), and

X to R by Cm(X ). The corresponding spaces of continuous
functions are denoted by C(X , R�) and C(X ). For a set
X ⊆ R

n, ∂X denotes the boundary of X .

II. VERIFICATION USING BARRIER CERTIFICATES

In this section, we will provide a review of previous results
on safety verification using barrier certificates. Consider a
system described by ordinary differential equations

ẋ(t) = f(x(t), d(t)), (1)

where x(t) ∈ R
n is the state of the system, d(t) ∈ D ⊆

R
m is a collection of uncertain disturbance inputs, and f ∈

C(Rn+m, Rn). We will be mostly dealing with a bounded
disturbance set D. In the safety verification problem, we will
be interested only in segments of system trajectories that are
contained in a given set X ⊆ R

n. Now suppose also that
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a set of possible initial states X0 ⊆ X and a set of unsafe
states Xu ⊆ X are given. Our objective is to prove that the
system is safe in the following sense.

Definition 1 (Safety): Given a system (1) and the sets X ,
D, X0 and Xu, we say that the system safety property holds
if there do not exist a time instant T ≥ 0, a bounded and
piecewise continuous disturbance input d : [0, T ] → D, and
a corresponding trajectory x : [0, T ] → R

n such that x(0) ∈
X0, x(T ) ∈ Xu, and x(t) ∈ X ∀t ∈ [0, T ].

The safety of the system (1) can be shown by the existence
of a barrier certificate [13]. A barrier certificate is a function
of state satisfying some Lyapunov-like conditions on both
the function itself and its time derivative along the flow of
the system, stated in Proposition 2 below. The main idea is
to ask that the value of the function at the initial set X0 to be
non-positive, the time derivative of the function to be non-
positive on X , and the value of the function at the unsafe
set Xu to be strictly positive. If a function satisfying such a
property can found, then we can conclude that no trajectory
of the system starting from X0 can reach Xu.

Proposition 2 ( [13]): Let the system (1) and the sets
X ⊆ R

n, D ⊆ R
m, X0 ⊆ X and Xu ⊆ X be given,

with f ∈ C(Rn+m, Rn). Suppose there exists a function
B ∈ C1(Rn) that satisfies the following conditions:

B(x) ≤ 0 ∀x ∈ X0, (2)

B(x) > 0 ∀x ∈ Xu, (3)
∂B

∂x
(x)f(x, d) ≤ 0 ∀(x, d) ∈ X ×D, (4)

then the safety of the system (1) in the sense of Definition 1
is guaranteed.

The above method is analogous to the Lyapunov method
for stability analysis. Contrary to stability analysis, however,
no notion of equilibrium, stability, or convergence is required
in safety verification. For example, the system does not even
need to have an equilibrium.

The conditions in Proposition 2 define a convex set of
barrier certificates {B(x)}. This is a very beneficial property,
as a barrier certificate inside this set can be searched using
convex optimization. For example, when the vector field
f(x, d) is polynomial and the sets X , D, X0, Xu are
semialgebraic, i.e., defined by polynomial inequalities and
equalities, a computational framework called sum of squares
optimization [15] that is based on semidefinite programming
can be utilized to search for a polynomial barrier certificate.
In particular, the software SOSTOOLS [15] is available for
this computation.

We would like to mention that the method can also be
extended to handle safety verification of hybrid systems [13],
stochastic continuous and hybrid systems [14], and even to
verification of other temporal properties such as reachability,
eventuality, and their combinations [17]. An application case
study can be found in [5]. Finally, a converse statement of
Proposition 2 for systems without disturbance input has also
been obtained recently [16], stating that under some reason-
able technical conditions, the existence of a function B(x)

satisfying the conditions of the theorem is also necessary for
safety.

III. CONDITIONS FOR VERIFICATION OF

TIME-DELAY SYSTEMS

We will now extend the method described in the previous
section to time-delay systems. In this context, the system is
a set of retarded functional differential equations

ẋ(t) = f(xt, d(t)) (5)

where the disturbance input d(t) still takes its value in the
finite dimensional space D ⊆ R

n, whereas the state of
the system is now in an infinite dimensional space, xt ∈
C([−r, 0], Rn), with r ≥ 0. Here we use the following
notation:

xt(θ) = x(t + θ),

where θ ∈ [−r, 0]. The right hand side of (5) is a functional
f : C([−r, 0], Rn) ×D → R

n, and the dot on the left hand
side of the equation denotes the right hand Dini derivative.
In most cases of interest, the right hand side of (5) will be
of the form

f(xt, d(t)) = f̂(x(t), x(t − r1), . . . , x(t − r�), d(t))

for f̂ ∈ C(R(�+1)n+m, Rn) and some r1, . . . , r� ∈ [0, r]. We
will consider this form, i.e., systems

ẋ(t) = f̂(x(t), x(t − r1), . . . , x(t − r�), d(t)) (6)

throughout the rest of the paper. It is also assumed that
the delays are time-invariant, and therefore without loss of
generality an ordering

0 ≤ r1 ≤ · · · ≤ r� = r

can be imposed.
In addition to the above, three sets are also given: a set

X ⊆ R
n, an initial set X0 ⊆ X and an unsafe set Xu ⊆ X ,

with X0 ∩ Xu = ∅. For the safety verification problem, we
are again interested only in segments of trajectories that are
contained in X . With all these, we can define the notion of
unsafe trajectory and the safety property for the time-delay
system (5) as follows.

Definition 3 (Unsafe trajectory): A trajectory segment x :
[−r, T ] → R

n of the system (6) is an unsafe trajectory, if
x(θ) ∈ X0 ∀θ ∈ [−r, 0], x(T ) ∈ Xu, and x(t) ∈ X ∀t ∈
[−r, T ].

Definition 4 (Safety — Systems with Time Delay): Given
a system (5) and the sets X , D, X0 and Xu, we say that
the safety property holds if there exist no time instant
T > 0, and bounded, piecewise continuous disturbance
input d : [0, T ] → D which gives rise to an unsafe trajectory
x : [−r, T ] → R

n as per Definition 3.
Within this setting, it is crucial to note that the initial

and unsafe regions X0 and Xu are given as sets in a finite
dimensional space R

n, where x(t) takes its value, but on
the other hand, the state of the system is an element of the
infinite dimensional space C([−r, 0], Rn). With Definition 4
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in mind, it is straightforward to define the set of initial states
of interest as

X0 = {x0 ∈ C([−r, 0], Rn) : x0(θ) ∈ X0 ∀θ ∈ [−r, 0]}.
(7)

Defining the set of unsafe states requires more thought: using
{xu ∈ C([−r, 0], Rn) : xu(θ) ∈ Xu ∀θ ∈ [−r, 0]} as the set
of unsafe states is not enough, since it is possible for the
system to violate the safety property in Definition 4 without
its state ever been in this set. The correct set of unsafe states
is in fact

Xu = {xu ∈ C([−r, 0], Rn) : xu(0) ∈ ∂Xu,

xu(θ) ∈ X \ Xu ∀θ ∈ [−r, 0)}. (8)

Using Xu as the set of unsafe states, the following lemma
holds.

Lemma 5: Under the assumption that X0 ∩ Xu = ∅, the
safety property in Definition 4 is violated by an unsafe
trajectory x : [−r, T ] → X if and only if xt ∈ Xu for
some t ∈ [0, T ].

Proof: Straightforward, since we assume that X0 and
Xu are disjoint and we consider a trajectory that starts with
x0 ∈ X0.

The safety verification method presented in the previous
section can be extended to handle time-delay systems. For
this purpose, we use a functional of system states as a barrier
certificate. The idea is similar to what used in Section II.
We ask that the value of functional for any trajectory of the
system starting with x0 ∈ X0 be (i) non-positive initially;
(ii) non-increasing along time; and (iii) positive at some time
instant, if the unsafe region is reached. Using a contradiction,
we can then conclude that the system is safe if such a barrier
certificate can be found.

In the rest of this section, we will consider several classes
of functionals with increasingly complex structures, to be
used as barrier certificates.

A. Functional Structure 1

The first functional structure that we will consider depends
only on the “head” of the state xt, and is of the following
form:

B(xt) = B0(x(t)),

where B0 ∈ C1(Rn). It is the kind of functions used
in the Lyapunov-Razumikhin theorem for proving delay-
independent stability of time-delay systems [9]. Using these
functionals, it is possible to obtain conditions guaranteeing
delay-independent safety, stated in the following proposition.

Proposition 6: Let the system (6) and the sets X ⊆
R

n, D ⊆ R
m, X0 ⊆ X and Xu ⊆ X be given, with

f̂ ∈ C(R(�+1)n+m, Rn) and X0 ∩ Xu = ∅. Suppose there
exists a function B0 ∈ C1(Rn) that satisfies the following

conditions:

B0(x) ≤ 0 ∀x ∈ X0, (9)

B0(x) > 0 ∀x ∈ Xu, (10)
∂B0

∂x
(x)f̂(x, x̂1, . . . , x̂�, d) ≤ 0

∀(x, x̂1, . . . , x̂�, d) ∈ X (�+1) ×D, (11)

then the safety of the system (6) in the sense of Definition 4
is guaranteed.

Proof: Suppose that a function B0(x) satisfying the
conditions in the proposition can be found, but there exist
T > 0, a piecewise continuous and bounded disturbance in-
put d : [0, T ] → D, and a corresponding unsafe trajectory x :
[−r, T ] → X . Consider the evolution B0(x(t)) along time
for this trajectory. Conditions (9) and (11) assert respectively
that B0(x(0)) is non-positive and that the time derivative
of B0(x(t)) is non-positive on the time interval [0, T ]. On
the other hand, condition (11) implies that B0(x(T )) is
strictly positive. We obtain a contradiction, and therefore we
conclude that such an unsafe trajectory cannot exist — the
system is safe.

Remark 7: Notice that no information about the delays is
used in Proposition 6. In fact, the safety of the system as
guaranteed by the proposition is delay independent: the sys-
tem is safe for arbitrary (but finite) time delays r1, r2, . . . , r�.

For many systems, the safety property is dependent on the
size of the time delay. For example, the system could be safe
when the delay is small, but unsafe for large delay. If we are
interested only in small delay, then the conditions given in
Proposition 6 is too conservative. To relax this conservatism
we will consider another class of functionals in the next
subsections.

Remark 8: If the vector field f̂(·) is polynomial and the
sets X , X0, Xu, D are semialgebraic, then a polynomial func-
tion B0(x) satisfying (9)–(11) can be searched using sum
of squares programming. A similar statement can be made
regarding the barrier certificates satisfying the conditions in
the next subsections. The way this search is performed is
analogous to what described in [13].

B. Functional Structure 2

In the second class of functionals, we will add first order
integral terms to the functional B(xt). More specifically, the
functional is of the form

B(xt) = B0(x(t)) +

�∑
i=1

∫ 0

−ri

Bi(x(t + θ))dθ (12)

where B0 ∈ C1(Rn) and Bi ∈ C(Rn), i = 1, . . . , �. Notice
that this functional reduces to the one we used in the previous
subsection if Bi(x) = 0, i = 1, . . . , �. Functionals of the
form (12) are among the classes of functionals used with the
Lyapunov-Krasovskii theorem for stability analysis of time-
delay systems [6], [12].

Conditions guaranteeing safety when the above functional
is used are stated in the following theorem.
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Theorem 9: Let the system (6) and the sets X ⊆ R
n,

D ⊆ R
m, X0 ⊆ X and Xu ⊆ X be given, with f̂ ∈

C(R(�+1)n+m, Rn) and X0 ∩Xu = ∅. Suppose there exist a
positive constant ε and functions B0 ∈ C1(Rn), and Bi ∈
C(Rn), i = 1, . . . , � that satisfy the following conditions:

B0(x) +
�∑

i=1

riBi(x̂i) ≤ −ε ∀(x, x̂1, . . . , x̂�) ∈ X �+1
0 ,

(13)

B0(x) +

�∑
i=1

riBi(x̂i) ≥ ε

∀(x, x̂1, . . . , x̂�) ∈ ∂Xu × (X \ Xu)�, (14)

∂B0

∂x
(x)f̂(x, x̂1, . . . , x̂�, d) +

�∑
i=1

[Bi(x) − Bi(x̂i)] ≤ 0

∀(x, x̂1, . . . , x̂�, d) ∈ X (�+1) ×D, (15)

then the safety of the system (6) in the sense of Definition 4
is guaranteed.

Proof: Suppose that functions B0(x), B1(x) satisfying
the conditions in the proposition can be found, but there exist
T > 0, a piecewise continuous and bounded disturbance
input d : [0, T ] → D, and a corresponding unsafe trajectory
x : [−r, T ] → X . Now consider the evolution B(xt)
as defined in (12) along the time interval [0, T ] for this
trajectory. Since x0 ∈ X0 and also condition (13) holds,
initially we have

B(x0) = B0(x(0)) +

�∑
i=1

∫ 0

−ri

Bi(x(t + θ))dθ

≤ B0(x(0)) +

�∑
i=1

ri sup
θ∈[−ri,0]

Bi(x(θ))

≤ sup
x∈X0

B0(x) +
�∑

i=1

ri sup
x̂i∈X0

Bi(x̂i)

≤ 0

Now, it follows from Lemma 5 that there exists t̃ ∈ [0, T ]
such that xt̃ ∈ Xu. At time t̃, we have

B(xt̃) = B0(x(t̃)) +

�∑
i=1

∫ 0

−ri

Bi(x(t̃ + θ))dθ

≥ B0(x(t̃)) +
�∑

i=1

ri inf
θ∈[−ri,0]

Bi(x(t̃ − θ))

≥ inf
x∈∂Xu

B0(x) +

�∑
i=1

ri inf
x̂i∈X\Xu

Bi(x̂i)

> 0,

where the last inequality follows because of (14). Finally,

the time derivative for B(xt) on t ∈ [0, t̃] satisfies

dB

dt
(xt) =

∂B0

∂x
(x(t))f̂(x(t), x(t − r1), ..., x(t − r�), d(t))

+

�∑
i=1

Bi(x(t)) − Bi(x(t − ri))

≤ 0,

as implied by (15). All these generate a contradiction, and
thus we conclude that such an unsafe trajectory cannot exist,
i.e., the system is safe.

Remark 10: Notice that now the delays r1, . . . r� appear
in the conditions of Theorem 9. Thus, in general, the safety
property proven in this case will be delay dependent.

C. Functional Structure 3

For brevity, in this section assume that there is only one
delay, i.e., � = 1; it is straightforward to extend the result to
handle multiple delays. The last functional structure that we
consider in this paper contains second order integrals:

B(xt) = B0(x(t)) +

∫ 0

−r

B1(θ, x(t), x(t + θ))dθ

+

∫ 0

−r

∫ t

t+θ

B2(x(η))dηdθ. (16)

Lyapunov-Krasovskii functional with this structure has been
proposed for stability analysis, e.g., in [12]. The functional
is more general than (12), but it may reduce to (12) when
B1(θ, x(t), x(t + θ)) is independent of its first and second
arguments and B2(x(η)) is zero. Thus, the safety test in
Theorem 11 below will generally be less conservative than
the one in Theorem 9. This comes at the expense of more
computational cost.

Theorem 11: Let the system ẋ(t) = f̂(x(t), x(t−r), d(t))
and the sets X ⊆ R

n, D ⊆ R
m, X0 ⊆ X and Xu ⊆ X be

given, with f̂ ∈ C(R2n+m, Rn) and X0 ∩ Xu = ∅. Suppose
there exist a positive constant ε and functions B0(x) ∈
C1(Rn), B1(θ, x, x̂1) ∈ C1(R1+2n), and B2(x̂2) ∈ C(Rn)
that satisfy conditions (17)–(19) on page 5, then the safety
of the system in the sense of Definition 4 is guaranteed.

Proof: Suppose that functions B0(x), B1(θ, x, x̂1),
B2(x̂2) satisfying the conditions in the proposition can be
found, but there exist T > 0, a piecewise continuous
and bounded disturbance input d : [0, T ] → D, and a
corresponding unsafe trajectory x : [−r, T ] → X . Consider
the evolution B(xt) of the form (16) along the time interval

4351



B0(x) + rB1(θ, x, x̂1) +
1

2
r2B2(x̂2) ≤ −ε ∀(θ, x, x̂1, x̂2) ∈ [−r, 0] ×X 3

0 , (17)

B0(x) + rB1(θ, x, x̂1) +
1

2
r2B2(x̂2) ≥ ε ∀(θ, x, x̂1, x̂2) ∈ [−r, 0] × ∂Xu × (X \ Xu)2, (18)

∂B0

∂x
(x)f̂(x, x̂1, d) + B1(0, x, x) − B1(−r, x, x̂1) + r

(
∂B1

∂x
(θ, x, x̂2)f̂(x, x̂1, d) −

∂B1

∂θ
(θ, x, x̂2) + B2(x) − B2(x̂2)

)
≤ 0

∀(θ, x, x̂1, x̂2, d) ∈ [−r, 0] ×X 3 ×D, (19)

dB

dt
(xt) =

∂B0

∂x
(x(t))f̂(x(t), x(t − r), d(t)) + B1(0, x(t), x(t)) − B1(−r, x(t), x(t − r))

+

∫ 0

−r

[
∂B1

∂x
(θ, x(t), x(t + θ))f̂(x(t), x(t − r), d(t)) −

∂B1

∂θ
(θ, x(t), x(t + θ)) + B2(x(t)) − B2(x(t + θ))

]
dθ

=
1

r

∫ 0

−r

[
∂B0

∂x
(x(t))f̂(x(t), x(t − r), d(t)) + B1(0, x(t), x(t)) − B1(−r, x(t), x(t − r))

+ r

(
∂B1

∂x
(θ, x(t), x(t + θ))f̂(x(t), x(t − r), d(t)) −

∂B1

∂θ
(θ, x(t), x(t + θ)) + B2(x(t)) − B2(x(t + θ))

)]
dθ

≤ 0 (20)

[0, T ] for this trajectory. Initially, we have

B(x0) = B0(x(0)) +

∫ 0

−r

B1(θ, x(0), x(θ))dθ

+

∫ 0

−r

∫ 0

θ

B2(x(η))dηdθ

≤ sup
x∈X0

[
B0(x) + r sup

θ∈[−r,0],x̂1∈X0

B1(θ, x, x̂1)

]

+
1

2
r2 sup

x̂2∈X0

B2(x̂2)

≤ 0,

because of (17). Next, from Lemma 5 it follows that there
exists t̃ ∈ [0, T ] such that xt̃ ∈ Xu. At time t̃, we have

B(xt̃) = B0(x(t̃)) +

∫ 0

−r

B1(θ, x(t̃), x(t̃ + θ))dθ

+

∫ 0

−r

∫ t̃

t̃+θ

B2(x(η))dηdθ

≥ inf
x∈∂Xu

[
B0(x) + r inf

θ∈[−r,0],x̂1∈X\Xu

B1(θ, x, x̂1)

]

+
1

2
r2 inf

x̂2∈X\Xu

B2(x̂2)

> 0,

which is implied by (18). Finally, condition(19) implies
that the time derivative dB

dt
(xt) satisfies (20) on page 5,

because the term under the last integral is non-positive. This
contradicts the first two conditions, and thus the theorem is
proven.

IV. EXAMPLE

Consider a linear damped oscillator with delay:[
ẋ1(t)
ẋ2(t)

]
=

[
γx2(t) + (1 − γ)x2(t − r)

−γx1(t) − (1 − γ)x1(t − r) − 1.5x2(t)

]
.

(21)

In this system, r > 0 is the delay, and γ ∈ [0, 1] is a
parameter that we will vary. Also given are the sets

X = {x ∈ R
2 : 0.01 ≤ x2

1 + x2
2 ≤ 4},

X0 = {x ∈ R
2 : x2

1 + (x2 − 1)2 ≤ 0.01},

Xu = {x ∈ R
2 : x2

1 + (x2 − 0.5)2 ≤ 0.01},

with the interpretation as described in Section III.
Let us first consider γ = 1, namely the case when there

is no time-delay component. The objective of the safety
verification is to show that a trajectory starting from X0

never enters Xu, as long as it stays in X . Since the system
is asymptotically stable, all trajectories starting from X0 will
eventually exit X , but we say that the safety property holds
if Xu is not entered beforehand. In this case, a quartic
polynomial barrier certificate satisfying the conditions in
Proposition 2 can be found using sum of squares program-
ming, and therefore we conclude that the system is safe.

The question now is whether the safety property still holds
when γ is not equal to 1. It may be the case that when γ is
sufficiently large the system will still be safe for arbitrary
delay size, whereas when γ is small the system may be
unsafe for some r. In what follows, the safety of the system
for various γ 	= 1 will be verified using the functionals
proposed in Section III.
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A. Delay-Independent Safety

Using the functional proposed in Section III-A, it is
possible to prove safety for γ = 0.98. We obtain B0(x)
of degree 4 given below:

B0(x) = −4.2979 + 1.1595x1 + 2.3689x2 + 50.757x2
1

+ 77.613x2x1 + 54.871x2
2 − 164.47x3

1

− 318.22x2x
2
1 − 274.8x2

2x1 − 103.64x3
2

+ 150.17x4
1 + 316.84x2x

3
1 + 340.79x2

2x
2
1

+ 192.1x3
2x1 + 49.452x4

2

The semidefinite program computation can be performed
in less than 2 seconds on a Pentium III 600 MHz PC. In
this case, B0(x) proves that the system is safe for arbitrary
delay r.

B. Delay-Dependent Safety

We will next use the functional proposed in Section III-B
to prove safety. For this, we fix the value of the delay at
r = 1. Since this functional is more general than the one in
Section III-A, we expect that safety for lower values of γ

can be proven. In fact, when B0(x) and B1(x̂) are chosen
to be quartic, we are able to prove safety for γ = 0.9. The
values of B0(x) and B1(x̂) that accomplish this are

B0(x) = −7.9177 + 5.6872x1 + 13.07x2 + 136.03x2
1

+ 297.32x2x1 + 215.56x2
2 − 493.54x3

1

− 1209.6x2x
2
1 − 1133.3x1x

2
2 − 430.19x3

2

+ 466.83x4
1 + 1178.8x2x

3
1 + 1380x2

2x
2
1

+ 812.63x1x
3
2 + 211.14x4

2,

B1(x̂) = −7.9177 − .53059x̂1 + .065907x̂2 + 12.637x̂2
1

+ 8.9339x̂1x̂2 + 9.2379x̂2
2 − 35.061x̂3

1

− 39.362x̂2x̂
2
1 − 28.972x̂2

2x̂1 − 17.266x̂3
2

+ 35.937x̂4
1 + 37.503x̂2x̂

3
1 + 41.468x̂2

1x̂
2
2

+ 19.53x̂3
2x̂1 + 8.7079x̂4

2.

The semidefinite program computation was performed in less
than 3 seconds on a Pentium III 600 MHz PC.

Finally, we consider the functional proposed in Section III-
C. Again the value of the delay is fixed at r = 1. When the
Bi’s are chosen to be quartic, we are able to prove safety for
γ = 0.7. The expressions of B0(x), B1(θ, x, x̂), B2(x̃) that
accomplish this are too long to be written here and therefore
are omitted. However, the semidefinite program computation
was performed in less than 20 seconds.

V. CONCLUSIONS

In the previous sections, we have provided a methodology
for safety verification of time-delay systems based on func-
tionals of states used as barrier certificates. A hierarchy of
functional structures have been proposed to prove safety with
decreasing levels of conservatism. A numerical example has
been provided to illustrate the use of the methodology.
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