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Abstract—A novel and pragmatic methodology is presented
for the design of fault detection and isolation systems by using
parity relations in a fully stochastic setting. The approach is
based on data obtained, either from the real process or an
analytical model, through a statistically designed experiment.
The inspiring concept is that design optimality can only be
attained if detection/isolation performance and robustness are
simultaneously addressed in an integrated framework.
Advantages with respect to the state of the art are pointed out,
both in terms of general applicability of the method and
optimality of the design solution. An illustrative case-study
concludes the paper.

I. INTRODUCTION

It has been recognized for a long time that proper handling
of robustness issues is fundamental for successful
implementation of model-based fault detection and isolation
(FDI) systems. The purpose of this paper is to present a
data-driven methodology for the design of linear parity
functions, as defined in [1], that optimizes specific criteria
for detection and isolation of faults while accounting for
linearization error, parametric modelling uncertainties and
noise effects.

Previous work on robust residual generation based on
linear parity relations can be found in [1-6]. Handling noise
effect has been considered in [7-9], where parity relations are
suitably combined with statistical approaches for residual
evaluation. However, modelling uncertainties are not
introduced in [7-9].

There are several shortcomings in the methods described
in [1-9]. One should first notice that, in all cases, the design
relies on a linear dynamic model of the supervised process,
or on a set of such models. Yet, most processes are
nonlinear, and modelling errors are due to both linearization
errors and uncertainties in model parameters. Besides, parity
relations based on linear models use measurements that
correspond to deviations with respect to a nominal set point.
Slight variations of this set point and/or uncertainties on the
nominal values of the measurements associated to this set
point may affect significantly the performance of a FDI
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system. Such changes may possibly be tracked by averaging
signals over a long time period to determine their nominal
value, but this causes cancellation of the effect of slow drifts
and of step like faults in the long term [10]. To avoid such
problems, the nonlinear plant model will be used directly for
the design of linear parity relations in this paper.

Another issue is the choice of the objective function to be
optimized in the design of the parity relations. As residuals
are typically processed through statistical tests or change
detection algorithms, criteria that measure detection and
isolation potential in a statistical sense are relevant. This
means that both the mean and the variance of the residual
must be explicitly considered in the objective function and
motivates the use of the Kullback divergence as a measure of
residual decoupling.

To be able to introduce such features in the design of
parity relations, the methodologies of statistical design of
experiments and robust design will be exploited.

The paper is organized as follows. The considered
framework for residual generation is presented in section II.
The proposed design methodology is described in section III
and its application to the case study of a fluid mixer is shown
in section IV. Final remarks conclude the paper.

II. PROBLEM STATEMENT

The following class of dynamic non linear systems is
considered:

x(k +1) = f(x(k),u(k),e(k),.6) W
y(k) = g(x(k),u(k), e(k), 7,60)+v(k)

where x(k), u(k), e(k), y(k), v(k) are real-valued vectors with
dimensions n, g, p, m, m respectively denoting the state, the
known input, the unknown input, the measured output and

. Ny . .
the measurement noise. Y€ R 7 is a vector of uncertain

parameters, and @€ RNf is the fault vector. The latter is
zero in the absence of faults, and its components take a non
zero value upon occurrence of one out of N, possible faults.
For the work reported here faults are assumed to induce
changes on the process output at steady-state. The input
vectors u(k) and e(k) take the following form:

u(k)=ug +uyk); e(k)=e, +e,(k) 2)
where u_, e, are stochastic vectors with mean g, , 4, and
variance X, , X, characterizing the range of inputs around
which the fault detection system should work properly.
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Process noise, {u,(k)}, and {e,(k)},, and measurement
noise {v(k)}, are mutually uncorrelated white noise
sequences with variance Q,, Q, and Q, respectively. They
are also uncorrelated with u; and e . ¥ is a random vector
with mean x4, and variance X, supposed to be uncorrelated
withu_, e , {u,(k)},, {e,(k)}, and {v(k)},. The initial state
vector is also assumed to be described by a random vector
x(0) with known mean and variance, uncorrelated with all
previously defined random vectors and processes.
Our aim is to design a set of parity relations of the affine
form
yk—s+1)
r(k)=a’

utk —s+1)

+ A" +6 3)
y(k) u(k)

where s is a fixed integer, O is a scalar parameter, & and
B are ms- and ¢-s- dimensional vectors of parameters. The
objective is to determine &, « and [ so that each residual
achieves certain optimality properties that make the whole
set of residuals suitable for fault detection and isolation.

III. METHODOLOGY
A. Conceptual Background

The distinctive feature of the methodology is its reliance
on process data, no matter whether they come from a
physical set-up or a system model. In the latter case the
model is in fact mainly used as a data generator. Implications
are quite profound. On one hand closed form solutions are
no longer possible. On the other hand, several limitations of
the existing approaches drop, thus allowing for more general
applicability. This is certainly attractive for practitioners.

The methodology is inspired by Robust Design, a well
known technique of industrial statistics applied to
engineering design [11-13]. It is aimed at designing products
and processes (i.e., finding optimal setting of design
parameters) whose performance is on a desired target and
random variability around this target is minimised. Random
variability is caused by all sources of uncontrolled variation
occurring when a product is being used or a process is
running (in-process conditions). In the language of Robust
Design, design parameters are referred to as control factors
(usually deterministic) whereas uncontrolled variables as
noise factors (random); the performance of interest is called
the response. Technically the two goals, response on target
with minimum variability, are obtained by optimising an
objective function involving in some way the first two
moments of the response. A key feature of the approach is
that expected value and variance of the response are
estimated using the information drawn from statistically
designed experiments conducted on the product or the
process. From this regard, Robust Design largely borrows
from another fundamental discipline of industrial statistics,
Design of Experiments (DoE) [14], [15]. Statistically
designed experiments are a form of stratified sampling where

samples of the response are observed for different settings of
the factors.

While DoE traditionally deals with the mean performance,
Robust Design addresses also the random variation about the
mean. Opposed to DoE, Robust Design assumes that the size
of the variation, which is directly related to the scatter of the
noise factors, may also depend on the control factors. Thus
an appropriate setting of the control factors may
accommodate both the mean (close to the target) and the
variance (sufficiently small).

Application of Robust Design to the design of an FDI
system is fully justified but not straightforward. Both
adaptations and extensions are needed. First we define all
factors involved in the case at hand, then the proposed
methodology is described in a step-by-step fashion.

B. Classification of FDI Variables

Control factors

Control factors are those that the analyst has to set at
optimal values. Here they are mainly vectors & and S in the
affine form (3) defining the residual. The scalar parameter
d is not included as it has the only function to adjust the
mean of the residual to zero in absence of fault. This will be
apparent later in the section. An additional control factor is
the length of the observation window of the residual, s.

Noise factors

Noise factors are out of the analyst control in in-process
conditions, where they are considered random variables.
Nevertheless noise factors may be, and often are, controlled
in a lab environment during the experimental phase. This has
the twofold advantage of reducing the experiment size and
giving the analyst more insight on how noise factors affect
the response as they can explicitly appear in the response
model. Of course controlling noise factors, even in the lab,
can be difficult, costly or unfeasible in some instances.
However, this is not the case when experiments are not
conducted on a physical set-up but on a simulation model of
the product or the process. This kind of experiments is
known in the literature as Computer Experiments [16]. Such
experiments turn out very useful when functions f and g in
model (1) are known.

The main set of noise factors are the random vectors of
known input u, unknown input e and parameter 3 Another
set includes process noise and sensor noise, as represented
by all (infinite) random variables in the processes {u,(k)}, ,
{e,;(K)}, and {v(k)}, . However, there are differences
between the two sets. Random variables in the first set
generally account for the major contribution of uncertainty,
as due to an unknown (and slow) change of the set point or
of the system dynamics whereas process and sensor noise
can be regarded as a smaller disturbance acting on a shorter
time scale without a definite connection with single
assignable causes. The effect of this disturbance on the
response is very much alike to what is called “experimental
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error” in DoE, namely the unexplained difference between
values of the response measured in repeated experimental
runs, i.e. where factors setting is unchanged. The practical
consequence is that process and sensor noise are totally
uncontrollable in the experiments while system inputs and
parameters are not.

The random vector of the initial state should also be
considered a noise factor. However we make the assumption
that the process is running around a stable set point and that,
at steady-state, the effect of the initial state on the output has
vanished.

Fault factors

The fault vector 8 forms a set of special factors which are
uncontrollable during process operation but must be
necessarily controlled in the computer (and possibly
physical) experiment since the primary objective of the
analysis is to characterize how the system reacts to different
faults.

C. Design Procedure

Step 1. It involves an experiment on the process. The
experiment can be either physical or simulated, depending on
whether we work on the real process or on a computer code
implementing a known process model (1). Since no
assumption of linearity was claimed for that model, any
computable form of it is acceptable in principle. Interestingly
only fault factors and noise factors appear in the experiment,
see Fig. 1. In fact, the control factors come into play only at
the residual generation stage via Equation (3). This makes
the method a sequential one. Fault factors have fixed levels
in the experiment and the same levels will be carried forward
in the subsequent steps. Let N, be the number of the values
of @ investigated in the experiment. If the case of
simultaneous faults is not of interest N, equals (l —l)'N +1
where l is the number of levels for the fault factors 1nclud1ng
the zero level. The selected range for the component &,
should match the desired specification range within which
fault i is to be detected.

Noise factors, u, , e, and ¥ may have either random or
Let N, be the number of the different
experimental settings for the ensemble of u, e, and y. For
the reasons provided earlier in the section, process noise and
sensor noise are necessarily treated as random variables from
stochastic processes. Let i be the number of different
realizations of the random processes considered in the
experiment for each setting of the other factors.

By fully crossing the levels of fault and noise factors a
total of NgN,h experimental runs results. Given the
interpretation of the effect of the random sequences as an
“experimental error”, in the jargon of DoE one would say

fixed levels.

that the experiment is made up of & replications of a NgN -
run design. Output y and known input u form the response

of the experiment and are observed in a sufficiently long

time horizon (¢ tx,) after reaching stationary condition.

K+1 °
Let us denote by Yz(fv)b(k) the c-th component (c=1,m+q)

of the response measured at time ¢, for the experimental run
identified by the b-th setting for 6, the z-th for u, e and ¥,
the w-th for process and sensor noise (b=1,N,; z=1,N,;
w=1,h).

Mean and
variance of
residual

Process
output
(measured)

Computation of

ot | —o{meam i varance o Rt |_o{ CoTtRr | p{Sectn o
(real or modelled) EIF i VB ¢ e BT divergence residuals

measured signals
Noise  |Fault Control
factors |factors factors

Fig. 1. Overall scheme of the proposed methodology.

Step 2. Here the expected value and the variance,
conditional on the fault vector 6, of the random vector
Y=[y(k=s,,+1) ... y(k) u(k=s, +1) ... u(k)]Tat steady-state
are estimated. s, . is the maximum number of signals that the
analyst will allow for in Equation (3). Since under the
hypothesis of process stationarity the mean, the variance and
the autocorrelation structure do not change over time, signal
variation over time around the steady-state level can be used
as a substitute of variation among different realizations at
fixed time. Thus estimates of the mean and variance of
Y/6at the N, settings analysed at Step 1 are obtained by
averaging the h sample mean and variance computed over
the noise factors and the whole observation window. Notice
that also ~=1 (no replication in the experiment) is viable with

a considerable saving of experimental burden. In a
component-wise fashion the estimates write as:
E(Y,/6)= YO (K +k
0,10)= 3 33, (kb
i=1(m+q) s,
h
colev o)<ty L
' 3N, - (T-D-1] 4)
N, T-1
z (Y (v:b) (K + k) - Y'(u:[) )
z=1 k=1
Y (K +k+1)- Y&)
ls] = l,(m+q)-smax
with
T Ay ( @ )
Y, = ‘(K +k
why N (T _ l) Z: Zl mbg( )

\»
Il

N, T-
v _

"N, (T - Z

where [ denotes the time lag (0 </ < S,

( “%K+k+n)

wby

)between Y,and Y,

b, is the number of the fault setting 0, ¢; and ¢; the number
of the components of the response Y associated with the
components i and j of Y. Note that at this stage we might
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prefer to estimate the moments conditional also on u, e, and
y. This would give information on how they affect the
moments. In this case, the unconditional moments will be
eventually estimated by using the fundamental identities:

E(/0)=E, ., ,(E(/6u,.eq, 7))
Var(e/6)= E, ’es,y(Var(O /Bsuyg, e, 7))+ (5)
Var, o, 7(E(®/6ug,¢,.7))

Mean and variance of Y conditional on @ are valuable
information; a simple screening may give the analyst a
practical understanding of how the process responds to the
faults and what are the critical requirements of the FDI
system. Light can be shed on basic questions: which faults
are difficult to detect or to isolate, which components of Y
are most sensitive to each fault, what is the size of random
variability characterizing the process and how it is affected
by the faulty conditions.

Step 3. Expected value and variance of the residual,
conditional on &, can now be estimated via (3):

E(r/6)= [aT ﬁTJ'E(Y/0)+5

Vir(r/6)= [aT i ] &, .[ar ﬂT]T (©)

A
-

where Ey is the covariance matrix of the signal vector at
steady-state whose elements are calculated as in (4). Some
considerations are in order on the (seemingly) free
parameters @, [ and J. The scalar parameter J, being
independent from 6, is clearly irrelevant in the context of
detection and isolation. It could be set to zero without any
loss in performance. However, after optimal value « and S
have been found, it can be used to adjust the residual mean
so that it is zero in absence of fault, i.e.:

5=—[aT ,BT]-E(Y/ezo) (7)

As for a and B, we note that the SN ratio

(E(r/H)—§)2/Var(r/9) is invariant with respect to the

multiplication of vector laT ﬁTJ by any real constant.

Recalling that J can be safely set to zero, we conclude that a
gain in sensitivity to a fault due to an increase in the residual
mean is cancelled by a loss in robustness due to a
proportional increase of the standard deviation. Thus it is
reasonable to impose the unit norm constraint

o g7 7 -1 ®)

Step 4. The knowledge of the first two moments of the
residual conditional on @ is extremely useful for tackling the
problem of the design of a robust FDI system. Basically,
detection and isolation rely on residual decoupling. What is

needed, then, is a consistent metric for residual decoupling in
a stochastic setting. In fact, the two moments can be used as
building blocks for measuring the “distance” between a pair
of probability distributions of the residual, each distribution
being associated with a different value of the fault vector.
Two such distances are of interest, one for detection and the
second for isolation:

dist(r/6,,r/6=0) ;dist(r/6,r/6,), i,j=1,N,;j#i ©9)

An appropriate metric is the Kullback divergence J, an
operator derived from the Kullback information K [17]:

J(9.0,)=K(9,0,)+ K(#,.0))

) So )

with  K(¢,¢,) = [In IR £y (0)dy
where @, and ¢, are two settings of the parameters of the
density function f. An important property of the Kullback
information is that the power of a statistical test for
discriminating the two distributions is not decreasing for
increasing values of K. As J is symmetric in the arguments
whereas K is not, it qualifies better for being a distance
measure. We note that the residual derives from the sum of
several random variables. Therefore the Central Limit
theorem gives assurance that the normality assumption for
the residual can be reasonably made. In the case of a Normal
random variable where a change affects both the mean and
the variance, the Kullback divergence is:

2 2
J(¢1,¢2)=%{(ﬂ2—ﬂ1)2 '(%+%J+(6—1‘2+O_—%—2ﬂ

oy 02
(1)

where @ = (14 612 )I and 9o =(lo O'S)T are the vectors of

(10)

the distribution parameters before and after the change
respectively. For equal variances J reduces to the SN ratio

1y —111)? / o2 -and, for a constant difference of the means,

it increases with the difference of the variances. When the
Kullback divergence is applied to a pair of residuals these
parameter vectors can be estimated by using Egs. (6).

Step 5. Once an appropriate metric for residual decoupling
is available we address the problem of designing a set of
residuals with optimal detection and isolation capabilities.

This means finding a set of optimal vectors lal-T ﬁl-TI. A

modular strategy can envisage to find a set for detection first,
then another set for isolation. The detection set includes the
residuals which, for each fault, are most distant from the
fault-free condition (first line of (9)), i.e. the ones that
maximizes the appropriate Kullback divergences. Therefore
the detection set will contain as many residuals as faults at
most. A similar criterion is adopted for isolation and consists
in including in the set the residual which, for each fault, is
most distant from all the other faults. A reasonable
implementation of the criterion is to maximize the minimum
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Kullback divergence between the considered fault and each
of the remaining ones. Also the isolation set will contain a
maximum number of N, residuals.

Implementation of the above criteria requires stating two
sets of N, optimization problems, one for detection and one
for isolation:

Detection Isolation
i=LNy i=LN,
max min J(@y,¢) -
a fh=Li;-1 IB’a”Xk E"lln lJ (P9 1)
subject to S
subject to

L T A

where ¢, is the vector of distribution parameters
corresponding to a fault vector having all zero components
but the i-th which is at level 8;#0, and ¢, is the parameter
vector for the fault-free condition 6=0. Of course the fault
levels considered are the N,—1 non zero settings used in the
experiment at Step 1. Finally, parameter J is determined by

Eq. (7).

IV. CASE-STUDY

The methodology is applied to a fluid mixer. Two
independent input flows, u; and u,, containing dissolved
material with concentrations e, and e, respectively, feed a
tank of cross-section area y, . Concentration y, in the output
flow F equals the concentration in the tank x, because the
latter is continuously stirred. Conservation laws yields the

following state space model for the process
1 1

= — Yy - 2.y, 2
MZu Uz =)y, X (13)

Xo =x1_1 '((6‘1 —x2)-u1+(62—x2)-u2)

with y being an experimental constant. The process
output y coincides with the state, namely the fluid volume in
the tank and the concentration of the output flow. Faults are
bias on the input and the output. Normality is assumed for all
random variables. The 6-sigma interval around the mean
input accounts for a £10% change of the set-point. There is
no uncertainty in the parameters % Process noise is
considered only on the known input and its standard
deviation is one third of that of the nominal set-point (see
[18] for numerical values). The experiment is conducted on
the numerical code implementing a finite difference
integration of (13) in its discrete form. Three levels,
including the zero central level, are assigned to each fault
with the extreme levels symmetrical around zero (N =9).
Noise factors u, and e are given 100 random levels drawn
from their distributions (N,=100). At each of the N4zN,

experimental settings three realizations of y are computed
(h=3) and observed at steady-state in the interval (5001,

10000) s (K=7=5000). Mean and variance of the signal
vector, conditional on 6, are estimated up to s, =5. For s=1,

Table I shows I:Z(Y/ 49) for the fault free condition and the

high level of each fault ((u;9, u2), ( X10 , Xz0) denote
respectively the nominal input and state values), whereas
Table I and III report the estimated variance in absence of
fault and for the highest level of fault 1. One can see that
fault 1 and fault 4 determine the largest change in the mean
of y, and y, respectively whereas fault 2 determines the
smallest change in both. As the standard deviation of y, and
¥, is comparable with the change in their mean, robustness is
critical to FDI performance. Thus in the selection of optimal
vectors & and £ an important issue is the exploitation of the
correlations among signals in order to minimize the residual
variance. A final consideration is that the input faults affect
also the variance of the signal vector with the obvious
exception of the constant input variances. As an example,
variance of y, exhibits a 31% increase from =0 to 8, at its
highest level. This fact, known as heteroscedasticity, is a
consequence of the process non linearity in the input.
Interestingly it goes totally unseen in the commonly used
linear model of the process with a clear detriment to the
optimality of the FDI system. The optimization problem for
detection is solved by using MATLAB routines for non-
linear constrained optimization. In Fig. 2 the Kullback
divergence is plotted for each fault with s= 1,2...,5. In fact,
the extra degrees of freedom turn to be useful for detection
as the Kullback divergence steadily increases with s. Results
confirm that fault 2 is the most critical, as previously argued.
Detection capability for fault 4 is inferior to the expectation
and exhibits a minimal increase with s. A deeper scrutiny
reveals that mean and variance of this residual are strongly
correlated (o =0.124) thus the Kullback divergence

collapses to a constant (J = 69 ). To better interpret numbers
in Fig. 2 we note that, in the simple case of equal variances, a
6-sigma separation between the means, which corresponds to
a 0.27% overlapping probability, produces a Kullback
divergence of 36. This threshold is overcome for fault 2 from
s=2. Looking at the size of the mean and standard deviation
of the optimal residuals for s=1 in Table IV one can discover
that the solution corresponds to a condition with very low
variability. Notice that the mean of the residual in absence of
fault is not null. This bias is cancelled by choosing the
constant 0 as in (7). Finally, Table V shows the critical
(minimum) Kullback divergence of the optimal residuals for
isolation for s=2,3. Acceptable isolation capability is
achieved already with s=2; the most critical separation is
between fault 2 and fault 3.

TABLE I
ESTIMATED MEANS OF THE OUTPUT SIGNALS, CONDITIONAL ON &

signal 6=0 01=0.2: u1p 62=0.2 uzy 63=0.2- x10 @4=0.2" x20
Y, m 1.0008 1.3234 1.1033 1.2008 1.0008
V2. kg m?> 1.2469 1.2143 1.2827 1.2469 1.4969
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TABLE II
ESTIMATED VARIANCE OF THE SIGNAL VECTOR, CONDITIONAL ON =0
x10° Y1 2 ug u
1 2200
y2 -54.84 1055
uy 18.67 -1.62 0.211
up 2.35 1.050 -0.001 0.027
TABLE III

ESTIMATED VARIANCE OF THE SIGNAL VECTOR,
CONDITIONAL ON THE HIGHEST LEVEL OF FAULT 1

x10° Y1 2 u] u
Y1 2880
y2 -17.37 1026
uj 21.50 -1.12 0.211
uz 2.71 0.950 -0.001 0.027
1000
g 800 oo
[=]
)
5 600 +--------- e
2
o
fault 3
S 400 S
=
2 200 f - T
0 k: fault 4
1 2 3 4 5

Fig. 2. Optimal values of the Kullback divergence in the detection
set of residuals for different time horizons.

TABLE IV
ESTIMATED MEANS AND VARIANCE OF OPTIMAL DETECTION RESIDUALS,
CONDITIONAL ON € (s=1)

01=0.2- uj9 €2=0.2- uyy 03=0.2- x10 04=0.2- x20

E(/6) 46-10"‘8 -43-10"‘8 -46-10"‘8 350- 10";
Yér(r/@) 2.33-104- 2.09-10; 2.02~10; 62.2~10"4
E(r/6=0) 70-10° . —52-10’8 —62-10’8 288-10’8

Var(r/6=0) 1.87-10° 195100 2.02-10° 62.2-10°
TABLE V
OPTIMAL KULLBACK DIVERGENCES FOR ISOLATION (5=2,3)
s Fault 1 Fault2 Fault3 Fault4
2 77.9 55.5 555 1084
3 108.5 81.6 81.6 138.8

V. FINAL REMARKS

The intent of the proposed approach is to extend
generality and optimality of the existing methods for fault
diagnosis based on residuals obtained via parity relations.
Increased generality stems from a more realistic
consideration of the process which is not necessarily
described by a linear model and can be affected by any
source of random variability. The contribution to optimality
relies on the concept that, in a stochastic framework, the

simultaneous consideration of the mean and the variance of
the residuals is a necessary condition for achieving optimal
residual decoupling. This is particularly important when the
process is non linear since residual variance may vary
depending on the fault which is acting and on the fault level.
The Kullback divergence, which involves the first two
moments of the residuals, is proposed as a measure of
residual decoupling. In the paper it is assumed that diagnosis
is made in stationary process condition. However, in
principle there is no limitation to the extension of the method
in a dynamic condition.
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