
Abstract— This paper presents a new approach for time- 
domain transient simulation of electric power systems with or 
without power electronic (switching) subsystems. The new 
methodology has been named quadratic integration method. 
The method is based on the following two innovations: (a) the 
nonlinear system model equations (in general differential-
algebraic) are reformulated to a fully equivalent system of 
quadratic equations, by introducing additional state variables, 
and (b) the system model equations are integrated assuming 
that the system states vary quadratically within a time step 
(quadratic integration). 

The proposed method yields an implicit integration scheme 
which demonstrates improved convergence characteristics and 
most importantly improved solution precision. The approach 
also demonstrates superior behavior compared to traditionally 
used methods in power system transient analysis (such as the 
trapezoidal integration rule) in terms of accuracy and 
numerical stability properties, especially for switching systems. 
Details about the numerical properties of the method are 
discussed in the paper. 

The proposed methodology and its performance is 
demonstrated on two test systems including (a) nonlinear R-L 
electric circuit, and (b) power electronic circuit (switching 
system). The methodology is very useful for systems with power 
electronics and nonlinear devices such as saturable 
transformers/reactors and surge arresters. 

I. INTRODUCTION

HIS paper presents a new approach for time domain 
transient simulation of electric power systems with or 

without power electronic (switching) subsystems. The new 
methodology has been named quadratic integration method. 
The method is based on the following two innovations: (a) 
the nonlinear system-model equations (nonlinear differential 
or differential-algebraic equations) are reformulated to a 
fully equivalent system of quadratic equations, by 
introducing additional state variables and algebraic 
equations, and (b) the system model equations are integrated 
using an implicit numerical scheme assuming that the 

Manuscript received March 7, 2005.
A. P. Meliopoulos is with the School of Electrical and Computer 

Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA 
(phone: 404-894-2926; fax: 404-894-xxxx; e-mail: sakis.meliopoulos@ 
ece.gatech.edu).

G. J. Cokkinides., is with the School of Electrical and Computer 
Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA (e-
mail: george.cokkinides@ece.gatech.edu). 

G. K. Stefopoulos is with the School of Electrical and Computer 
Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA (e-
mail: gstefop@ece.gatech.edu). 

system states vary quadratically within a time step (quadratic 
integration).  

Dynamic simulation is a very important tool in power 
system transient analysis and therefore a great number of 
numerical integration methods have been proposed and used 
for power system time-domain simulation [1-10]. Such 
methods include backward Euler, Trapezoidal, explicit 
Runge-Kutta methods, Gear’s method, or other linear 
multistep methods, mainly of the backward differentiation 
formula (BDF) family. The range of transient phenomena 
under study in a power systems may vary from fast 
transients, like lighting stokes, to very slow phenomena like 
generating unit boiler dynamics. Therefore, the equations 
describing the operation of a power system are by nature 
very stiff, i.e. the time constants of the various physical 
processes vary significantly. In general, very fast transients 
are studied separately from slow dynamics, nevertheless, in 
most situations the power system model equations remain 
stiff and thus implicit integration methods are preferred to 
explicit, though more expensive in terms of computation 
time. The simultaneous implicit simulation approach is used 
in general, in which the algebraic equations are solved along 
with the discretized differential equations, as a single 
system, in each time step. Among these methods, the 
trapezoidal integration is one of the most popular ones in 
network transient analysis, due to its merits of low distortion 
and absolute stability (A-stability). For example, the 
trapezoidal rule is used in EMTP [11-13], Spice [11], and 
Virtual Test Bed [11].  

However, the trapezoidal rule has several drawbacks that 
limit its applicability and indicate that some improvements 
in dynamic simulation methods are needed. Two major 
disadvantages of the trapezoidal integration scheme are its 
low accuracy compared to other existing methods 
(trapezoidal rule is order two accurate) and the artificial 
numerical oscillations that are often encountered, especially 
in the simulation of power electronic circuits, where 
switching events, and therefore discontinuities, occur. 
Specifically, the numerical values of certain variables 
oscillate around the true values. The magnitude and 
frequency of such numerical oscillations are directly related 
to the parameters of the energy storage elements (inductors, 
capacitors) and the simulation time step. In several cases this 
problem is so severe that the simulation results are 
erroneous.

The problem has been extensively studied in the literature 
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and several solutions have been proposed [11-21] to 
suppress these numerical oscillations. One popular approach 
is to use the trapezoidal rule with damping [14]. However, 
this method introduces artificial elements in the system that 
may affect the true solution to some extent. Another 
interesting approach is to apply the critical damping 
adjustment (CDA) scheme, as proposed in [12] and [13]. 
This approach suggest to switch from the trapezoidal 
integration rule to another integration method that does not 
have an oscillation problem, like backward Euler, for one 
time step after the discontinuity and then switch back to the 
trapezoidal rule again and continue the simulation normally. 
This idea has been extensively studied and several similar 
approaches of combination of trapezoidal and backward 
Euler rules have been proposed [15-18]. The Gear’s second 
order method has been proposed as an alternative. The 
method does eliminate such numerical oscillations; however, 
it is as accurate as the trapezoidal method, so it does not 
provide any advantage in terms of accuracy. Furthermore it 
is not A-stable, which is a desired property. Filter 
interpolation was used in [20] and a method based on wave 
digital filters has been also suggested and studied [21].

This paper introduces a new numerical integration method 
for power system simulation. The method is order four 
accurate and therefore much more precise compared to all 
the traditionally used methods in power system applications. 
Furthermore, the proposed method does not suffer from the 
numerical oscillation problem, a great advantage as 
compared to the trapezoidal rule. We refer to this method as 
quadratic integration method.  

II. DESCRIPTION OF QUADRATIC INTEGRATION METHOD

This section presents the key features of the quadratic 
integration method. The method is based on two 
innovations: First, the nonlinear system-model equations 
(nonlinear differential or differential-algebraic equations) 
are reformulated to a fully equivalent system of quadratic 
equations, by introducing additional state variables and 
additional algebraic equations. For implementation purposes 
the model is transformed to a fully equivalent model of 
linear differential and quadratic algebraic equations. This 
step aims in reducing the nonlinearity of the system to at 
most quadratic in an attempt to improve the efficiency of the 
solution algorithm. It is independent of the integration 
method and thus can be applied in combination with any 
numerical integration rule. Second, the system model 
equations are integrated using an implicit numerical scheme 
assuming that the system states vary quadratically within a 
time step (quadratic integration). 

The basic concept of the quadratic integration method is 
illustrated in Fig. 1. In the trapezoidal rule it is assumed that 
the system states vary linearly throughout a time step. In this 
approach it is assumed that they vary quadratically within an 
integration step. Note that within an integration time step of 
length h , defined by the interval ],[ tht , the two end 

points, )( htx , )(tx , and the midpoint mx

)2/()( htxtxx mm  fully define the quadratic 
function in the interval ],[ tht . Specifically, the quadratic 
function that passes through the mid and end points is: 

hcbax 0,)( 2 , (1) 
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This quadratic function is integrated in the time intervals 
],[ mtht  and ],[ tht  resulting in a set of algebraic 

equations. For the special case of a linear system 
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the algebraic equations at each time step become: 
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I  is the identity matrix of proper dimension and h  the 
length of the integration time step.  

Note that any nonlinear power system or power 
electronics model can be transformed into a set of linear 
differential equations and a set of algebraic equations of 
degree no more than 2 (quadratic) by the introduction of 
appropriate state variables. Then, the linear differential 
equations are integrated as discussed above, resulting in an 
equation similar to (4) above and the quadratic algebraic 
equations of the system (at times t  and mt ) are appended to 
the set of equations (4). The end result is a model that 
contains one subset of linear equations and another subset of 
quadratic equations. This system of equations is solved via 
Newton’s method. The proposed method demonstrates 
improved convergence characteristics of the iterative 
solution algorithm. 
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Fig. 1. Illustration of quadratic integration method. 

The described quadratic integration method belongs to the 
category of implicit, Runge-Kutta methods. More 
specifically it is an implicit Runge-Kutta method based on 
collocation and it can be derived based on the collocation 
theory, as described in the Appendix. The basic idea is to 
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choose a function from a simple space, like the polynomial 
space, and a set of collocation points, and require that the 
function satisfy the given problem equations at the 
collocation points [22-24]. The method has three collocation 
points, at )( htx , mx , and )(tx . It uses the Lobatto 
quadrature rules and is a member of the Lobatto-methods 
family. Any Lobatto method with s collocation points has 
an order of accuracy of 22s , and therefore the method is 
order-four accurate [22-24]. 

To summarize the method, consider the general nonlinear, 
non-autonomous dynamical system: 

),( xtfx , (5a) 
The system model is quadratized. This is always possible for 
power system and power electronic systems. Symbolically, 
the quadratized model is: 

)(,, 21 tBuyAxAyxthx  (5b) 

yxtg ,,0
where nRx is the vector of dynamic states, mRy  is a 

vector of additional state variables, pRu is the input 
vector, h  is a set of linear functions with respect to x and y, 
and g is a set of quadratic equations. Note the form of the 
quadratized equations comprises a set of linear differential 
equations and a set of quadratic algebraic equations. 
Quadratic integration of the differential equations and 
appending the algebraic equations yields: 
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Solution of the above system (2(m+n) equations in 2(m+n) 
unknowns) via Newton’s method yields the value of the 
state vector )(tx . Note that the value at the midpoint, mx , is 
simply an intermediate result and it is discarded at the end of 
the calculations at each step. 

The proposed integration approach has the following 
advantages: (a) improved accuracy and numerical stability, 
and (b) free of fictitious numerical oscillations.  Details 
about the numerical properties of the method are discussed 
next 

III. NUMERICAL PROPERTIES

As already stated, the order of quadratic integration 
method is 4p . This means that the error at each time step 
is )( 5hO . As an implicit Runge-Kutta scheme, the method is 
zero-stable [24]. In Butcher array notation the method is 
compactly expressed as (see Appendix): 

0 0 0 0 
1/2 5/24 1/3 -1/24 

1 1/6 2/3 1/6 
 1/6 2/3 1/6 

The numerical stability properties are studied using the 
first order test equation: 

axx . (7) 
Applying the quadratic integration method yields at each 
time step: 
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and therefore: 
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where h  is the integration step. Setting ahz  yields the 
characteristic polynomial for the method: 

126
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In general 1)(1)( 1 IzAIzbzR T  where the values for 
A  and b can be easily obtained from the Butcher array: 

6/13/26/1
24/13/124/5

000
A  is the coefficient matrix of the 

Runge-Kutta method, and Tb 6/13/26/1  is the 
coefficient vector of the method. 1I  is defined as 

TI 1,...,1,11 .
The region of absolute stability is given by the set of 

values z such that 1)(zR . A method is called A-stable if 

the region of absolute stability in the complex z-plane 
contains the entire left half plane. This means that 
independently of the step size 0h , a stable eigenvalue a
of the original continuous time system, with 0)Re(a , will 
be still represented as a stable mode in the discrete time 
system, and thus the discrete system mimics accurately the 
behavior of the original system, in terms of stability. Note 
that, for the proposed method, if 0)Re(z  it follows from 
(10) that 1)(zR . Therefore, the method is A-stable. A 

contour plot of )(zR  in the complex z-plane is shown in 

Fig. 2. The absolute stability region of the method is 
depicted in Fig. 3.  

Note that the absolute stability region is exactly the left-
hand half complex plane. This property is called strict (or 
sometimes symmetrical) A-stability. If the dynamical system 
under study includes an unstable mode, then, irrespectively 
of the integration step-size, this mode will remain unstable 
in the descretized system and the unstable nature of the real 
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system will be accurately demonstrated [7]. This is not the 
case for other methods, for example, the backward Euler, or 
the BDF linear, multi-step methods, where the numerical 
stability domain extends in the right-hand plane, where 

0)Re(z . In this case, if the real dynamical system 
includes an unstable mode, this mode could appear as stable 
for some step size, in the discrete system. This implies that 
the real unstable phenomenon would be simulated as a stable 
one. This spurious damping is referred to as hyper stability 
[7]. 
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Fig. 2. Contour plot of )(zR .
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Fig. 3. Absolute stability region of quadratic integration method (left side). 

Comparing the quadratic and the trapezoidal integration 
methods the following hold: 
1. Both the trapezoidal method and the quadratic 

integration method are symmetrical A-stable.  
2. The trapezoidal method is order two accurate. The 

quadratic integration is order four. Therefore, in terms of 
accuracy, quadratic integration is much preferable. 

3. It has been observed in applications that the trapezoidal 
method can provide an oscillatory solution even for 
systems that have exponential solutions as the simple test 
equation above. This is apparent if one considers the 
characteristic polynomial of the trapezoidal rule 

z
z

zR
2
2)(  for a physically stable system. Note that it is 

possible to select the integration time step ( ahz ), so 
that this term is negative (for example any real value of 
z , with 2z ). This can occur when larger integration 
steps are selected. In this case the solution will be 
oscillatory, oscillating around the true solution of the 
problem. In the case of the quadratic integration, the 

corresponding term  
126
126)( 2

2

zz
zz

zR  can never be 

negative as long as 0)Re(z , i.e. as long as the physical 
system is stable. This, indeed, is a very nice 
characteristic in many applications. 

IV. PRELIMINARY RESULTS

This section discusses the application of the method to 
some preliminary test cases. The examples are purposely 
simple since the goal is to demonstrate clearly the 
application and the advantages of the methodology.  

A. Nonlinear inductor 
The first test-case is an RL circuit with a nonlinear 

inductor. Two cases of nonlinear inductor are studied: (a) an 
inductor with a high order nonlinear flux-current 
characteristic, and (b) a piecewise linear inductor with two 
linear segments. The circuit in both cases is as in Figure 4. 
The voltage source is a sinusoidal AC source of 60 Hz and 
of 10 V rms. 

Fig. 4. RL circuit with nonlinear inductor 

1) High-order nonlinear inductor 
The circuit equations are: 

ACViR
dt
d , (11) 

where  is the inductor flux and i  the inductor current. The 
nonlinear characteristic of the inductor is 
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The proposed method consists of quadratization of the 
equations first and then application of the quadratic 
integration. The equivalent quadratic system with linear 
differential and quadratic algebraic equations is (note the 
introduction of two additional variables, 1z  and 2z  and two 
additional equations): 
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R=1 Ohm 
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Fig. 5 illustrates the computed inductor voltage and current 
waveforms using the quadratic integration, with a time step 
of 10 µs. The system parameters are Ai 100  and 

Wb03.00 .
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Fig. 5. Inductor voltage and current waveforms of a nonlinear inductor 
using quadratic integration. 

2) Piecewise linear inductor 
In this case the circuit equations are: 
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The inductance values are mHL 11  and HL 1.02 .
The switching occurs at Ai 120 . Figures 6 and 7 show the 
waveforms of the inductor voltage and current when 
computed using the trapezoidal rule with a time step of 10 
µs. Note that the results contain numerical oscillations when 
switching from the first to the second model. Figures 8 and 9 
show the same voltage and current waveforms when the 
system is simulated using quadratic integration with the 
same time step. Note that the oscillations are eliminated, 
when this method is used. 
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Fig. 6. Voltage of piecewise linear inductor using trapezoidal integration. 
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Fig. 7. Current of piecewise linear inductor using trapezoidal integration. 
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Fig. 8. Voltage of piecewise linear inductor using quadratic integration. 
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Fig. 9. Current of piecewise linear inductor using quadratic integration. 

B. R-L circuit with diode 
The second test case is a simple switching system, as 

illustrated in Figure 10. A sinusoidal voltage source of 10 V 
rms and 60 Hz frequency drives an inductive load through a 
diode. This scenario is often encountered in the simulation 
of power electronic systems. The diode is modeled using a 
piecewise linear model, as described by (15). 
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where Di  and Dv are the diode current and voltage 
respectively. 0DV  is the diode voltage at which the diode 

starts conducting and DR  and Dr  are the diode resistances. 
The numerical values of the above constant are: 

OhmRD 106 , OhmrD 10 1 , VVD 7.00

The inductance value is mHL 1 . Using the diode voltage 
as state variable the system equations are: 
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Fig. 10. RL circuit with diode. 

Figures 11 and 12 show the diode voltage and current as 
computed with the trapezoidal integration method with a 
time step of 2 µs. Figures 13 and 14 show the diode voltage 
and current as computed with the proposed integration 
method with a time step of 2 µs (same as in the case of 
trapezoidal nitration). Note that when the trapezoidal 
integration is used severe numerical oscillations appear each 
time the diode is turned off. The quadratic integration 
successfully eliminates these oscillations. 
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Fig. 11. Inductor voltage using trapezoidal integration. 

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
-20

-15

-10

-5

0

5

Time (s)

D
io

de
 V

ol
ta

ge

Fig. 12. Diode voltage using trapezoidal integration. 
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Fig 13. Inductor voltage using quadratic integration. 
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Fig. 14. Diode voltage using quadratic integration. 

V. CONCLUSIONS AND FURTHER WORK

This paper introduced some preliminary concepts on a 
new numerical integration method for power system and 
power electronic time-domain simulation. The method is 

R=1 Ohm L=1 mH 
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order four accurate and, therefore, much more precise 
compared to other traditionally used method in this area. 
Furthermore, the method does not suffer from sustained 
numerical oscillations after discontinuities (switching 
events) as the popular trapezoidal integration method. 
Several simple test cases show that the methodology appears 
to be a superior and attractive alternative for simulation of 
power system transients.  

The paper focuses on basic concepts and some 
introductory work on the issue. The numerical properties of 
the method are presently under study with more thorough 
evaluation on a number of problems arising in power 
systems and power electronics. Furthermore, the method is 
suitable for implementation with variable time step and error 
estimation and control algorithms. The proposed 
methodology can be also augmented with singularity 
detecting algorithms to allow tracking of switching events. 
Finally we are developing test cases of complex and large 
scale systems. These test cases will be utilized to study the 
performance of the methodology in large complex systems. 
It is expected to report on this work in a future paper. 

VI. APPENDIX

Derivation of quadratic integration method based on 
collocation rules[24].

Assume the general nonlinear, non-autonomous ordinary 
differential equation (ODE) ),( xtfx , where x is the 
state vector. Assume three collocation points ( 3s )
defined as 01c , 2/12c , 13c . We seek a polynomial 
(vector) )(  of degree at most 3s  which collocates the 
ODE in [t-h,t] as follows: 

,)(,)()(

,)(,)()2/()(

,)(,)()(

),()(

3

2

1

ttftt

ttfthtt

hthtfhtt

htxht

mmm

 (A.1) 

where tm=t-h/2 is the midpoint of the integration interval [t-
h,t]. Note that these four equations fully define the 
polynomial vector .
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Now we can write  as a Lagrange interpolation formula 
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Integrating  with respect to t  from ht  to it , 3,2,1i ,
and from ht  to t , we get 
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Note that the first equation vanishes since it is just an 
identity and the last two coincide. Therefore, the second and 
third equations are left, which can be written as: 
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Now define
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Therefore, the Butcher array notation of the method is: 
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Using these definitions we have: 
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Therefore the quadratic integration is defined by the 
following system of equations: 
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The values of  at the various stages represent the estimated 
values of the unknown state x  and based on the collocation 
is also holds that )()( htxht . Thus we can change 
our notation from  to x  and the method becomes:
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