
 

Abstract— In this paper Receding Horizon Control (RHC) of
an uncertain nonlinear system is considered where the
computation time is non-negligible. In a well-known method,
the solution process of the optimal control problem is started
one sampling period in advance by using the prediction of the
initial conditions, thus giving the controller a reasonable
deadline to complete the optimization process. The current
work suggests the use of the theory of neighboring extremal
paths to improve the performance of the existing method by
adding a correction phase to the previous method and therefore
recovering the exact solution in the presence of prediction
errors. An immediate result would be that the properties of the
RHC techniques involving zero computation time would be
valid for practical systems in the actual implementation, where
a zero computation time is unachievable. The new approach is
applied for the control of a mobile robot system which
demonstrates significant performance improvements over the
existing method.

I. INTRODUCTION

ECEDING Horizon Control (RHC), also known as
Model Predictive Control (MPC), was first introduced
in the process control community and attracted the

attention of numerous researchers due to its ability to handle
constraints on the states and inputs in multi-variable control
problems [1]. The RHC method is basically a repeated on-
line solution to a finite horizon open loop optimal control
problem. Based on the current state values, an optimal
control problem is solved for a period of time called the
prediction horizon. The first part of the computed optimal
input is applied to the plant in a period of time called the
execution horizon until the next sampling of the states
becomes available, where again the same procedure is
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repeated. The reader is referred to [2] for a comprehensive
review of RHC literature.

In the past, the repeated on-line solution of an open loop
optimal control problem limited the application of RHC
mainly to process control problems. In process control
problems found in chemical industries, the dynamics of the
plant is slow enough to allow for the computation of the
optimal control and therefore computation time is not an
issue. However, recent advances in computing performance
and distributed computation and the introduction of faster
optimization algorithms, such as the one suggested in [3],
have allowed the approach to be applied to mechanical
systems with fast dynamics such as mobile robot and
aerospace systems. In the method suggested in [4], the
concept of differential flatness has been used to generate
optimal trajectories, offering a shorter computation time.
This was later successfully applied to a vector thrust flight
experiment [5]. In [6] and [7], authors propose dividing the
nonlinear optimal control system architecture into two parts:
An outer loop which generates the reference optimal outputs
to be followed by the plant and an inner loop stabilizing the
states of the system around the generated reference
trajectory using neighbouring extremal paths theory. The
Legendre pseudospectral method is used to approximate the
states, co-states and inputs in [6] instead of the B-Spline
approximation proposed in [4]. In reference [6], the
approximation method allows for rapid generation of
optimal trajectories, which can potentially be useful for
RHC problems.

In the literature, there are several studies on the stability
of closed-loop systems obtained with a RHC strategy, albeit
with a zero computation time assumption [6]. In practice,
however, there is no guarantee of closed-loop stability as the
zero computation time assumption is violated, especially for
systems with fast dynamics. Milam et. al. address the issue
of computation time in [5], by proposing a method involving
prediction of the states at the next sampling time before
hand, which gives the controller enough time to generate the
optimal trajectories. The predicted states serve as initial
conditions for the open loop optimal control problem, giving
the controller a computation deadline equal to the sampling
period to solve the optimization problem. At the next
sampling time, same prediction and optimal trajectory
generation procedure is repeated.

In this paper, we build upon the work presented in [5]
by proposing the addition of a correction phase to the
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prediction and trajectory generation in the RHC of systems
with non-zero computation time. In our proposed method,
the control signal design for the RHC system is obtained in
three stages, the first two being those proposed in [5]. The
prediction phase estimates the values of the states of the
system in the next RHC sampling time. An optimal
trajectory is designed with the initial conditions of the
optimal open loop problem being the predicted values
calculated in the prediction phase. The generation of this
trajectory is the most time consuming part of the
computation of the RHC inputs. The actual values of the
states available at the next sampling period can be used to
modify this pre-calculated trajectory using neighbouring
extremal paths theory [9]. This constitutes the third phase,
i.e. the correction phase. The modification can be assumed
to have zero computation time, even in systems with fast
dynamics such as aerospace systems, as discussed later in
the paper.

Using our proposed method, the solution to the open loop
optimal control problem obtained by assuming zero
computation time can be recovered as long as the conditions
put forth in the paper are satisfied. The method proposed in
this paper allows for use of RHC in practical systems, while
the theoretical results assuming zero computation time for
uncertain nonlinear systems still applicable to such practical
systems; a property that does not hold for the method
presented in [5] as the actual solution to the optimal control
problem is not obtained due to the state prediction errors.

The outline of the paper is as follows: in Sections II
theory of Receding horizon control of nonlinear systems is
reviewed followed by a brief discussion on the theory of
neighboring extremal paths in Section III. We will propose
our method in Section IV and discuss about its validity in
Section V. In Section VI the proposed method is applied to a
mobile robot of unicycle type, where the simulations show
significant improvement in the performance compared to the
existing method found in [5].

II. RECEDING HORIZON CONTROL OF NONLINEAR SYSTEMS

In this section, we review the general RHC scheme
briefly. The class of systems considered is described by the
set of equations

( ) 0xxuxfx == )0()(),( tt (1)

where nt ℜ∈)(x is the state of the system and mt ℜ∈)(u is

the input vector satisfying the constraints
0)( ≥∀∈ tUtu (2)

U is the set of allowable inputs. Furthermore, we assume
that assumptions (A1-A3) in [10] are also satisfied; that is, f
is twice differentiable, U is compact and convex, and system
(1) has a unique solution for a given initial condition.

Receding horizon control is the repeated solution of the
following problem.
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nn×ℜ∈Q and mm×ℜ∈R denote positive-definite,
symmetric weighting matrices, T is a finite prediction time
and );( 0xx t denotes the trajectory of the system (1) driven

by u(t) starting from the initial condition x0. Furthermore,

the weighted norms in (4) are defined as xxx Q
Q

T=2
.

Let h denote the receding horizon sampling period,
where h lies in the (0,T] interval. The closed-loop system is
described by
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where ],[,))(;( Tttt +∈ττ xu* , is the optimal control of

the problem stated above with the initial condition x(t), t
being the start time of the optimization process and the
instant at which states are sampled.

As discussed in [2], numerous methods have been
suggested to guarantee the stability of closed-loop system by
requiring a terminal constraint at the end-time of the
optimization horizon or a special way to select the terminal
cost. Therefore, it is straightforward to adapt the RHC
scheme to the specific method, one would like to implement.
As an instance, [10] guarantees the stability of the closed-
loop system provided that the following terminal inequality
constraint is added to Problem 1
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where α is a positive constant and the matrix P, the solution
to the Lyapunov equation, is selected as described in [10].

III. NEIGHBOURING EXTREMAL PATHS

In this section, we briefly review the perturbation
analysis of the open loop optimal control problem presented
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in [9]. This will be used in Section IV, where we state our
proposed solution for dealing with uncertainties in the
presence of computational delay.

Assume that Problem 1 in Section II is solved for the
given initial conditions x(t0) . Introduction of a small
perturbation in the initial conditions, 0x , will cause a

change in the optimal trajectories, i.e.δx and δu. The
solution to the perturbed problem can be retrieved by
solving a linear optimal control problem. More specifically,
this problem is composed of finding the optimal change in
the input signal δu, minimizing
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subject to the following constraint
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with Hamiltonian described by
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and λλλλ is the vector of co-state variables. As this problem is a
linear optimal control problem, it is straightforward to show
that the optimal input is given by
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where the perturbation in the states and co-states is given by
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Matrices A(t), B(t) and C(t) are defined as follows
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Among the possible ways to solve the Two Point Boundary
Value Problem (TPBVP) in (12), we choose the backward
sweep method described in [9].

Remark 1. Although Problem 1 assumes a quadratic cost
for the performance index J in (4), in the perturbation
analysis, the theory of neighbouring extremal paths is
general enough to be applied to optimal control problems
with a nonlinear cost in the performance index. This allows
its application to RHC schemes such as those described in
[8], where the cost in the performance index J is not
necessarily quadratic and can have a general nonlinear form.

IV. PROBLEM STATEMENT AND PROPOSED METHOD OF

SOLUTION

Consider the RHC of system (1), as described in
Problem 1 in Section II. The optimization problem has to be
solved on-line implying that the process of finding the
optimal value will require a certain computation time, not
known a priori. As proposed in [5], the following
computation algorithm can be used allowing the RHC
scheme to be applied to practical systems: At time t, predict
the state of the system at time t+h, using the current state
values available from the sampling operation. Then, solve
the optimal control problem using the predicted states as the
initial conditions. This gives the system a computation
deadline equal to h to compute the optimal input.

If there is no uncertainty present in the modelling of
system (1), the predicted and the actual values of the states
are the same. However, uncertainties in the model and
exogenous disturbances cause a mismatch in the predicted
and the actual values of the states. We propose to modify
this pre-computed input before its application to the plant
using the theory of neighbouring extremal paths [9]
reviewed in Section III. The modification process is
composed of two parts: (i) Solving a differential equation by
the backward sweep method, a differential Riccati equation
resulting from the TPBVP (12); this is essentially an initial
value problem (ii) Solving an initial value differential
equation to calculate the changes in the input profile using
(11).

The process of modification can be regarded as a zero
computation time task even in the case of fast dynamic
mechanical systems, as it is composed of the solution of two
initial value problems, noting that ],0[ Tt ∈ in the first initial

value problem and ],0[ ht ∈ in the second one. Note that

the parameters of the differential Riccati equation are
computed off-line (refer to Chapter 5 in [9]), therefore only
the solution of such initial value problems has to be carried
out on-line. The complete algorithm is summarized below.

Algorithm 1. (a) Assume a zero input for the first execution
horizon, i.e. u0=0. Let k=0.
(b) Sample the states at times t=tk

(c) At time tk, predict the states of the system at time
t=tk+1=tk+h based on the current states and current input uk.
(d) Solve the open loop optimal control problem using the
predicted states calculated in step (c). The solution of the
optimization takes place in the time interval [tk,tk+1] having a
computation deadline of h.
(e) Sample the states xactual, at t=tk+1.
(f) Calculate the difference between the predicted states,
xpredict and the actual states xactual at t=tk+1.
(g) Solve for the change in the optimal input, δu, and update
the input uk+1.
(h) k=k+1. Goto step (c).
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V. VALIDITY OF THE PROPOSED ALGORITHM

As the neighbouring extremal paths theory, used in
Algorithm 1 in Section IV, is only valid in a sufficiently
small neighbourhood of the original extremal trajectories, in
this section we find a more rigorous description for the
condition mentioned above. More specifically, satisfaction
of a condition stated in Proposition 1 is sufficient for the
validity of the proposed method for a general nonlinear
system subject to bounded perturbations. We require the
following assumptions to hold.

Assumption 1. In the open loop optimal control problem
described in Problem 1, small perturbation in the initial
conditions will result in perturbation in other variables, δx,
δu and δλλλλ, of the same order, i.e.

)O()O()O()O( uxx0 δδδδ === (14)

Assumption 2. The RHC problem defined in Problem 1 has

no constraints on the input, i.e. mU ℜ= , where m is the
dimension of the input space. This is due to the fact that the
perturbation analysis in Section III is based on the optimal
control problem with no constraints on the input. This
assumption can be removed, if the corresponding theory is
modified accordingly.

Assumption 3. Among the possible RHC schemes
discussed in [2] we choose those for which a terminal
constraint is not used to guarantee stability of the closed
loop. In order to remove this assumption, the perturbation
analysis should be appropriately changed (refer to [9]).

Remark 2. Assumption 3 confines the use of the method
described in [10] to linear unconstrained problems. A novel
RHC technique to stabilize nonlinear systems has been
recently introduced in [8]. The latter does not require a
terminal constraint. Therefore, the RHC method described
in [8] satisfies Assumption 3.

Assumption 4. The computation time of the parts (f) and
(g) of Algorithm 1 are negligible compared to the dynamics
of the closed-loop system.

Remark 3. Note that Assumption 4 is only necessary from
the practical point of view and not for the validity of the
correction phase in Algorithm 1. It is practically achievable,
considering the fact that two initial value problems (with the
parameters of the differential equations calculated off-line)
have to be solved in a time span equal to the execution and
prediction horizon, for the corresponding initial value
problems. Use of the method described in [6] can even
reduce the computation time further. TPBVP can be
avoided using the pseudospectral approximation. Instead, a

set of coupled algebraic equations should be solved on-line,
reducing the computation burden significantly.

Proposition 1. Consider the system
),( uxfx = (15)

which is used as a nominal model for the RHC synthesis and
),,(),( uxguxfx actualactualactucal t+= (16)

which serves as the model of the real system. In (16),
g(t,xactual,u) accounts for disturbances, uncertainties and
unmodelled dynamics. Algorithm 1 is valid provided that
the following condition is satisfied

bt ≤),,( uxg actual (17)

where b is a positive constant. In addition, (bh)2 is
negligible (h is the execution horizon) and Assumptions 1-3
hold.

Proof. See [11].

VI. EXAMPLE

In this section, we apply the proposed Algorithm 1 to
the point stabilization of a differentially driven wheeled
mobile robot, which is especially useful in formation
stabilization, where it is desirable that each agent take a
predefined position. The reader is referred to [11] for a
discussion of cooperative control of mobile robots. A
mobile robot of unicycle type is described by the following
set of kinematic equations

ωθ
θ
θ

=

=
=

sin

cos

vy

vx

(18)

where x and y are the coordinates of a point located at the
mid-axis of the rear wheels of the robot, θ is the heading
angle of the robot with respect to the positive x-axis and v
and ω are the linear and angular velocity of the robot,
respectively. The dynamic equations of the mobile robot
can be described as

τω =
=

J

FvM
(19)

where F and τ represent the force and torque exerted on the
robot (control inputs), respectively, and M and J are the
mass and moment of inertia of the robot, respectively. A
schematic diagram of a mobile robot is shown in Figure 1.
Equations (24) and (25), which can also serve as a
description for a rotorcraft-like UAV flying at constant
altitude, can be transformed into a two-dimensional double
integrator using feedback linearization [13].
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We consider the coordinates of a point off the centre of
the wheel axis, (x1,x3), as the output (e.g. centre of mass of
the robot, see Figure 1). Following a series of
manipulations, we end up with the following system

θ

(x,y)

(x ,x )

x

y

1 3

Figure 1. A schematic diagram of a mobile robot of unicycle type
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where the relationship between the new inputs, i.e. u1 and u2

and the actual inputs to the system, i.e. F and τ is given by
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In (27), La is the distance from the middle of the wheel axis
of the robot to the chosen point (x1,x3). We take the actual
uncertain system under control as
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with initial conditions chosen to be x0=[6 2 5 -4]T. We use
the system described by (20) as the nominal system for the
RHC synthesis and select the execution and prediction
horizons to be 0.5 and 5 seconds, respectively. Weighting
matrices Q and R are taken as identity matrices of
appropriate dimension. Matrix P in (4) is found by solving
the Lyapunov equation, (9) in [10].

As can be seen in Figures 2 to 5, the proposed
modification in the generated control signal has improved
the performance of the system considerably compared to the
method pointed out in [5] (referred in the figures as
unmodified). The introduced disturbances have resulted in
some oscillations in the states in the unmodified case using
the algorithm described in [5], whereas no oscillation is
present when the proposed method of Algorithm 1 was used.
In Figure 5 the magnitude of oscillation is growing, which

shows that the existing method presented in [5] is not
successful in stabilizing the states of the system. The value
of (bh)2=0.125 was determined to be negligible compared to
the values selected above as required by Proposition 1. As
the nominal system (20) is a linear system, Assumption 1
holds. Since the problem is linear with no constraints on the
input, the RHC scheme described in [10] can be used,
consequently, Assumptions 2 and 3 are satisfied.

The finite horizon open loop optimal control problem
was solved numerically using MATLAB, where collocation
method (see reference [16]) was utilized. The TPBVP was
solved using backward sweep method [9].
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Figure 2. Time history of x1
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VII. CONCLUSION

A novel Receding Horizon Control strategy for
uncertain nonlinear systems was proposed considering the
effect of computational delay allowing theories developed
with a zero computation time assumption to be used in the
practical situations involving computational delays. The
approach is composed of state prediction, trajectory
generation, and trajectory correction. To allow for the
computation of the optimal trajectories, states are predicted
at the next sampling time. The predicted values of the states
are used as initial conditions for the finite horizon open loop
optimal control problem, allowing the optimal input profiles
to be computed one sampling time in advance. At the time
of implementation, when the new data from the states
becomes available, the pre-computed input is modified using
the perturbation analysis done off-line. The on-line
modification analysis is composed of the solution to two
initial value problems, assumed to be computed in negligible
time. The proposed method is valid as long as the
perturbation in the states and the sampling time are
sufficiently small. The method was applied to simulations
of a mobile robot of unicycle type, where the proposed
method shows significant improvement in performance
compared to existing methods.

It is anticipated that these new results will find
significant utility for control design of mobile robot and
unmanned aerial vehicle (UAV) systems. Future directions
for the approach include experimental applications to mobile
robot and UAV systems, and the addition of sufficient
conditions for robust stability. The generalization of the
method for RHC schemes requiring terminal inequality
constraints and input constraints will also be addressed.
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