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Abstract— This paper is concerned with the mixed H2/H∞
control problem combined with robust pole placement in
linear matrix inequality (LMI) regions. Based on Differential
Evolution algorithms (DEs), Salomon’s Evolutionary Gradient
Search method (EGS) and LMIs, a hybrid algorithm is
presented for numerical computation of a robust fixed-order,
static or dynamic, output feedback controller. This approach
does not require that all specifications are enforced by a
single closed-loop Lyapunov function. This allows to reduce
the conservatism of the usual existing methods. This approach
can be used for synthesis of reduced or full order controllers.
Examples borrowed from the literature are discussed to
validate this approach.

Keywords: robust control, LMI, differential evolution, evo-
lutionary gradient search.

I. INTRODUCTION

THE mixed H2/H∞ control problem for systems sub-
ject to parameter uncertainties by static or dynamic

output feedback has been studied widely during the last two
decades. The theoretic motivation for the mixed H2/H∞
control problem has been extensively discussed in [1], [2],
[3], [4]. Some important results about output feedback
control can be found in [5], [6], [7], [8] and the references
therein. The mixed H2/H∞ performance criterion has also
been considered in conjunction with regional pole place-
ment [5], [6]. It is well known that satisfactory transient
behaviour can be achieved by placing the closed-loop poles
in a suitable region of the complex plane. However, the
general mixed H2/H∞ robust control problem does not
have yet a closed-form solution except for special cases
presented in the literature.

In this work, a hybrid approach based on differential
evolution (DE), Salomon’s evolutionary gradient search
(EGS) method [9] and LMIs is presented in order to
find an internally stabilizing output feedback controller
which solves the constrained mixed H2/H∞ robust control
problem. By the constrained mixed H2/H∞ robust control
problem it is understood the design problem with a mix
of H2 and H∞ performance and pole placement in LMI
regions.

The first motivation for this work arises from the fact that
the mixed H2/H∞ robust controller, in general, is not easy
to be designed. The mixed H2/H∞ problem was reduced to
a convex optimization problem by considering a formulation
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with a common Lyapunov function in [10], [6], [11], [12],
[13], nevertheless this assumption results in some degree of
conservatism.

The second motivation comes from the change of variable
presented in [5], [12], [13], developed to turn output feed-
back specification into LMIs. In this change of variable the
system matrices A and B2 are involved, thus the dynamic
output feedback control design problem for system subject
to polytopic uncertainties cannot be reduced to a convex
optimization problem.

The last motivation, but not the least, is the interest-
ing global search properties of the differential evolution
algorithm presented in [14], [15], [16], [17], [18] and
the powerful local search characteristics of the gradient
search methods [19], [9]. Many evolutionary algorithms can
be applied to a number of control methodologies for the
improvement of the overall system performance. In [18],
[20] the DE algorithm is applied to the optimization of PI
and PID controllers. In [21], [22], [23], genetic algorithms,
another class of the evolutionary algorithms, are used to
solve the mixed H2/H∞ control problem for SISO systems
using transfer functions. Some related approaches which use
Genetic Algorithms and LMIs can be found in [24], [25],
[26], [27], [28].

This paper is organized as follows. Section II presents
the pole placement LMIs. In section III the mixed H2/H∞
control problem is detailed. In section IV the proposed
hybrid algorithm is described. In section V examples from
the literature are borrowed to validate this papers approach.

II. POLE PLACEMENT IN LMI REGIONS

A LMI region is any subset D of the complex left-half
plane that can be defined as

D =
{
z ∈ C : T + Γz + ΓT z̄ < 0

}
(1)

where T and Γ are real matrices and T = TT . A dynamical
system ẋ = Ax is called D-stable if all its poles are in the
LMI region D. Many symmetric regions, with respect to
the real axis, can be described as LMI regions.

The Lyapunov theorem can be directly applied to LMI
regions [29]. If [trs] and [τrs], 1 ≤ r, s ≤ q, denote the
entries of the matrices T and Γ respectively, a dynamic
matrix A is called D-stable if and only if there exists a
positive definite matrix XD such that [30]:[

trsXD + τrsAXD + τsrXDAT
]

< 0, 1 ≤ r, s ≤ q. (2)
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III. OUTPUT-FEEDBACK H2/H∞ CONTROL PROBLEM

WITH POLE PLACEMENT

Consider an uncertain time-invariant plant S described as
8><
>:

ẋ(t)= Ax (t)+B12w2(t)+B1∞w∞(t)+B2u(t)
z∞(t)= C 1x (t)+D112w2(t)+D11∞w∞(t)+D12u(t)
z2(t)= C 2x(t)+D21∞w∞(t) + D22u(t)
y(t) = C yx (t)+Dy1∞w∞(t) ,

(3)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the
control input, y(t) ∈ R

p is the sensor output, z∞(t) ∈ R
p1

and z2(t) ∈ R
p2 are the controlled outputs and w∞(t) ∈ R

l1

and w2(t) ∈ R
l2 are the exogenous inputs. All matrices are

real with appropriate dimensions. Assume that A and B2

belong to convex-bounded domains defined as:

A =

{
A ; A =

N∑
i=1

αiAi ,
N∑

i=1

αi = 1 , αi ≥ 0

}
, (4)

B =

⎧⎨
⎩B ; B =

N∑
j=1

βjB2j ,
N∑

j=1

βj = 1 , βj ≥ 0

⎫⎬
⎭ . (5)

Assume also that all pairs (A,B2) and (Cy, A) are
stabilizable and detectable, respectively. Let the linear time
invariant (LTI) output feedback controller L be described
by the following space-state equations:

L :
{

η̇(t) = AKη(t) + BKy(t)
u(t) = CKη(t) + DKy(t) , (6)

where AK ∈ R
nc×nc . In this approach, the controller can

be chosen of reduced (nc < n) or full order (nc ≥ n)
but nc must be fixed. Both S and L are real-rational and
proper. No assumptions are necessary about singular plants
with jω-axis zeros or rank deficiencies in matrices D.

The system (3) can be rewritten as follows:
8>>>><
>>>>:

ẋf (t)=Ãxf (t)+B̃12w2(t)+B̃1∞w∞(t) + B̃2us(t)

z∞(t)=C̃1xf (t)+D112w2(t)+D11∞w∞(t) + D̃12us(t)

z2(t)=C̃2xf (t)+D21∞w∞(t) + D̃22us(t)

ys(t) =C̃yxf (t)+D̃y1∞w∞(t)
y(t) = C yfxf (t)+Dy1f∞w∞(t)

(7)
where

Ã =
[

A 0
0 0nc×nc

]
, B̃1i =

[
B1i

0

]
, i = 2,∞,

B̃2 =
[

B2 0
0 Inc×nc

]
, (8)

C̃i =
[

Ci 0
]
, D̃i2 =

[
Di2 0

]
, i = 1, 2,

C̃y =
[

Cy 0
0 Inc×nc

]
, D̃y1∞ =

[
Dy1∞

0

]
,

and the investigated control law becomes us(t) = LKys(t)
with

LK =
[

DK CK

BK AK

]
∈ R

(m+nc)×(p+n), (9)

with A ∈ A and B2 ∈ B. Thus, the dynamic output
feedback problem can be treat as a static output feedback

one. LK is called a D−stable controller if the closed-loop
system (7) is D−stable.

Defining Tz∞w∞(s) as the closed-loop transfer matrix
from w∞ to z∞ and Tz2w2(s) the one from w2 to z2, that
is

Tz∞w∞(s) = (C̃1 + D̃12LKC̃y)[sI − (Ã + B̃2LKC̃y)]−1

(B̃1∞ + B̃2LKD̃y1∞) + (D11∞ + D̃12LKD̃y1∞),

Tz2w2(s) = (C̃2 + D̃22LKC̃y)[sI − (Ã + B̃2LKC̃y)]−1B̃12 ,
(10)

the considered constrained mixed H2/H∞ robust control
problem can be formulated as follows.

Find a proper, real rational, admissible, fixed struc-
ture, D-stable controller LK that minimizes the H2 norm
‖Tz2w2‖2 subject to the H∞ norm constraint ‖Tz∞w∞‖∞ <
γ, for a given achievable H∞-norm bound γ, ∀A ∈ A and
∀B2 ∈ B.

Using the bounded real lemma [31], the concept of
quadratic stability [32], and the H2 performance measure
[1], [33], the suboptimal mixed H2/H∞ robust control
problem can be formulated in matrix inequalities form as
follows:

min Trace(C̃2fX2C̃
T
2f )

X2 > 0, X∞ > 0,
XD > 0, LK

(11)

subject to:

ÃfX2 + X2Ã
T
f + B̃12B̃

T
12

< 0 (12)⎡
⎣ ÃfX∞ + X∞ÃT

f B̃1f∞ X∞C̃T
1f

B̃T
1f∞ −I D̃T

11f∞
C̃1fX∞ D̃11f∞ −γ2I

⎤
⎦ < 0 (13)

[
trsXD + τrsÃfXD + τrsXDÃT

f

]
< 0, 1 ≤ r, s ≤ q

(14)
where

Ãf = Ãi + B̃2jLKC̃y

B̃1f∞ = B̃1∞ + B̃2jLKD̃y1∞

C̃if = C̃i + D̃i2LKC̃y, i = 1, 2
D̃11f∞ = D̃12LKD̃y1∞ , (15)

with i = 1, 2, ..., N , j = 1, 2, ..., M and trs and τrs defined
as in (2).

The problem is not jointly convex in the variables
(X2, X∞, XD, LK), but it is still convex for a fixed con-
troller LK . This performance criterion gives an upper bound
of the optimal H2 performance subject to the H∞ norm
constraint and pole placement constraints.

It is important to point out that this approach does not
require the hypothesis of common Lyapunov matrices X2 =
X∞ = XD. This reduces the conservatism and can provide
better results. Furthermore, the usual change of variable
necessary to recast the mixed H2 and H∞ problem as a LMI
problem [12], [13] can also be avoided. It allows to readily
solve the dynamic or static output feedback control case
for plants subject to uncertainties. In the change of variable
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introduced in [13] using matrices R and S, the system
matrices A and B2 are involved, hence certain limitations
are imposed on extending this result to deal with control
synthesis problem for polytopic uncertain systems. Relaxing
these assumptions, the design of both reduced and full-order
controllers can also be considered in an unified state-space
framework by this approach.

IV. THE HYBRID DIFFERENTIAL EVOLUTION

ALGORITHM (HDE)

In this section a hybrid design procedure of robust
output feedback controller for solving the constrained mixed
H2/H∞ control problem presented in the preceeding sec-
tion is introduced.

The differential evolution (DE) algorithm, a branch of
the evolutionary algorithms, was first developed by Storn
& Price [14] for real number optimization problems and
it is well known for its robustness and efficacy [16], [15].
The gradient search methods were first proposed by Newton
and these methods have the general structure xj+1 = xj −
η∇f(xj) where η denotes a small constant and j denotes
the iteration number. This so called steepest-descent method
starts at an initial point x0 and then repeatedly subtracts a
small fraction η of the locally calculated gradient ∇f(xj)
from the current point xj [17]. The greatest advantages of
these methods are the accuracy, efficency, speed and proof
of convergence. On the other hand, the drawbacks of these
algorithms are that they can be applied only to continuously
differentiable objective functions, which is not the case, and
that they generally stop at the next local optimum.

Salomon proposed a method of estimating the gradient
without the computation of the derivatives of the function
[9]. This method is easily implemented and under some
constraints can produce a good estimation value.

The HDE algorithm was developed with the goal of
combining the global search characteristics and reliability
of the differential evolution method [16], [15], the local
search properties of the classic gradient search methods
[19], [17] and the accuracy and flexibility provided by
the LMI formulation [32], [34]. This combination allows
the algorithm to evolve the solutions locally and globally
increasing the probability of finding the global optimum.
There is, although, no proof that this global optimum is
reached.

In order to link both methods, two different operators
were created: the Differential Evolution Operator (DEO; see
IV-C) based on the differential evolution algorithm from
[16], [17], and the Estimated Gradient Search Operator
(EGSO see IV-D) based on the evolutionary gradient search
procedure proposed in [9].

Based on DEs, EGS and LMIs the HDE algorithm
searches for an optimal D-stable robust controller LK

(9) and consequently determines X2, X∞ and XD that
solve the optimization problem (11) satisfying (12)-(14).
Hence the algorithm works with a population of candidate

controllers (individuals)[LK ]. This choice has been made in
order to maintain simplicity and effectiveness.

At each iteration the optimization problem (11) is solved
using the Matlab package LMI-Lab [29] for all candidate
individuals of the population PM of size M . The algorithm
stops when a certain number of generations J is reached.
Remember that for fixed LK = [lij ](m+nc)×(p+nc) the
constrained mixed H2/H∞ robust control problem (11)-
(14) is convex. The H∞ norm constraint γ is given but
nevertheless the more general constrained mixed H2/H∞
robust control problem defined with the performance cost
the trade-off criterion:

min α ‖Tz∞w∞‖2
∞ + β ‖Tz2w2‖2

2 ,
LK

(16)

with α > 0 and β > 0 as defined in [29] and con-
straints (11)-(14) can be obtained with this algorithm.
The HDE procedure HDE(M,J, pDE , pEGS) returns an
evolved population of controllers LK and it is described as
follows.

1) initiate the population PM with M individuals;
2) while j < J , where j denotes the current iteration

and J the termination iteration, do

a) while m < M, m = 1, . . . ,M do

i) randomly select L ∈ PM
j ;

ii) LDE = DEO(L, pDE);
iii) LEGS = EGSO(LDE , pEGS);
iv) substitute L by LEGS in the population PM

j ;

where pDE and pGS represent the probabilities of occur-
rence of the DEO and EGSO operators respectively. LDE

and LEGS are the controllers returned by its respective
operator, in an analogy with the recombination and mutation
operators from the evolutionary algorithms.

An elitist strategy was implemented such that the worst
element Lj+1 of the population Pj+1 is substituted by the
best element Lj of the population Pj . The elitism improved
the convergence of the method. The Matlab interior points
LMI solver is used to test the feasibility of each generated
solution finding the respective matrices X2, XD and X∞.

A. Objective and Fitness Function

The objective (cost) function J(LK) provides the mech-
anism for evaluating each individual LK . The objec-
tive function corresponds to the H2 norm J(LK) =
Trace(C̃2fX2C̃

T
2f ) (11) subject to (12)-(14).

To maintain uniformity over different problems, the fit-
ness function was rescaled and it is defined as:

fitness(LK) =
1

1 + J(LK)
. (17)

Minimizing the objective function J(LK) is equivalent
to getting a maximum fitness value in the genetic search.
No penalty functions are used in the algorithm.
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B. Initial Population

Since the search space is not convex and its bounds are
unknown, the classic random initial population generation
of the DEs [14], [16], [15] requires a strong computational
effort. An element is called feasible if it satisfies the matrix
inequalities (12)-(14), otherwise it is called infeasible. In
order to reduce the computational effort generating feasible
elements, an approach described in [35] was implemented.
This approach gives a sufficient condition to find feasible
controllers using the Lyapunov inequality associated to
the H2-norm for the state feedback control problem. The
procedure description is given as follows.

Consider the following system from (7)⎧⎨
⎩

ẋf = Ãxf + B̃12w2 + B̃2us

z2 = C̃2xf + D̃22us

ys = C̃yxf

, (18)

and the static output feedback control law

us = LKys. (19)

If rank(Cy) is not full, generate a random matrix N such
that

M =
[

N
Cy

]
(20)

has full rank. The matrix N carries the diversity of the initial
population, since that for each generated M a distinct initial
solution is found;

Perform a similarity transformation x̄ = Mxf then the
system (18) is given by:⎧⎨

⎩
˙̄x = Āx̄ + B̄12w2 + B̄2us

z2 = C̄2x̄ + D22us

ys = C̄yx̄
, (21)

where Ā = MÃM−1, B̄12 = MB̃12 , B̄2 = MB̃2, C̄2 =
C̃2M

−1 and C̄y = C̃yM−1. The resulting control law is
given by

us = LC̄yM−1x̄ = L̄x̄, (22)

where the new controller L̄ has the following structure

L̄ =
[

0 LK

]
; (23)

In order to find feasible controllers L̄, the inequalities
(12) and (14) are converted to LMI form using the change
of variables L̄W̄1 = W̄2 with fixed structure matrices

W̄1 =
[ • 0

0 •
]

; W̄2 =
[

0 • ]
, (24)

assuming X2 = XD. This reduced convex problem is
solved with help of the Matlab LMI-Lab [29];

Extract LK from L̄ and compute X2, X∞ and XD

solving the convex problem (11)-(14);
Save the feasible solution LK , if any, and return to step

1 until the initial population is fulfilled.

C. Differential Evolution Operator (DEO)

This operator was extracted from the classic DE theory.
Some modifications were necessary due to the complexity
of the problem. The procedure LDE = DEO(L, pDE) is
as follows:

1) select L1 ∈ PM
j via rank selection method;

2) randomly select L2 and L3;
3) if random [0, 1) < pDE then L′ = L1 + F ×

(L2 − L3) else L′ = L1;
4) LDE = L′ if fitness(L′) > fitness(L), else

LDE = L; L is an argument passed to the DEO
operator;

5) return LDE if feasible, else update F and repeat 1 to
4 up to 5 times.

In this procedure no repair rule is applied to the result-
ing offspring LDE since the geometry of the problem is
unknown. Moreover, different from the crossover operator
of the classic differential evolution algorithms, the DEO
operates over the full variable vector L which corresponds
to the controller being optimized (for details [14], [17],
[18]). Simulations showed that applying the operator par-
tially over L′ resulted in many infeasible elements reducing
the efficency of the algorithm.

The classic DE algorithms [14], [16] select L1 randomly.
Many simulations showed that if the controller L1 is se-
lected via a stochastic selection method, rather then ran-
domly, a better convergence is achieved. Therefore a linear
ranking selection algorithm [36] for L1 was implemented.

The variable F ∈ [0, 1) is randomly selected through
the expression F = 10×random[0,1)

10α where α is a counter
with initial value 1. If the offspring LDE is infeasible, α
is increased, F is updated and the procedure is repeated up
to 5 times. This technique helps the algorithm to produce a
feasible offspring LDE since it reduces the magnitude of F
at each try. In general, the value 5 allows a satisfactory
trade-off between the algorithm’s performance and the
number of feasible offsprings.

D. Estimated Gradient Search Operator (EGSO)

This operator is based on the Evolutionary-Gradient-
Search Procedure proposed by Salomon [9]. The aim of this
procedure is to approximate the gradient of the function be-
ing optimized through a weighted sum without making use
of the derivatives. The procedure can result in great estima-
tion errors and the conditions for a good approximation are
found in [9]. The procedure LEGS = EGSO(LDE , pEGS)
is as follows:

1) if random [0, 1) > pEGS return LEGS = LDE else:
2) create N test candidates (offspring) Li such that

Li = LDE + Zi, 1, . . . , N where Zi is a matrix with
Gaussian distributed elements of mean 0 and standard
deviation σm√

n
and n is the number of entries of the

controllers L;
3) evaluate G =

∑n
i=1 (fitness (Li) − fitness (LDE))×

(Li − LDE);
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4) compute the vector E = G
‖G‖2

;
5) compute LEGS = LDE − σmE;
6) return LEGS if feasible, else repeat (1)− (5) up to 5

times;
7) self adapt σ such that if fitness(LEGS − σmζE) ≤

fitness(LEGS − (σm/ζ)E) then σm+1 = σmζ else
σm+1 = σm/ζ.

The initial values σ0 = 1, ζ = 2 and N = 60 were
arbitrarily chosen after many simulations. For the interested
reader, the proof of the convergence of the algorithm to the
real gradient when N → ∞ is also demonstrated in [9].

V. NUMERICAL EXAMPLES

In order to validate our approach, some numerical exam-
ples were borrowed from the literature.

Example 1: This example is described in details in
[37]. It corresponds to an inverted pendulum system. The
matrices are:

A =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1
0 a1 a2 a3

0 a4 a5 a6

⎤
⎥⎥⎦ , B2 =

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦ , Cy = I4,

BT
12

=
[

1 0 0 0
]
, D12 =

[
0 0 0 0 1

]
,

C1 =
[

I4

01×4

]
, B1∞ =

[
1 0 0 0

]
,

D112 = 0, C2 = 0.1 ∗ I4, D11∞ = 0,
Dy1∞ = 0, D21∞ = 0, D22 = 0,

where a1 = −0.0369, a2 ∈ [−0.1183, −0.0968],
a3 ∈ 10−3 [0.5336, 0.6522], a4 = 30.7744, a5 ∈
[0.3025, 0.3697] and a6 ∈ [−0.5444, −0.4454]. The pa-
rameters a2 and a5 as well as the parameters a3 and a6

derive from only two distinct uncertain parameters [37].
Therefore the matrix A generates only four vertices. The
desired pole placement region is a disk centered in (−9.8, 0)
with radius r = 9. The reduced order (nc = 2) output
feedback controller found by the algorithm with pDE = 0.8,
pEGS = 0.3, J = 50, and M = 20 is:

AK =
[ −11.4167 −18.0374

−1.6352 −3.9691

]
, DT

K =
[ −0.0172

2.2823

]
,

BK =
[ −1.2874 50.8211

−0.2362 9.8441

]
, CT

K =
[ −0.3425

−0.0698

]
,

and the associated guaranteed cost‖H‖2
2 = 0.0345 and

γ = 2.5199. In [25] the guaranteed cost found is ‖H‖2
2 =

0.0530 and γ = 3.1506. The full order (nc = 4) output
feedback controller obtained by the algorithm with pDE =
1, pEGS = 0.6, J = 50, and M = 20 is:

AK =

⎡
⎢⎢⎣

−20.1948 −13.2019 −9.2737 −1.0663
1.7711 −1.5262 1.1661 0.2192
7.9938 6.2597 1.4597 0.7734
21.1485 16.4875 11.4439 −1.2163

⎤
⎥⎥⎦ ,
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Fig. 1. Closed Loop Root Loci

BK =

⎡
⎢⎢⎣

−1.5921 −23.7237
0.1028 2.5391
0.6680 10.7916
1.8529 28.5738

⎤
⎥⎥⎦ , CT

K =

⎡
⎢⎢⎣

1.7219
1.3651
0.9287
0.1577

⎤
⎥⎥⎦ ,

DK =
[

0.1317 2.7653
]
,

and the associated guaranteed cost ‖H‖2
2 = 0.0489 and

γ = 1.7624. The minimal guaranteed cost found in [37]
is ‖H‖2

2 = 13.2738, and in [25] is ‖H‖2
2 = 0.0421 and

γ = 2.1077.
Fig. 1 shows the closed-loop poles for 26 pairs of the

two uncertain parameters for the obtained full and reduced
order controllers.

Example 2: This example was adapted from [24] and
[38]. It represents the model of the linearized dynamic
equation of the VTOL helicopter. In [38] only the optimal
H2 control by output feedback is considered.

A reduced order nc = 2 controller is designed. The
algorithm with parameters pDE = 1.0, pEGS = 0.6,
J = 70, and M = 20 obtained the following controller

AK =
[ −13.4542 −13.1431

−11.7492 −13.3828

]
,

BK =
[

23.8588
−12.0188

]
, DK =

[
1.9157
−5.7611

]
,

CK =
[

5.2611 5.7074
−2.5016 −1.9502

]
,

and the associated guaranteed cost ‖H‖2
2 = 12.8885 and

γ = 13.5711. The guaranteed cost found in [28] is ‖H‖2
2 =

13.6839, γ = 13.6338 and in [24] is ‖H‖2
2 = 18.9888,

γ = 19.9714.

VI. CONCLUSION

In this work the mixed H2/H∞ control problem with
LMI region pole placement has been investigated. As so-
lution for the problem an algorithm based on DEs, the
Evolutionary Gradient Search of Salomon and LMIs has
been proposed. The algorithm is capable of dealing with
dynamic and static output feedback synthesis and searches
for near optimum controllers that minimize the H2 norm
under H∞ norm and pole placement constraint.

Several examples borrowed from the control literature
have been analyzed. Although this hybrid algorithm does
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not guarantee the finding of the optimal solution, the
obtained simulation results have demonstrated that this strat-
egy is efficient and produces good results. In the developed
examples presented in the paper, the norms calculated are
smaller than those cited by the references.

The proposed algorithm is flexible to deal with reduced or
full order dynamic output controller design. In this approach
the assumption X2 = X∞ = XD is not required reducing
the conservatism and allowing better solutions.

The flexibility of the algorithm allows a wide range
of LMI pole placement regions. The pole placement con-
straints enable the control engineer to design a better
controller in terms of transient behavior specifications.

Future works will be dedicated in order to implement
other classes of evolutionary algorithms for comparison
purposes. Also, some effort in applying this method to
discrete systems will be spent.
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