
Abstract— This paper presents a general optimization 
approach in automatic’s field. It discusses the design and 
retuning of controllers as well as the validation of the general 
manufacturer specifications, which will be expressed by a 
frequency and/or temporal templates in order to be solved by a 
general optimization problem. This is a very complex and 
particular problem. It will be shown that it involves 
nondifferentiable functions and criteria. The resolution of this 
kind of problems can be difficult or impossible via gradient and 
all classical descent algorithms. In this study, we propose an 
subdifferential algorithm, very efficient for nonsmooth 
optimization. This algorithm, mixing with an exact 
computation of gradient based on parametric sensitivity 
functions, appears to be well suited to problems with 
nonsmooth costs and constraints. As illustration, this method 
will be used to retune backstepping controller for a magnetic 
suspension system. Simulations and comparison results are 
given to demonstrate the effectiveness of the proposed 
approach.

I. INTRODUCTION

ince the beginning of control theory, the design of 
optimal controllers taking into consideration complex 

specifications has been a fundamental challenge. A general 
trend has been to search for high performances (rapidity, 
precision, rejection or attenuation of perturbation signals…), 
while ensuring moderate control signals and good robustness 
properties. This need of high system performances, 
conjointly with the evolution of computation techniques and 
information processing, reinforces the necessity of 
optimization in automatic. Together with the growing of 
calculation power, the requirements evolved. The ability to 
take into account complex specifications feeds several 
subjects of research. Many studies related to the use of 
optimization for complex engineering requirements with low 
complexity algorithms are developed. These theories mainly 
focus on convex optimization methods that concern with 
synthesis techniques of controllers. Particularly, during the 
seventies, quadratic methods as LQ [1], [2] appeared and 
grew. At the end of the eighties and the beginning of the 
nineties, the methods known as robust control have been 
greatly developed. Concerning solvable cases, generally 
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convex, we can quote the multi-criterion syntheses HH /2

[3], the uncoupled HH /  [4] and feasibility problem 
using Youla-Kucera parameterization [5]. In the general case 
(not algebraically solvable or nonconvex), there is no 
guarantee to obtain the absolute optimum. Nevertheless, 
optimization allows to retune controller parameters. Indeed, 
the control law design is seldom a direct operation. 
Generally multiple stages are necessary to obtain a 
satisfactory result. When the design conditions are modified, 
the most effective way is not necessarily to start again the 
work from the beginning. Thus, the need for a retuning may 
arise all along the development of the system each time the 
design model or specifications evolve. 

In this article, the last situation is considered. Generic 
criteria properties will be shown as well as the way to 
consider the problem in order to get an efficient resolution. 
We will focus on methods, which can be developed out of 
the convex context. For complex specifications, the 
proposed approach allows an exact formulation of 
requirements to the detriment of an exact analysis of their 
feasibilities. The versatility of these generic optimization 
approaches is illustrated through a magnetic suspension 
system. The most important aim is to show the potential of 
our technique through an application for which retuning 
controller parameters by optimization is yet very difficult 
using a classical descent algorithm.

This paper is structured as follows. First, a formulation of 
generic specifications in control design problems is 
presented. The result is that all specifications are expressed 
by constraints in a global optimization problem. The 
resolution of such problem is difficult and requires specific 
algorithms. Subsequently, a descent algorithm based on the 

 subdifferential notion is exposed, which is able to solve 
nonsmooth formulated problems. The last section is 
dedicated to present the application and its simulation 
results.

II. THE GLOBAL OPTIMIZATION PROBLEM FORMULATION

Mathematical formulation of the different specifications will 
allow to express the retuning of controllers as a global 
optimization problem mixing temporal and/or frequency 
demands.

Let’s consider the diagram given by figure 1. The tuned 
controller parameters are designed by the vector 1 .

Backstepping Controller Retuning using 
 Subdifferential Optimization  

Bilal Lassami and Stéphane Font 

S

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

WeB08.3

0-7803-9568-9/05/$20.00 ©2005 IEEE 5119



Fig. 1.  Feedback system with tuned variables.

The model of the system to be controlled can also depend on 
adjustable parameters 2 . The global parameter 

TTT

21 , constitutes the vector of decision variables. 
Any transfer functions of the open or closed loop system 
will show the following dependence: 

),(,, 21 jHjGKH  (1) 

For a particular input signal ( r or b ), any output signals will 
be of the form: 

tsttrKGs ,),(,, 12  (2) 

The classical criteria of the specifications sheet (time 
response, maximum overshoot, cut-off frequency …) are 
consequently also dependent on parameters . These will be 
noted, respectively, in temporal and frequency domains by 
the expressions 

tt tts ,,  (3) 

,, jH  (4) 

Generally, the control problem will be translated using 
constraints on indicators t  and  or on trajectories [6]. 
These last requirements are formulated, respectively, in 
temporal and in frequency domains, using respectively one 
of the following inequalities: 

0
)(),()(,0 maxmin

ttF

tststst
 (5) 

0
)(),(,0 maxmin

F

HjHH
 (6) 

For example, a request of a phase margin greater than 60° 
will be formulated as follows 60)(F .
It can be noticed that these various constraints can be 
equivalently formulated as criteria functions. For example, 
requirements that can be formulated using (5) or (6) can be 
equivalently formulated using one of the following criteria.

tstststsJ
tt

t ,)(max,)(,maxmax min0max
0

 (7) 

)(,max max
0

HjHJ  (8) 

A constraint will be verified if and only if the associated 
optimal criterion is negative. 

Generally, the global optimization problem can be stated 
by mixing one or more criterion as equation (7) or (8) and 
one or more constraints like expressions (5) or (6). 

For generic specifications, calculations of criteria and 
constraints are not easy. For examples; the calculations of 
gain and phase margin require, among other things, the 
resolution of polynomial equations; the time response 
calculations require the use of an unidirectional 
optimization. Furthermore, all temporal criteria require the 
integration of differential equations. In generic case, only 
estimation of trajectories can be obtained, that contains a 
finite number of estimated points. So the numerical 
estimation of sensitivity (or gradient) of such object is really 
very sensitive using indirect approach (usually finite 
difference approach). Moreover, constraints on trajectory 
lead to a semi-infinite problem: the underlying maximum 
function, as (7) or (8) must be calculated by optimization, 
gridding or other methods. To conclude, the main fact is that 
the criterion J  can not be exactly computed and only an 
estimated value Ĵ  is available. It will be noted: bJJ
where b  is the numerical noise of criterion calculation. 

III. RESOLUTION OF THE GLOBAL OPTIMIZATION PROBLEM

The proposed approach is based on the descent algorithm. 
It is a very efficient method when a descent direction can be 
well determined. 

A. The Descent Algorithm 
The structure of this class of algorithms allows to exploit 

fully the local descent information. It is composed of the 
following steps: 

Step 1: Choose an initial parameters values init .
Step 2: Determine a descent direction vector )(d .
Step 3: Find the step length according to the direction

)(d such that )())((and0 JdJ
Step 4: Updating the current point: )(d
Step 5: If stop criterion not verified go to step 2 else STOP.

The most famous method of this class of algorithms is the 
‘gradient method’. It is based on computation of the local 
gradient which presents the best local choice when it is 
defined [7]. The descent direction is then determined at each 
iteration k  as follows. 

kkk d1 with:
k

J
Jggd kkkk andˆ

This particular algorithm presents many advantages, on the 
contrary to other information of structure or more elevated 
order (Hessian), it requires less expensive calculations than 
the superior order methods and it is robust with respect to 
estimation errors on the gradient; it is sufficient to verify 

0ˆ
kk gg  to get the convergence of the algorithm. 

However, the possibility of convergence, in a reasonable 
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time, depends on the gradient calculations; it must be 
reliable (with a good precision) and easily tractable (low 
complexity of calculations). 

B.  Gradient Calculation Using Parametric Sensitivities
Two kinds of methods can be distinguished for the 

computation of the gradient. The first one is the indirect 
method using finite differences techniques. This method is 
very useful but leads to unreliable result when the noise is 
relatively strong. For instance, the analysis of variance 
gives:

h
b

bJbuhJ
h

J
h

2)()(1ˆ
021  (9) 

where u  denotes a unit vector and ib  the noise of gradient 
estimation assumed that ),0( bNbi .

The second method is the direct calculus. It is a precise 
method but it requires an important first step of calculus 
before running optimisation when it is applied to semi-
infinite problems [8]. For generic problems, the estimation 
of gradient is strongly noised, so in order to ameliorate the 
quality of the local information, the direct calculus will be 
considered here. The gradient can be computed using the 
sensitivity function approach. The principle of this method 
will now be exhibited in temporal domain through a NLI 
model. Let’s consider the system: 

atxhaty

atxf
dt

tdx

,,

,
 (10) 

hf ,  can also depend on the command tu  and the time t .
a  denotes a vector of any parameter of the equations, 
relation with  will be explained in the sequel.
The parametric sensitivities of the output signal y  with 
respect to arguments a  are defined by the following 
expression for )dim(,...,1 ai  [9], [10]: 

aty
a

atS
i

ay i
,,/   (11) 

This definition applied to the NLI model gives 

i

axTay a
atxh

atS
x

atxh
atS

ii

,,,, //  (12) 

The derivation with respect to parameters a  gives: 

i

axT

ax

a
atxf

atS
x

atxf
dt

atSd
i

i
,,,,

/
/  (13) 

The computation of the parametric sensitivities of the output 
signal y  with respect to coefficients a  requires 1)dim(a
simulations (the resolution of the system of equations 
defined by 10 and 13). 

Fig. 2.  An example of the sensitivity block diagram (n,m)=(2,1); it permits 
an efficient calculation of the differential equations of sensitivity functions. 

This indicates that the direct method is not more 
complicated anymore that the one by finite differences.
If coefficients a  depend on parameters , the parametric 
sensitivities of the output signal y  with respect to 
parameters  are then given by:

ik ay

mn

i k

i
y S

a
S /

1

1
/  (14) 

The sensitivity approach can be easily developed in the 
linear case where it presents a lot of simplifications. In fact, 
all transfer functions of the control loop can be expressed by 
a differential equation: 

m

j
j

j

jmn

n

i
i

i

inn

n

u
dt
d

ay
dt
d

ay
dt
d

0
1

1

0

 (15) 

The partial derivatives of the differential equation (15) 
with respect to coefficients a  give 1mn  differential 
equations. For nk ,...,2,1 , it becomes: 

y
dt
d

S
dt
d

aS
dt
d

kn

knn

i
ayi

i

inayn

n

kk

1

0
//  (16) 

For 1,...,1 mnnk ,

u
dt
d

S
dt
d

aS
dt
d

kmn

kmnn

i
ayi

i

inayn

n

kk 1

11

0
//  (17) 

Let's note that the resolution of the system of 2mn
equations, defined by equations (15), (16) and (17), only 
requires the use of an n2  order model. The evaluation 
requires a numerical integration for which the error is small 
enough and above all is not amplified as in the case of the 
finite differences approach. The figure 2 shows the reduced 
block diagram of these equations for )1,2(),( mn .
As an illustrative example, the following criterion can be 
considered.

ft

i
iii tYtywJ

1
max,)(  (18) 

with 0,max ff .

The gradient of this criterion is given almost everywhere for 
1...,,1 mnk  by the following expression:

ii
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C. Nonsmooth Criteria 
An attentive observation of the several criteria formulated 

on the retuning controller problems shows that the classical 
specifications are often formulated by nonsmooth criteria 
and constraints. For example, criteria which contain any 
‘max’ function are nonsmooth when the maximum is 
reached simultaneously in several points; see (18) and (19). 
However, they present the particularity to be nearly 
differentiable; the space of nonsmooth points has measure 
zero [11], [12]. Nevertheless, the subspace of 
nondifferentiable points is usually reached during the 
optimization process because these points are often local 
minima in almost all directions. At these locations, the 
determination of a descent direction is not possible with the 
gradient. A generalized approach using subgradient and 
subdifferential have to be used [11]. 

1) Subgradient: Let’s consider X  a nonempty convex set 
and f  a convex function not necessarily differentiable, 

YXf n:  (in a local meaning if necessary). The 
subgradient  at x  is defined by the property: 

xxxfxf T  globally (or locally) verified on the 
convex set. 

2) Subdifferential: The set of subgradients of a function 
f  at x  is the subdifferential of xf  at x . It is denoted by 

xf . If the function f  is differentiable at x  then the 
subdifferential xf  is reduced to the gradient xf .
The subdifferential is not such a good choice for a descent 
method because it is typically very hard to determine and 
one subgradient does not necessarily represent an efficient 
ascent direction. 

  In order to construct a rigorous procedure, the Clarke 
subgradient is used because it presents an interesting 
approximation quality [13]. 
The proposed algorithm may be applied to any function 

nf :  that is continuous and differentiable almost 
everywhere on n , in practice, it seems to put up with 
stronger discontinuities as long as the function is continuous 
almost everywhere. Formally, it is assumed that f  is locally 
Lipschitz continuous and continuously differentiable on an 
open dense subset D  of n and that there is a point nx~

for which the set xfxfxL ~/  is compact. The local 
Lipschitz hypothesis allows us to approximate the Clarke 
subdifferential [13] as explained in the sequel. 

3) Clarke subdifferential approximation: For each 0 ,
one defines the multifunction nnG : by:

DBxfCoxG  (20) 

where 1/ xxB  is the closed unit ball and )(Co  is 
the closed convex hull.

Figure 3 illustrates an example of a Clarke subdifferential
approximation.

Fig. 3.  Approximation of the Clarke subdifferential.

The sets xG  can be used to give the following 
representation of the Clarke subdifferential of the function 
f  at a given point x :

)()(
0

xGxf  (21) 

The ideas used in the algorithm are based on the 
subdifferential introduced by Goldstein [14]. 

4) Clarke subdifferential: For each 0 , the Clarke 
subdifferential is given by 

BxfCoxf )(  (22) 

For: 210  the following embedded inclusions are 
verified )()()(

221
xfxGxf .

Therefore, the Clarke subdifferential can be approximated 
by xG , this is due to the hypothesis of almost everywhere 
differentiability of f , xG  can be estimated by a finite 
spatial sampling: 

BbDbxfCoxG ii

m

i
with)()(

1
 (23) 

5) Clarke  stationary point: A point x  is Clarke 
stationary if xf0 . In order to measure the 

proximity to Clarke stationarity, Burke [12] introduces the 
following scalar value: 

xGdistx /0  (24) 

IV. THE SUBDIFFERENTIAL ALGORITHM

An algorithm has been developed for the criteria which 
are differentiable almost everywhere. The constraint 
problems can be handled by an exact penalty, 
nondifferentiable weights can be also used. This algorithm is 
slightly different from the one developed on [12]. The basis 
differences are: addition of tests for managing numerical 
degenerated cases and the introduction of an isotropic point 
sampling of the hyperball for a better estimation of the 

subdifferential [15]. 

A. Additional Notations:

k  Sampling radius at the thk iteration.
k  Optimality tolerance at the thk iteration.
 Armijo parameter.   

d
x

)( Bxf

1x

2x )(xG

g
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  Backtracking reduction factor.  
 Optimality tolerance reduction factor.  
 Sampling radius reduction factor. 

B. Algorithm:
Step 0: (Initialization)  
Let DLx 0 , ]0,1[, ]0,1[, 00 , 00 ,

]0,1], ]0,1], 0k  and ,...3,2,1 nnnm .

Step 1: (Approximation of the Clarke subdifferential)  
Let kmkk uuu ,...,, 21  be sampled independently and uniformly 
from B , and set: kk xx 0 and kj

k
kkj uxx for mj ,...,1 .

If one of samples points mj ,...,1  verifies Dxkj then
go to Step 1.  
Else kmkk

k xfxfxfCoG ...,,, 10 .
kjxf  is calculated by sensitivity method (for semi-infinite 

problems)

Step 2: (Compute a descent direction kd )
Let k

k Gg  solution of the positive quadratic problem 
)/0(minarg k

Gg
k Gdistg

k

If 0k
k g , Then Stop ( stationarity).

Else
If k

kg , then set 0kt , kk 1 , kk 1 and go
to Step 4.  

Else kk 1 , kk 1 , kkk ggd

Step 3: (Compute a step length kt )
s

skt ,...2,1,0
max  / kskksk gxfdxf

Step 4: (Update)  
If Ddtx k

k
k then k

k
kk dtxx 0 , 1kk  and go to

Step 1. 
Else, let Bxx k

kk ˆˆ  satisfying Ddtx k
k

kˆ  and 
kskksk gxfdxf ˆ , and then k

k
kk dtxx ˆ0 ,

1kk . Go to step 1. 

V. APPLICATION TO A MAGNETIC SUSPENSION SYSTEM

Let’s consider the magnetic suspension device shown in 
figure 4. It consists of an iron pendulum in a vertical 
magnetic field created by an electromagnet. The related 
closed loop block diagram is depicted in figure 5, where z
is the measured position of the pendulum compared with the 
sensor position center in an absolute reference frame and i
is the output current signal of the actuator. 
In a first time, the dynamic between the input voltage u  of 
the actuator and its output current i  is not considered. With 
a state vector Tizzx ,, , the model of the system is: 

Fig. 4.  Magnetic suspension device.

Fig. 5.  Block diagram of the magnetic suspension system.
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where m  is the mass of the pendulum, k  is the 
amplification factor of the actuator, k  is a positive constant 
and c  denotes the nominal air gap. For a given desired 
constant position of the pendulum 1x , the equilibrium that 
we want to stabilize verifies: 

T

xckmgxx 11 /,0,

Magnetic suspension system is an open loop unstable 
system, so then, in order to guarantee stable feedback, 
suitable control is needed. Backstepping method has been 
used. It allows to stabilize the system and to take in account 
strong nonlinear effect of the magnetic force. 

A. Backstepping Controller Design 

Backstepping approach consists in finding a strictly 
assignable Control Lyapunov Function (CLF), positive 
definite and radially unbounded that guarantees the global 
asymptotic stability of the system. Complete methodology 
can be found in [16] and [17].

Step 1: Consider the subsystem: 

111 xvx  (26) 

In order to find the virtual control law 11 xv  we introduce 
the CLF 

2
11 2

1
exV  (27) 

Controller Actuator Suspension
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where e  is the error signal 11 xxe .

Let’s derivate (27), it comes: 

1111 xvexV  (28) 

By taking  exv 111  with 01 , we strictly assign the 
CLF 11 xV .

Step 2: Now, we consider the whole magnetic suspension 
system:

2
1

22

2

21

xc
uk

m
k

gx

xx

 (29) 

Let’s consider the following CLF 

0,
2
1, 3

2
112311212 xvxxVxxV  (30) 

As in step 1, we strictly assign the CLF 212 , xxV  by setting 

0),)(

)1(()(

23122

213
2

12
3

2

x

egxc
kk
m

u
 (31) 

So as to obtain: 
2

122
2

1212 , exexxV  (32) 

This choice results in the closed loop system 

231221
3

2

2

11
xex

xe
 (33) 

A natural choice would have lead to the introduction of two 
parameters, classically the same as 1  and 2 . Roughly 
speaking, two degrees of freedom seem sufficient for a 
second order system. A full study of this case ( 13 )
shows that the corresponding variation of the damping 
coefficient   and the undamped frequency n  of the 
closed loop poles are restricted. The corresponding domain 
is given on figure 6. Our choice of CLF permits to reach the 
different dynamics of second order system (overdamped and 
underdamped) through the three parameters i . They permit 
to assign freely the poles of the closed loop system. 

B. Simulation Results 

The required performances are commonly expressed by 
the overshoot (< 20 %), the settling time (< 0.06 s), the 
tracking error accuracy and the limitation of the control 
( V5u ). These specifications are formulated using 
template forms and the general optimization problem is 
stated as follow: 

0 . 5 1 1 . 5 2 2 . 5 3 3 . 5 4
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0 . 5
1

1 . 5
2

2 . 5
3

3 . 5
4

n

Fig. 6.  The assignable domain of the closed loop linear system if 13 .
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Using the subdifferential algorithm, the last problem is 
solved. It’s not really a RE-tuning situation but method is 
nevertheless very efficient for controllers design. Figure 7 
exhibits the optimal solution z  (upper), and the input 
voltage u  (lower) for mx 3

1 10 . It may be observed that 
simulation results are in concordance with the required 
performances. Note that these good performances of the 
controller are dependent on the full knowledge of parameters 
in the model (here: ,005.0,0844.0 kkgm

mck 011.0,1.0  and 2/81.9 smg ). The obtained 
optimal parameters are: 

TToptoptopt
opy

-5-5
321 105,108128,,, .
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Fig. 7.  Temporal responses of the system with the specifications 
),(10.6 2 sTs )(5and%20 VtuD .

C. Controller Retuning

Dynamic of the actuator will now be taken into account. It 
is modelized by a first order model with a time constant 
and the same amplification factor k . Then, the complete 
model of the magnetic suspension system is 
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The previous control law is used (equation 31). Results 
should be similar if the actuator is quick enough. 
Maintaining the same specifications, results are shown in 
figure 8 (dashed line).
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Fig. 8.  Temporal responses comparison with and without actuator. 

We remark that the specifications are no longer fulfilled; the 
templates of the step response are not verified. For this 
reason, the developed subdifferential algorithm is now 
used to retune the backstepping control law. The results of 
this operation are shown in figure 9. 
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Fig. 9.  Temporal responses of the new system with the specifications 
),(10.6 2 sTs )(5and%20 VtuD .

The new optimal parameters are given by 
T

opy 10,45107142, -6-5  and the final results reach all 
specifications.

VI. CONCLUSION

To hold into account generic specifications for controller 
retuning, an exact formulation of the demands must be used. 
Corresponding criteria are generally nonsmooth, which often 
lead to difficult optimization problems. This study presents 
an adapted method: the Clarke subdifferential approximation 
and the parametric sensitivity proprieties of systems allow to 
formalize the approach and to define mathematical objects 
that can be numerically estimated with reliability. 
Concerning application, backstepping is not only used to 
stabilize the system but also to reach performances. An extra 
degree of freedom has been introduced for this purpose and 
can be easily managed via optimization approach. Naturally 
well suited for retuning, this approach appears to be also 
very efficient for a direct controller design. So, 
subdifferential optimization represents an effective tool in 
computer-aided design for controllers retuning. 
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