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Abstract— An effective modeling of nonlinearities and the
analysis of the influence on the closed-loop dynamics in mecha-
tronic systems such as servo systems is often crucial for high
performance applications. For this we propose an analytical
method of approximate modeling of a class of nonlinear
mechanical oscillators using fuzzy systems. The emphasis in this
work will be on a systematic description of the construction of
fuzzy systems from known nonlinear models and an error anal-
ysis as a function of model complexity. Finally, its application
as a model framework for an effective gain-scheduling control
design method will be discussed.

Index Terms— Fuzzy modeling, Mechanical Systems, Control
oriented models, Approximate analysis

I. INTRODUCTION

A. Motivation

An effective modeling of nonlinearities and the analysis

of the influence on the closed-loop dynamics in mechatronic

systems such as servo systems is often crucial for high

performance applications. For this reason this work presents

an analytical method of approximate description of a class

of nonlinear mechanical oscillators. Instead of studying the

exact nonlinear models to enlarge the description capability

compared to linear models we will use a Takagi–Sugeno (TS)

fuzzy system [7], that consists of a time-variable weighted

combination of Nr linear state-space models. TS fuzzy

systems also called a Polytopic Linear Model (PLM) [1]

since the set of linear models define a polytope in the model-

parameter space.

In this paper the investigated class of one-degree-of-freedom

(1-DOF) mechanical oscillators is composed of force ele-

ments such as springs, dampers or shock absorbers, that may

be presented by rather complex relations, including nonlinear

characteristics and even additional differential equations. The

propose model class is sufficiently rich to describe a wide

variety of nonlinear effects in mechatronic systems such

as the load and position dependency of the input-output

behavior of servo-hydraulic and servo-pneumatic systems

and the nonlinear behavior of suspension.

The goal of this paper is, starting from the above mentioned

nonlinear representations of 1-DOF mechanical oscillators,

to describe a systematic approach of approximate modeling

using TS fuzzy system and its application to model-based

control design [2]. Because the performance of a model-

based control strategy depends strongly on the quality of

the model it is especially desirable to design an approximate
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model with sufficient accuracy bounds. In this paper an upper

bound on the number of models Nr will be applied that is

sufficient to construct a TS fuzzy system with predefined

accuracy. The TS fuzzy system may be seen here as a

compromise between general nonlinear models that can be

very accurate but due to their complexity difficult to apply in

model-based control schemes and linear time invariant (LTI)

systems that can be very simple and easy to use for control

design purposes but the expected behavior of a nonlinear

system can only be guaranteed for operating conditions that

are close to the point of linearization.

B. Overview

This paper is organized as follows: First of all, in Sec-
tion 2 the Takagi–Sugeno fuzzy system structure is intro-

duced and some interpretations are given. After that the

approximate construction of TS fuzzy systems from known

nonlinear models are explained and an error analysis and

some approximation properties are investigated. Section 3
presents the application of the above construction method.

In succession a mechanical oscillator with a nonlinear spring

and a mechanical oscillator with a nonlinear spring and

damper will be discussed. For this the total number of local

models and a grid of equilibrium points are determined

on a compact space by an analytically derived equation

that is a function of a given upper bound of the model

error. Further on some simulation results will be presented

in comparison with simulations using the known nonlinear

models. Finally, in Section 4 the application of the above

derived model for nonlinear state-feedback controller design

is briefly described.

II. APPROXIMATION OF NONLINEAR FUNCTIONS USING

TAKAGI–SUGENO SYSTEMS

A. Takagi–Sugeno fuzzy systems

The Takagi-Sugeno fuzzy system [7] considered from

a system-theoretic perspective as time-variable smoothed

weighted combinations of linear and affine state-space sys-

tems provides a flexible framework for analysis and synthesis

of nonlinear systems. In this paper the so called affine type

of a TS fuzzy system in the state-space form is used. At this,
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the state and output equations are defined as follows

ẋ(t) =
Nr∑
i=1

αi(z)Ai x(t)

+
Nr∑
i=1

αi(z)Bi u(t) +
Nr∑
i=1

αi(z)ai ,

(1a)

y(t) =
Nr∑
i=1

αi(z)Ci x(t) , (1b)

where x ∈ R
n is the state, u ∈ R

m is the input, and y ∈
R

p is the output. The matrices Ai ∈ R
n×n, Bi ∈ R

n×m

and Ci ∈ R
p×n are used to express the local models i =

1, ..., Nr in state-space representation Gi := {Ai,Bi,Ci}
and to take into account the offset using ai ∈ R

n×1. The

linear model Gi is valid in a region defined by

αi : R
l → R , z �−→ αi(z) (1c)

αi(z) =
wi(z)

r∑
k=1

wk(z)
, wi(z) =

l∏
j=1

Mij(zj) , (1d)

where Mij(zj) is the membership function of the model i
via zj . We set the vector z = [z1, z2, ..., zl]T , which may

be chosen from a set of measurements such as external

physical values, components of the state vector x and the

input u. Remark: Within the context of controller design, z
may be interpreted as a scheduling-vector [6]. Furthermore

we assume for i = 1, . . . , Nr

wi(z) ≥ 0 and

Nr∑
i=1

wi(z) > 0 ∀z . (2)

Hence αi(z) satisfies for i = 1, . . . , Nr

αi(z) ≥ 0 and

Nr∑
i=1

αi(z) = 1 ∀z . (3)

The affine TS fuzzy system (1) can be seen as a smoothed

piecewise approximation of a nonlinear surface of the right-

hand-side of the differential equation ẋ = f(x,u). Approx-

imation properties of this were first investigated in [3] for

single-input single-output (SISO) systems and were extended

in [1], [6] to multi-input multi-output (MIMO) systems.

B. Construction of TS fuzzy systems from known nonlinear
models

The characteristics of this modeling method is described

as follows based on dynamic linearization. Suppose we want

to approximate a known nonlinear model described by the

system of differential equations

ẋ(t) = f(x(t),u(t) ) , (4a)

y(t) = g(x(t),u(t) ) , (4b)

with

f : R
m+n → R

n , g : R
m+n → R

p ,

where x ∈ Rn is the state of the system, u ∈ R
m is the input

(in the sense that it is free) and y ∈ R
p the output of the

system (in the sense that y is uniquely specified by u and

x(0)). Let (xs(t),ys(t) ) a solution of (4) for t ∈ [t0,∞).
Then the right-hand-side of (4) can be rewritten as

d (xs + ∆x)
dt

= f(xs + ∆x,us + ∆u) (5a)

= f(xs , us) + A(t) ∆x + B(t) ∆u + rf ,

ys + ∆y = g(xs + ∆x,us + ∆u) (5b)

= g(xs , us) + C(t) ∆x + D(t) ∆u + rg ,

if f and g are at least one time continuously differentiable

with respect to x and u. The matrices in (5) are the well-

known Jacobians and defined as

A(t) := A(xs(t),us(t)) =
[
∂f(xs(t),us(t))

∂x(t)

]
, (6a)

B(t) := B(xs(t),us(t)) =
[
∂f(xs(t),us(t))

∂u(t)

]
, (6b)

C(t) := C(xs(t),us(t)) =
[
∂g(xs(t),us(t))

∂x(t)

]
, (6c)

D(t) := D(xs(t),us(t)) =
[
∂g(xs(t),us(t))

∂u(t)

]
. (6d)

The remaining terms rf and rg as rf , rg =
f(xs(t),us(t),∆x,∆u) in (5) can be estimated for

smoothed functions by the well-known bounds of the error

of the Taylor series expansion, see the detailed study in [6].

If ∆x and ∆u are sufficient small (depending on the choice

of the number of local linear models, we will discuss this

fact later by means of some case studies) the terms rf

and rg are negligible in the right-hand side of (5). Using

this assumption we get the new system from the right-hand

sides of (4a) and (4b):

ξ̇(t) = f(xs(t),us(t)) + A(t) (ξ(t) − xs(t))

+ B(t) (u(t) − us(t)) ,

ξ(t0) = xs(t0)

(7a)

and

ỹ(t) = g(xs(t),us(t)) + C(t) (ξ(t) − xs(t))
+D(t) (u(t) − us(t))

(7b)

with the state-space vector ξ(t) ∈ R
n (in general ξ(t) �=

xs(t) for t > t0) and the output vector ỹ ∈ R
p. Let’s

consider a given finite set

Gs = {(xi,ui) ∈ {(xs(t),ys(t)) , t ∈ [0,∞)} ,

i = 1, . . . , Nr }
for i = 1, . . . , Nr where Gs ⊂ G ⊆ R

n × R
m. For the

approximation of the right-hand side of (7a) we use now a

weighted combination of state-space models

˙̃
ξ(t) =

Nr∑
i=1

αi(ξ̃(t),u(t)) [A(xi,ui) (ξ̃(t) − xi)

+B(xi,ui) (u(t) − ui) + f(xi,ui)] ,

(8)
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with the new state-space vector ξ̃(t) ∈ R
n (in general ξ̃(t) �=

ξ(t) for t > t0) and the weighting function αi(ξ̃(t),u(t)) as

a function of the so-called scheduling vector

z :=
[

ξ̃
T

uT
]T

. (9)

Now, putting the static terms in (8) together we get

˙̃
ξ(t) =

Nr∑
i=1

αi(ξ̃(t),u(t))A(xi,ui) ξ̃(t)

+
Nr∑
i=1

αi(ξ̃(t),u(t))B(xi,ui)u(t)

+
Nr∑
i=1

αi(ξ̃(t),u(t))[f(xi,ui)

−A(xi,ui)xi − B(xi,ui)ui] .

(10)

Using the abbreviations

Ai := A(xi,ui) , Bi := B(xi,ui) , (11a)

ai := f(xi,ui) − A(xi,ui)xi − B(xi,ui)ui (11b)

and αi = αi(ξ̃(t),u(t)) the obtained differential equation

˙̃
ξ(t) =

Nr∑
i=1

αi Ai ξ̃(t) +
Nr∑
i=1

αi Bi u(t) +
Nr∑
i=1

αi ai (11c)

has the same form as (1). The dynamic linearization of (4)

about the time-varying point (xi,yi) ∈ {(xs(t),ys(t)), t ∈
[0,∞)} is so given by the TS fuzzy systems (1).

C. Error Analysis of Approximation

We investigate now the approximation accuracy bounds

of the TS fuzzy system (11). The following results are

constructive and form the basis of some of the modeling

methods in Section III.

It is obvious that a useful model for approximate modeling

has to be close to the system, in the sense that explains the

behavior of the original system inside predefined accuracy

bounds. One possible choice for measuring the accuracy is

to consider the Euclidean distance between the ride-hand side

of the original system and the TS fuzzy system. At first, it

is helpful to introduce the following definitions:

1) ceil(·) is a function

ceil : R → N , x �→ ceil(x) , (12)

that returns the least integer which is not less than its

argument, for instance ceil(2.567) = 3.

2) fWA(x,u) is a (time-variable) weighted sum

fWA(x,u) :=
Nr∑
i=1

αi(x,u)f i(x,u) (13)

of the affine functions

f i(x,u) = Ai x+Bi u+ai , i = 1, . . . , r (14)

with x ∈ X ⊂ R
n and u ∈ Y ⊂ R

m.

3) The distance d(f ,fWA) between f(x,u) and

fWA(x,u) is defined by the supremum of the Eu-

clidean error norm on G ⊆ X × U :

d(f ,fWA) := sup
(x,u)∈G

‖f(x,u)−fWA(x,u)‖2 (15)

4) λH represents the maximum absolute Eigenvalue of the

Hessian matrices associated with the Taylor remainder:

λH = max
i,j

[
λHij

]
with λHij

= Eig[
∂2fj(ϑ,ψ)

∂ψ∂ψ ]

Theorem 1: Let f(x,u) be a smoothed1 function (right-

hand side of (4a)) on a compact region G ⊆ X×U whereby

G = {ψ = [ψ1 ψ2 . . . ψn+m]T ∈ R
n+m |

|ψj − ζj | � βj

2
, j = 1, . . . , n + m}

(16)

with

ψ :=
[

xT uT
]T

,

and let ε ∈ R+ be an error bound. Then satifies fWA(x,u)
(13) with Nr local models

Nr =
n+m∏
i=1

ceil

(
βi

2
√

2ε

√
λH (n + m)

√
n

)
(17)

the inequation

d(f ,fWA) � ε ,

whereby λH = max
i,j

[
λHij

]
(see the above definition).

When the operating space is high dimensional the number of

local models Nr increases exponentially with the dimension

dim(ψ) = n + m of the operating space. However the

nonlinear model can be scheduled on a space of lower

dimension, if the system is linear with respect to some state

and input-variables. The following theorem exploits this

circumstances.

Theorem 2: Let f(ψ) = F ψL+fnl(ψN ) be a smoothed

function with ψL ∈ GL, ψN ∈ GN on the compact region

G = GL × GN , and let ε ∈ R+ be an error bound. The

vectors ψL and ψN consist of some components of x and

u with ψL := [xT
L uT

L ]T and ψN := [xT
N uT

N ]T . The

nonlinear portion of f(ψ) is fnl : ψN → R
n and the

remaining variables are linear in ψL with F ∈ R
n×nL ,

nL = dim(ψL), then the inequation

d(f ,fWA) � ε

is satisfied by

fWA(ψ) = F ψL +
Nr∑
i=1

αi(ψN )f i(ψN ) , (18a)

f i(ψN ) = f i(xN ,uN ) = Ai xN + Bi uN + ai (18b)

with ψN = z ∈ Z = GN and Nr local models

Nr =
nN∏
i=1

ceil

(
βi

2
√

2 ε

√
λH nN

√
n

)
(19)

1There exist a zero-th and first order Taylor series expansion of f .
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whereby nN = dim(ψN ) and λH = max
i,j

[
λHij

]
.

Comment: The proofs of theorem 1 and 2 are carried out

in [6] based on the results in [1].

III. APPROXIMATION MODELING OF NONLINEAR

MECHANICAL OSCILLATORS

On the basis of the approximation results that were derived

in the previous section two case studies of 1-DOF nonlinear

mechanical oscillators will be investigated.

A. Mechanical Oscillators with a Nonlinear Spring

We consider the physical model of an oscillator with a

nonlinear spring

m ẍ + d ẋ + k(x) = F , x(t0) = 0 , ẋ(t0) = 0 (20)

with x as the displacement of the rigid body and an extended

force F (t). The nonlinear characteristic of the spring is

represented by

k(x) = c0 x + c1 x3 , c0 > 0 , c1 > 0 . (21)

We assume, first, that the parameters in (20), (21) are given:

m = 2 (kg) as mass of the rigid body,

d = 4 (N/m/s) as the damping coefficient,

c0 = 20 (N/m) as the linear stiffness coefficient in (21),

c1 = 800 (N/m3) as the cubic stiffness coefficient in (21).

and second, that the working space is bounded

|F (t)| ≤ Fmax = 4.5 (N), |x(t)| ≤ xmax = 0.15 (m),

|ẋ(t)| ≤ ẋmax = 0.1 (m/s) .
(22)

Using the state-variables

x1 := x , x2 := ẋ ,

and selecting the input and the output variables as

u := F , y := x ,

we get a state-space representation of (20):

[
ẋ1

ẋ2

]
=

[
0 1 0

− c0
m − d

m
1
m

]
︸ ︷︷ ︸

F

⎡
⎣ x1

x2

u

⎤
⎦

︸ ︷︷ ︸
ψL

+
[

0
− c1

m x3
1

]
︸ ︷︷ ︸

fnl(ψN )

.

(23)

The goal now is to find a TS fuzzy system (1) as an approxi-
mator of (23) with an ε-accuracy for a given ε = 0.25. Then

it suffices to construct a TS fuzzy system using (19) with

Nr =
nN∏
i=1

ceil

(
βi

2
√

2 ε

√
λH nN

√
n

)

local models with β1 = 2·xmax (size of the operating region

of the nonlinear part), because the number of variables in

the nonlinear term is only nN = 1 and the system order is

n = 2. So it is also sufficient to determine solely the Hessian

matrices from the nonlinear term fnl

Hij =
[

∂2fnlj

∂x2
1

]
for j = 1, 2 .

The corresponded Eigenvalues are

λHi1 = Eig[Hi1] = 0 , λHi2 = Eig[Hi2] = −6
c1

m
x1i

.

Based on the fact that the displacement x is bounded the

maximal Eigenvalue is

λH = max
i

[
−6

c1

m
x1i

]
= −6

c1

m
(−xmax) = 360 ,

so the number of local models can be obtain

Nr = ceil

(
0.3

2
√

2 · 0.25

√
360

√
2
)

= 5 .

That is, to attain a desired ε-accuracy

d(f ,fWA) � ε = 0.25 ,

the TS fuzzy system (1) must be a combination of at least

Nr = 5 linear models. In the next step the matrices Ai, Bi

and the vector ai for i = 1, . . . , 5 will be calculated by (6)

at the operating points Gs =
{
[x1i

x2i
ui ]T

}
with

x1i
∈ {−0.12 , −0.06 , 0.0 , 0.06 , 0.12 } . (24)

The operating points are chosen equidistantly since the upper

bound for the number of models Nr is based on a worst case

scenario, namely the maximum nonlinearity measured with

the maximum Eigenvalue λH of the Jacobian that can occur

all over the predefined operating region (22). Further on,

it is obvious that the only variable in the scheduling-vector

z ∈ R
1 is the state x1

z = z1 := x1 , (25)

because all other variables, in this case x2 and u, appear

linear in f(x,u), see (23). After these preliminary consid-

erations we obtain

Ai =
[

0 1
− 1

m

(
c0 + 3 c1 x2

1i

) − d
m

]
,

with (6a) and (11a) based on the original system (23) and

with (6b) and (11b) we get

Bi = B =
[

0
1
m

]

and

ai = f(xi, ui) − Ai xi − B ui

=
[

0
f2(xi, ui) + 1

m

(
c0x1i

+ 3c1x
3
1i

)
+ d

mx2i
− 1

m ui

]
.

Additional to the previous choice of x1i
we recognized that

x2i
and ui must be determined in ai. In this case it is possible

to define the operating points at the equilibria points of the

nonlinear system (23). Let f(xi, ui) ≡ 0 then it follows that

ui = c0 x1i
+ c1 x3

1i
, x2i

= 0 . (26)

for i = 1, . . . , 5. Using the predefined values (24) we get

from (26)

ui ∈ {−3.7824 , −1.3728 , 0.0 , 1.3728 , 3.7824 } .
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Note that the nonlinear system (23) is linear in the output

equation, so it implies that Ci = C = [ 1 0 ] for i = 1, . . . , 5.

Based on the previous results we get now the approximate

model

ẋ =
5∑

i=1

αi(x1)Ai x + B u +
5∑

i=1

αi(x1) ai ,

y = C x .

(27)

of the form (1). Last we have to determine the position and

the shape of the weighting functions αi(x1). It is obvious that

the position should correlate with the operating points (24).

Assuming that the models with {Ai,B,C,ai} are locally

valid, five equally spaced triangular functions are defined in

the domain x1 ∈ [−0.15, 0.15] as shown in Figure 1.

Finally, in this case study, some simulation results are

����� ����� �

�

�

���� �� ����

����� ���� �

Fig. 1. Distribution of the weighting functions αi(x1) in (27)

presented. First, a comparison of phase portraits of the

approximate model (27) and the original model is shown

in Figure 2. Both simulations are carried out under the same

initial conditions and with the same input signal u(t) =
4.5 · sin(2πf t) with f = 0.05 Hz for t ∈ [0, 20] s. Second,

-0.1

-0.05

0

0.05

0.1

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

x2

x1

Approximation
Original

Fig. 2. Comparison of the phase portraits of the approximate system (27)
and the original system (23) with common sinusoidal input

Figure 3 clearly presented that the Euclidean error norm

E(t) = ‖f(x,u) − fWA(x,u)‖2 (28)

is less than the predefined value ε = 0.25 relate to t ∈
[0, 20] s.

B. Mechanical Oscillators with a Nonlinear Spring and
Damper

We consider now the physical model of an oscillator

m ẍ + d(ẋ) + k(x) = F , x(t0) = 0 , ẋ(t0) = 0 (29)

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20

E
rr

or
 N

or
m

t / [s]

epsilon bound

RMS Error Norm (f = 0.05 Hz)
RMS Error Norm (f = 0.20 Hz)

Fig. 3. Calculated error norm ‖f(x, u)−fWA(x, u)‖2 for two sinusoidal
input signals u(t) = 4.5 · sin(2 πf t) with f = 0.05 Hz and f = 0.2 Hz

with a nonlinear spring (21) and as an extension to the

previous case with a nonlinear damper. The behavior of the

damper is described by

d(ẋ) = d0 ẋ + sgn(ẋ) d1

√
|ẋ| (30)

=
{

d0 ẋ − d1

√|ẋ| if ẋ < 0
d0 ẋ + d1

√
ẋ else

.

We assume, first, that the parameters in (21), (29) and (30)

are given with

d0 = 0.5 (N/m/s) , d1 = 0.8 (N/(m/s)1/2)

c0 = 20 (N/m) , c1 = 215 (N/m3) , m = 2 (kg) .

and second, that the working space is bounded

|F (t)| ≤ Fmax = 3.5 (N) , |x(t)| ≤ xmax = 0.19 (m) ,

|ẋ(t)| ≤ ẋmax = 0.3 (m/s) .
(31)

Using the same state-, input- and output-variables as in the

previous case (29) can be written in the form

[
ẋ1

ẋ2

]
=

[
0 1 0

− c0
m −d0

m
1
m

]
︸ ︷︷ ︸

F

⎡
⎣ x1

x2

u

⎤
⎦

︸ ︷︷ ︸
ψL

+
[

0
− c1

m x3
1 − d1

m sgn(x2)
√|x2|

]
︸ ︷︷ ︸

fnl(ψN )

(32)

with ψN = [x1 x2 ]T .

The goal here is to find a TS fuzzy system (1) as an
approximator of (32) with an ε-accuracy for a given ε = 0.2.
Then it suffices to construct a TS fuzzy system using (19)

with

Nr = ceil

(
0.38

2
√

2 · 0.2
√

λH · 2
√

2
)

·ceil

(
0.6

2
√

2 · 0.2
√

λH · 2
√

2
)
(33)
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local models where β1 = 2 · xmax = 0.38 and β2 =
2 · ẋmax = 0.6 (size of the operating region of the nonlinear

part), because the order of the nonlinear part in (32) is

nN = 2. So, the Hessian matrices from the term fnl =
[ fnl1 fnl2 ]T are calculated as in the previous case:

Hij =

⎡
⎣ ∂2fj

∂x2
1

∂2fj

∂x2 ∂x1

∂2fj

∂x1 ∂x2

∂2fj

∂x2
2

⎤
⎦

for j = 1, 2 it follows that Hi1 = 02×2 and

Hi2 =
[ −6 c1

m x1i
0

0 d1
4 sgn(x2i

) |x2i
|− 3

2

]
.

Based on the fact that the displacement x and the velocity

ẋ of the mass are bounded (31) the maximal Eigenvalue is

λH = max

[
[0, 0] ; max

i

[
−6

c1

m
x1i

,
d1

4
sgn(x2i

) |x2i
|− 3

2

] ]
.

It follows that the number of local models can be obtain

using (33) with λH = 122.55, so

Nr = 6 · 9 = 54 .

We get now the TS fuzzy system of the nonlinear oscillator

(29)

ẋ =
54∑

i=1

αi(x1, x2)Ai x + B u +
54∑

i=1

αi(x1, x2) ai ,

y = C x ,
(34a)

where z = [x1 x2 ]T and where the not yet calculated Ai,

B and C are determined by the Jacobians (6a), (6b) and

(6c) (for detailed results see [6]). Last we have to deter-

mine the position and the shape of the weighting functions

αi(x1, x2) in (34a). Assuming that the state-space models

with {Ai,B,C,ai} are locally valid 54 triangular func-

tions are defined in the domain (x1, x2) ∈ [−0.19, 0.19] ×
[−0.3, 0.3].

IV. APPLICATION TO MODEL-BASED NONLINEAR STATE

FEEDBACK CONTROLLER

Last, we briefly describe the application of the previously

derived TS fuzzy systems (27) and (34a) in the framework of

model-based control design. Control laws for TS fuzzy sys-

tems are frequently put in the form called parallel distributed

compensation (PDC) [8]. A survey is given e.a. in [2]. For a

PDC synthesis, the control law is obtained according to the

fuzzy model (1) in the following way

ufb(z) =
Nr∑
i=1

αi(z)F i x (35)

with the same αi(z) as (1). We have got to be aware that the

weighted combination of local linear state-feedback gains F i

holds only for the linear part without the offset vectors ai

for i = 1, . . . , Nr. For the dynamic compensation of these

offsets a quasi feedforward part (it is not a feedforward in the

strict sense, since it depends also on z that may be consists

of measured states) can be determined by

uff (z) = − [
B(z)T B(z)

]−1
B(z)T

Nr∑
i=1

αi(z)ai , (36)

where
[
B(z)T B(z)

]−1
B(z)T is the peudo-inverse with

B(z) :=
Nr∑
j=1

αj(z)Bi. (37)

Therefore, the control law based on a superposition of both,

the feedforward part (36) and feedback part (35) with u(z) =
uff (z)+ufb(z) that represents a gain-scheduling controller

[4] where z is the scheduling-vector. It is assumed that the

states x and the states in z, see (25) for case study one and

z = [x1 x2 ]T for case study two, are available for control.

V. CONCLUSIONS

In this paper an approximate modeling approach of non-

linear systems using Takagi-Sugeno fuzzy models was pro-

posed.

It was shown that a estimated number of models calculated

by analytically derived relations is sufficient to construct a

TS fuzzy system with predefined accuracy. These relations

depend on the (predefined) upper bound of the error, the size

of the compact operating space and the estimation of the

largest nonlinearity of the original system. The nonlinearity

was measured by the maximum absolute Eigenvalue of the

Hessian matrices associated with the Taylor remainder. The

approximate modeling approach was applied to two different

models of 1-DOF nonlinear mechanical oscillators.

Finally, a feasible application of the above derived models

as a framework for fuzzy gain-scheduling control design was

briefly described.
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