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Abstract— Normalization is a crucial requirement for the
effectiveness of multivariable control system design within the
Characteristic Locus Method. Previous work addresses this
problem by solving an optimization problem formulated in
order to increase normality; its formulation, however, do not
consider the closed-loop system robustness with respect to per-
turbations at the plant input. In this paper a different approach
to the design of normalizing precompensators will be proposed.
It is based on the minimization of a cost function representing
the measure of misalignment between the output and input
principal directions of the precompensated system. The main
advantage of this approach is that, since normalization is
obtained via alignment, the sensitivity of the characteristic loci
to perturbations at both the plant input and output is reduced.

I. INTRODUCTION

The design of a multivariable control system within the
Characteristic Locus Method (CLM) [10] is carried out using
the eigenfunctions of the open-loop transfer matrix which,
according to the generalized Nyquist stability criterion [12],
define the stability of the closed-loop system. Its essence is
to construct a commutative controller, i.e., a controller with
the same eigenvector and dual-eigenvector matrices (frames)
as the plant and to manipulate the controller eigenfunctions
so as to achieve closed-loop stability and to satisfy the
usual performance requirements. This poses two serious
problems: (i) except in special cases, the eigenvector and
dual-eigenvector matrices of the plant are irrational; (ii) for
plants whose frequency responses are far from normal at a
certain frequency band, the characteristic loci of the open-
loop system are very sensitive to perturbations at the plant
input and output at these frequencies [5], [15], [16].

Problem (i) can be circumvented by using, as the con-
troller frame, some approximation of the plant frame [1], [4],
[9], [11], or using the parameterization presented in [14] of
all proper and rational controllers that exactly commute with
the plant and stabilize the closed-loop system.

To overcome problem (ii), it is proposed the design of
the so called reversed-frame-normalizing-controllers (RFNC)
[2], [8]. Although the design of RFNC improves the closed-
loop system robustness with respect to perturbations at the
plant input and output, it is based on the quasi-Nyquist
loci of the plant, which cannot replace the characteristic
loci as an analysis tool for general systems. Therefore, a
more interesting synthesis method should be based on the
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Fig. 1. Closed-loop feedback control system

CLM, being composed of two stages: (i) first, precompensate
the plant in order to approximately normalize it in the
necessary frequency range and then, (ii) apply the CLM to
the precompensated system.

A precompensation scheme with the view to making the
precompensated plant as normal as possible has recently
been presented [3], where it was proposed a normalizing
precompensator with maximum singular value less than or
equal to one at almost all frequencies in order to avoid the
amplification of the radii of the characteristic locus band. The
main drawbacks of this normalization technique are: (i) the
phases of the entries of the rational precompensator (the one
which will be actually implemented) are obtained without
concerning with possible degradation of the optimization
cost and, (ii) in the formulation of the problem, it is not
considered the characteristic locus sensitivity with respect to
perturbations at the plant input.

In this paper, a new precompensation method to normalize
a plant and, at the same time, to reduce the sensitivity
of the characteristic loci with respect to perturbations at
the plant input and output, when an exact commutative
controller is considered, is presented. The key to this new
formulation is the search of a precompensator that reduces
the misalignment between the output and input principal
directions of the precompensated plant, leading, therefore,
to an approximately normal precompensated system.

II. MAIN CONCEPTS

Let G(s) and K(s) be the m×m transfer matrices of the
plant and controller, respectively. According to the gener-
alized Nyquist stability criterion, the feedback system of
Fig. 1 will be stable if and only if the net sum of anti-
clockwise encirclements of the critical point −1+ j0, by the
characteristic loci of G(s)K(s), equals the number of unstable
poles of G(s) and K(s).

In order to be able to use the generalized Nyquist sta-
bility criterion as a design tool, a controller K(s) such that
G(s)K(s) = K(s)G(s) is sought. This condition is satisfied
providing G(s) and K(s) share the same eigenvector and
dual eigenvector frames and, therefore, the eigenvalues of the
product G(s)K(s) are equal to the product of the eigenvalues
of G(s) and K(s).
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Besides the unavoidable problem of irrational eigenvector
matrices, the CLM may also suffer from sensitivity problem
when the plant transfer matrix is far from normal1 [5].
This means that when the plant is far from normal at a
certain frequency band, it is necessary to design a prec-
ompensator Kp(s) in order to normalize the precompensated
plant G( jω)Kp( jω). Once G( jω)Kp( jω) is approximately
normal at the necessary frequency range, then a commutative
controller Kc(s) can be designed effectively via the CLM.
Therefore, the design of a normalizing precompensator must
be the first stage of the design of multivariable control
systems within the CLM [3].

The importance of normality for the sensitivity of the
characteristic loci is presented in [5] and [15]. Supposing
a stable matrix perturbation I + MG(s), at any point in the
configuration of Fig. 1, it is shown in [5] that the closed-
loop system remains stable if the maximum singular value
of MG( jω) multiplied by the maximum singular value of
[I + T ( jω)−1]−1 is less than 1, for all frequencies, where
T (s) is the return ratio matrix for the point where the loop
was broken. The consequence of this fact is that [15] the
characteristic loci are least sensitive to perturbations at the
plant output and input, if the return ratio matrices for those
points, namely G(s)K(s) and K(s)G(s), respectively, are both
normal at the necessary frequency range.

Notice that if G( jω) is normal for all frequencies and if
K(s) is an exact commutative controller, then G( jω)K( jω)
and K( jω)G( jω) are normal. However, if G( jω) is not
normal at a certain frequency band, and a normalizing
precompensator Kp(s) is designed, then it is necessary to
design a controller Kc(s) which commutes with G(s)Kp(s),
and thus the controller to be implemented

K(s) = Kp(s)Kc(s) (1)

does not necessarily lead to robustness with respect to
small perturbations at the plant input. To overcome this
problem, the design of a precompensator Kp(s) that makes
both Kp( jω)Kc( jω)G( jω) and G( jω)Kp( jω)Kc( jω) ap-
proximately normal is proposed in this paper.

III. A NORMALIZING PRECOMPENSATOR

A. Problem formulation

A direct approach to the problem of designing a normal-
izing precompensator for a plant has been presented in [3],
where a precompensator K̄p(s) has been designed to make
the transfer matrix G(s)K̄p(s) approximately normal in the
necessary frequency range. The measure of the deviation
from normality of a complex matrix G, used in [3], has been
defined as:

δ (G) =
‖G�G−GG�‖2

F

‖G�G‖2
F

, (2)

where ‖.‖F denotes the Frobenius norm, which, for a matrix
E ∈ Cm×m is defined as:

‖E‖2
F = tr(E�E), (3)

1A matrix G ∈ Cm×m is normal if it commutes with its conjugate
transpose, G�, i.e. GG� = G�G.

where tr(.) denotes the trace of a matrix. The ideal frequency
response of the precompensator (K̄p(s)), here denoted as
Kp( jωk), has been obtained, by solving, for a finite number
of frequencies ωk, k = 1, . . . ,n, the optimization problem
minδ [G( jωk)Kp( jωk)], subject to constraints on the pre-
compensator structure and on the modulus of its entries.
In the sequel, rational and stable transfer functions have
been obtained for the elements of K̄p(s) with the view to
approximating the frequency response of its elements to
those obtained for Kp( jωk). The structure for Kp( jωk) used
in [3] is of a permuted diagonal matrix with constraints on
the modulus of its entries to guarantee that the maximum
singular value of the precompensator be less than or equal
to 1.

One of the main drawbacks of this precompensation
method is that the sensitivity of the characteristic loci to
perturbations at the plant input, when K(s) = Kp(s)Kc(s),
has not been considered. Indeed, if G( jω)Kp( jω) is normal
at a certain frequency ω = ω0, then G( jω0)K( jω0) is nor-
mal, but K( jω0)G( jω0) is not necessarily normal and the
characteristic loci can be very sensitive to perturbations at
the plant input.

With the view to considering the normalization of both
G( jω)K( jω) and K( jω)G( jω) it was introduced in [8] the
so called reversed-frame-normalizing-controllers (RFNC),
whose theoretical justification is given below.

Lemma 1: Suppose G and K ∈ Cm×m are both of rank m
and let

G = YΣU� (4)

be a singular value decomposition of G, where Σ =
diag{σi, i = 1, . . . ,m}. Then GK and KG are both normal
if and only if

K = UΓKY � (5)

for some nonsingular diagonal matrix ΓK ∈ C
m×m.

Proof: See [8]. �
According to lemma 1, the characteristic loci are at their

least sensitive to small perturbations at the plant input and
output if and only if the singular vector frames of K(s)
are those of G(s) taken in reversed order. However, in this
paper, the controller is defined by Eq. (1), which implies that
Kp(s) must have a specific structure so that G( jω)K( jω) and
K( jω)G( jω) be both normal at the frequencies of interest.

Theorem 1: Suppose G and K ∈Cm×m are both of rank m
and let the singular value decomposition of G be given by Eq.
(4). In addition let K = KpKc, where Kc ∈ Cm×m commutes
exactly with GKp. Then, GK and KG are both normal
matrices if and only if Kp = UΦY �, for some nonsingular
diagonal matrix Φ.

Proof: (⇒) If GK and KG are normal, then, according to
lemma 1,

K = KpKc = UΓKY �. (6)

Therefore, from Eqs. (4) and (5), GK = YΣU�UΓKY � =
Y ΣΓKY �, which is a spectral decomposition for GK. Suppos-
ing that Kc is an exact commutative controller, then GK and
Kc share the same eigenvector matrices, which means that a
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spectral decomposition of Kc can be written as Kc = YΛcY �,
where Λc is a diagonal matrix, and thus, Eq. (6) becomes

KpYΛcY
� = UΓKY � ⇔ Kp = UΓKΛ−1

c Y �. (7)

Therefore, defining Φ = ΓKΛ−1
c , yields the result.

(⇐) The proof is straightforward and will be omitted. �
Theorem 1 shows that the least sensitivity of the char-

acteristic loci with respect to perturbations at the plant
input and output, at a given frequency ω0, is achieved
when the normalizing precompensator Kp( jω0) is such that
the matrix U( jω0)�Kp( jω0)Y ( jω0) is diagonal. However,
since normal matrices are a relatively small set compared
to approximately normal matrices, then instead of trying to
achieve the exact normality of the precompensated plant, it is
more realistic to find ways to approximately normalize both
return ratio matrices, G( jω)K( jω) and K( jω)G( jω), with
a precompensator Kp( jω), at the frequencies of interest. To
do so, the following result is needed.

Lemma 2: Let G ∈ Cm×m. Then G is normal if and only
if G has a complete orthonormal set of eigenvectors.

Proof: See [7]. �
Lemma 2 suggests a way of measuring how close to normal
a given matrix G is [8], [3], namely G is approximately
normal if the condition number of its eigenvector matrix is
approximately equal to one.

In this paper, it will be shown that with the precompensator
structure given by

Kp( jω) = α( jω)Ku( jω), (8)

where α( jω)∈C and Ku( jω) is a unitary matrix, it is possi-
ble to achieve the same degree of normality for G( jω)K( jω)
and K( jω)G( jω), in the sense that the condition number of
their eigenvector matrices are equal, as shown in the sequel.

Lemma 3: Let G ∈Cm×m have the singular value decom-
position given by Eq. (4), and define the complex matrix

M = U�KpY. (9)

Then, GKp is normal if and only if ΣM is normal.
Proof: The proof is straightforward and will be omitted.
Theorem 2: Let K and Kp be given by Eqs. (1) and

(8) for a given frequency, respectively, and assume that
Kc commutes exactly with GKp. If GKp is approximately
normal, in the sense that its eigenvector matrix has condition
number approximately equal to one, then GK and KG are
also approximately normal.

Proof: Suppose that ΣM has the following spectral de-
composition:

ΣM = WΣMΛΣMVΣM, (10)

where ΛΣM is a diagonal matrix, WΣM is the eigenvector
matrix of ΣM and VΣM = W−1

ΣM . Then, GKp can be written
as:

GKp = YWΣMΛΣMVΣMY �, (11)

and since Y is a unitary matrix, the condition number of its
eigenvector matrix is equal to the condition number of the
eigenvector matrix of ΣM, i.e., C [YWΣM] = C [WΣM], where
C [.] denotes condition number. Therefore, it suffices to prove

that the condition numbers of the eigenvector matrices of GK
and KG are both equal to C [WΣM].

Since Kc commutes exactly with GKp, it has the same
eigenvector matrix as GKp and thus:

Kc = YWΣMΛcVΣMY �. (12)

Thus a spectral decomposition for GK can be given as:
GK = YWΣMΛΣMΛcVΣMY �. (13)

To show that KG is also approximately normal when GKp

is approximately normal, notice, initially that since Kp =
αKu, where Ku is a unitary matrix, then

M = U�KpY = αU�KuY = αMu, (14)

where Mu =U�KuY is a unitary matrix. Therefore, using Eqs.
(9), (12) and (4), one obtains

KG = UMWΣMΛcVΣMΣU�. (15)

According to (10), VΣMΣM = ΛΣMVΣM and thus:

VΣMΣ = ΛΣMVΣMM−1. (16)

Substituting Eq. (16) in Eq. (15) and making M = αMu,
yields:

KG = UMuWΣMΛcΛΣMVΣMM�
uU�. (17)

From Eqs. (13) and (17) it can be easily seen that the
condition numbers of the eigenvector matrices of GK and
KG are both equal to C [WΣM]. �

Theorem 2 shows that with the precompensator struc-
ture given by Eq. (8) it is possible to approximately nor-
malize G( jω)K( jω) and K( jω)G( jω), simply by seeking
a precompensator Kp( jω) that approximately normalizes
G( jω)Kp( jω) at a given frequency ω . Thus, in this paper,
Kp( jω) will have the structure given by Eq. (8).

Remark 1: Notice that if G( jω)Kp( jω) is approximately
normal, for Kp( jω) = α( jω)Ku( jω), then G( jω)Ku( jω)
is also approximately normal and vice-versa. Therefore,
although the complex number α( jω) may not be equal to
one, for simplicity, in the rest of this section it will be
assumed that Kp( jω) = Ku( jω). As it will be seen in the
next section, the choice of α( jω) plays a key role in the
approximation of the desired frequency response of Kp( jω)
by a rational and stable transfer matrix. �

Supposing that Kp( jω) = Ku( jω) then, according to the-
orem 1, the normality of G( jω)K( jω) and K( jω)G( jω) is
achieved if and only if U( jω)�Ku( jω)Y ( jω) is diagonal.
Moreover, it can be proven that the approximate normality
of G( jω)Ku( jω) is related to an approximate diagonal form
of U( jω)�Ku( jω)Y ( jω). In order to show this, it is first
necessary to introduce the concept of an aligned matrix, as
follows.

Definition 1: Let G be a complex matrix. If all possible
singular value decompositions of G = YΣU�, are such that
Y , U are aligned, i.e.

U�Y = e jΘ (18)

where Θ = diag{θi, i = 1, . . . ,m}, then, G is said to be
aligned. �
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Definition 1 leads to the following result.
Lemma 4: Let G be a complex matrix with distinct

singular values. Then, G is aligned if and only if G is normal.
Proof: See [8]. �
From lemma 4, it is possible to state the following

theorem.
Theorem 3: Let Ku be a unitary matrix and let G =YΣU�

be a singular value decomposition of G, where all singular
values are distinct. Then, the product GKu is normal, if and
only if there exists Θ = diag{θ1, . . . ,θm}, such that

U�KuY = e jΘ. (19)
Proof: Let the product GKu be a normal matrix. Then

GKu = Y ΣU�Ku and, since by assumption Ku is a unitary
matrix, U�Ku is also a unitary matrix. Therefore GKu =
Y ΣŪ�, where Ū� = U�Ku, may be seen as a singular value
decomposition of GKu. According to lemma 4, since the
matrix GKu is normal and since G has distinct singular
values, it is also aligned. Thus, Ū�Y = e jΘ, namely, U�KuY =
e jΘ.

The converse can be easily proved by noticing that if
equality U�KuY = e jΘ is satisfied then GKu is normal. �

Theorem 3 shows that, when all singular values of G( jω)
are distinct at a given frequency, the diagonal form of
U( jω)�Ku( jω)Y ( jω) is also a necessary and sufficient con-
dition for G( jω)Ku( jω) to be normal, i.e., G( jω)Ku( jω) is
normal if and only if it is aligned. Therefore, if Ku( jω) =
U( jω)e jΘY ( jω)� for any diagonal matrix Θ, the static
precompensator Kp( jω) = α( jω)Ku( jω), normalizes the
plant. However, this precompensator cannot be, in general,
approximated at the necessary frequency range by a dynamic
precompensator K̄p(s), with all entries being chosen as stable
and proper rational transfer functions as is done in [3].
This suggests that the search of an exact alignment between
Ku( jω)�U( jω) and Y ( jω) should be replaced by the search
of a unitary matrix Ku( jω) that makes Ku( jω)�U( jω) and
Y ( jω) approximately aligned. Therefore, it is necessary to
define a measure of the deviation of G( jω) from alignment.
From Eq. (18) a natural definition of a measure of deviation
from alignment is as follows2:

m(G) = min
Θ

‖U�Y − e jΘ‖2
F , (20)

where m(G)= 0 when G( jω) is aligned. The following result
shows that if G( jω) is approximately aligned, i.e. if m(G)→
0, then G( jω) is approximately normal, in the sense that
δ (G) → 0.

Theorem 4: According to the measures defined in Eqs.
(2) and (20) then, if m(G) → 0 then δ (G) → 0.

Proof: Let G = YΣU� be a singular value decomposition
of G. Therefore,

‖GG�−G�G‖F = ‖YΣU�UΣY �−UΣY�Y ΣU�‖F

≤ 2‖Σ2‖F‖U�Y − e jΘ‖F .

Dividing both sides of the inequality above by ‖G�G‖F

and using the fact that ‖Σ2‖F = ‖G�G‖F yields δ (G) ≤
2This measure of alignment is the same as that used in [8] with a different

norm.

4m(G), which completes the proof. �
Theorem 4 shows that if there exists a unitary matrix
Ku( jω) that makes G( jω)Ku( jω) approximately aligned,
then G( jω)Ku( jω) is also approximately normal. Therefore,
from theorems 1, 2, 3 and 4, the problem of designing a
precompensator that approximately normalizes a plant, at a
given frequency, can be formulated as follows:

Prob. 1: min
Ku

min
Θ

J(Ku,Θ), (21)

where
J(Ku,Θ) = ‖U�KuY − e jΘ‖2

F , (22)

subject to Ku be a unitary matrix and each entry of the main
diagonal of Θ, θi ∈ (0 , 2π ], for i = 1, . . . ,m.

B. Solution of the optimization problem

Using the definition of Frobenius norm and after some
straightforward manipulation, Eq. (22) can be written as:

J(Ku,Θ) = 2m−2Re{tr(U�KuYe− jΘ)}. (23)

Defining the unitary matrices T = U�KuY and H =
U�KuYe− jΘ and denoting each element of H by hi j, then
Eq. (23) can be re-written as:

J(Ku,Θ) = 2m−2 [Re(h11)+Re(h22)+ . . .+Re(hmm)] . (24)

From Eq. (23), it can be easily seen that each element e− jθi

of the main diagonal of e− jΘ multiplies the i-th column
of T . Denoting each element of T by ti j, then Θ that
minimizes the cost function J(Ku,Θ) given by Eq. (24) is
such that each complex number hii = tiie− jθi must be real
and positive. Thus, defining tii = |tii|e jαi , then the optimum
θi, i = 1,2, . . . ,m will be given by θi = αi + 2κπ , where
κ ∈ Z. Therefore, the minimum value for J(Ku,Θ) depends
only on Ku and is given by:

Jmin(Ku) = 2m−2 [|t11|+ |t22|+ . . .+ |tmm|] . (25)

Consequently, according to Eq. (25), the optimization prob-
lem 1, is equivalent to:

Prob. 2: max
Ku

Jmax(Ku). (26)

where

Jmax(Ku) =
m

∑
i=1

|tii|. (27)

Notice, according to Eq. (27) and the definition of T ,
that the precompensator Ku that solves problem 2 makes the
unitary matrix T as diagonally dominant as possible. In this
paper, the structure adopted for Ku will be of a permuted
diagonal matrix as done in [3] and will be given as:

Ku = PlKd , (28)

where Pl (l = 1, . . . ,m!) is a matrix formed with all possible
permutation of the columns of the identity matrix (permu-
tation matrix) and Kd is a diagonal matrix where its main
diagonal entries are equal to 1 or −1 to guarantee that Ku

is unitary; notice that, since multiplication by −1 does not
change the unitary nature of a matrix, it is possible to form
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2m−1 matrices Kd . This choice of Ku is motivated by the fact
that precompensation using permutation matrices is usual
in the design of multivariable controllers via Nyquist Array
Methods [13], [6] in the attainment of diagonal dominance.
The use of other structures for Ku will be the subject of
future research.

C. Precompensator implementation

Once Ku( jω) has been computed for each frequency ω in
the necessary frequency range, then the next step is the de-
sign of a dynamic normalizing precompensator K̄p(s). Notice
that Ku( jω) is real and unitary, while K̄p(s) must have as
entries only rational and stable transfer functions. This shows
the need for adding phase and modulus to each nonzero entry
of Ku( jω). Notice, however, that the static precompensator
Kp has been made equal to Ku only for simplicity (remark 1),
being actually equal to Kp( jω) = α( jω)Ku( jω). Therefore,
choosing appropriately the values of α( jω), it is possible
to add the same phase and modulus to each nonzero entry
of Ku( jω) with the view to approximating them to the
frequency response of a rational and stable transfer function.
In practice, however, it is not necessary to choose α( jω)
in order to compute the entries of K̄p(s). Notice that this
can be done by choosing, for a certain frequency band, the
same transfer functions for the entries of K̄p(s) associated
with the nonzero entries of Ku( jω) at this frequency band,
such that their moduli approximately match the moduli of
the nonzero entries of Ku( jω). This procedure leads to a
dynamic precompensator K̄p(s) that approximately aligns the
precompensated plant G( jω)K̄p( jω) providing that Ku( jω)
also aligns G( jω)Ku( jω). An exception is made at the
vicinity of the frequencies where the frequency response
moduli of Ku jump from 1 to 0 or from 0 to 1, since at these
frequencies the moduli of the entries of K̄p( jω) are different
from those of Ku( jω). This problem can be overcome by
increasing the order of the pole or zero associated with the
frequency where the jump occurs; although at the expenses
of an increase in the order of the precompensator. In this
paper, with the view to making the precompensated system
with the lowest possible order, only approximations by
lead/lag transfer functions will be used to obtain the rational
precompensator K̄p(s).

The procedure to obtain the normalizing precompensator
can be summarized in the following algorithm.

Algorithm 1:
1) Form the 2m−1 diagonal matrices Kd of dimension m

with either 1 or −1 in its main diagonal.
2) Select a finite number of frequencies ωk, k = 1,2, . . . ,n

and set l = 1 and k = 1.
3) If l = 1, choose a permutation matrix Pl . If l > 1

form a different permutation matrix Pl from the other
permutation matrices already formed.

4) Using Pl defined in step 3, compute, for each one
of the 2m−1 matrices Kd , defined in step 1, T =
U�PlKdY and the cost function Jmax(Pl,Kd) = ∑m

i=1 |tii|.
Find Jmax(l) = maxKd Jmax(Pl,Kd) and the matrix Kmax

d
which leads to Jmax(l).

5) Make l = l + 1 and repeat steps 3 and 4 until l = m!.
6) Among all l values of Jmax(l), computed in step 4,

choose Jmax = maxl Jmax(l) and select the matrices
Kopt

d and Popt
l which leads to Jmax. Form Ku( jωk) =

Popt
l Kopt

d .
7) Set k = k +1 and l = 1 and go back to step 3. Repeat

steps 3 to 7 until k = n.
8) Find rational and stable transfer functions for each en-

try of K̄p(s), such that the magnitude of the frequency
response of its entries approximately match those of
Ku( jωk), for k = 1, . . . ,n. �

IV. EXAMPLE
Let the transfer function matrix of the linearized model of

the vertical plane dynamics of an aircraft be given by [13]:

G(s) =
1

d(s)
N(s), (29)

where N(s) = [ni j(s)], i, j = 1,2,3, and d(s) are given as:

n11(s) = −1.5750s3 −1.1190s2 +1.5409s−0.0816
n12(s) = 0.2909s2 +0.2527s+0.3712
n13(s) = 0.0732s3 −0.0646s2 −1.2125s−0.0204
n21(s) = −0.12s4 −0.0739s3 −0.5319s2 −0.2458s
n22(s) = s4 +1.5415s3 +1.6537s2

n23(s) = −0.0052s3 +0.1570s2 +0.1828s
n31(s) = 4.419s3 +1.6674s2 +0.1339s
n32(s) = 0.0485s2 +0.3279s
n33(s) = −1.6650s3 −1.1574s2 −0.0918s

d(s) = s5 +1.5953s4 +1.7572s3 +0.1112s2 +0.0561s.

In order to use the CLM to design a commutative controller
for G(s), it is first necessary to verify if G(s) is close to
normal in the necessary frequency range. This can be done by
computing the measure of normality, defined in Eq. (2), and
the condition number of the eigenvector matrix of G. It can
be seen from Figs. 2 (a) and (b) (dashed lines) that G( jω) is
far from normal at low and high frequencies. It is important
also to note that at very high frequencies G becomes normal,
which occurs because G( jω) → O when ω → ∞. Moreover,
in Fig. 2 (c) (dashed-line) it can also be seen that G( jω) is
far from aligned at all frequencies. Therefore, it is necessary
to design a normalizing precompensator for G(s).

The precompensator design is carried out in accordance
with algorithm 1. Since m = 3 (the dimension of G(s)), the
first step is to form 2m−1 = 4 diagonal matrices Kd with 1
and −1 in its main diagonal. In the sequel, it is necessary
to form l = m! = 6 permutation matrices Pl; thus steps 3
and 4 of algorithm 1 will be repeated 6 times for each
matrix Kd obtained in step 1. The next step is to obtain Kopt

d
and Popt

l for each frequency point in the frequency range,
leading to the desired unitary matrix Ku( jω). Fig. 3 (x-
marked lines) shows the magnitude of each entry of Ku( jω).
Notice that, for such a Ku( jω) the precompensated plant
GKu is approximately aligned for almost all frequencies as
can be seen from Fig. 2 (c) (dash-dotted line). This implies,
according to theorem 4, that GKu is also approximately
normal at the same frequencies as can be seen from Figs. 2
(a) and (b) (dash-dotted line). It is also important to remark
that the condition number of the eigenvector matrix of GKu
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Fig. 2. (a) Measures of normality: δ (G) (dashed line), δ (GKu) (dash-dotted
line) and δ (GK̄p) (solid line); (b) Condition numbers of the eigenvector
matrices of G( jω) (dashed line), G( jω)Ku( jω) (dash-dotted line) and
G( jω)K̄p( jω) (solid line); and (c) Measures of alignment: m(G) (dashed
line), m(GKu) (dash-dotted line) and m(GK̄p) (solid line).

is for most of the frequency range smaller than 1.3, which
represents a significant improvement on the normality of G.
Similar conclusions could be drawn from the analysis of
δ (GKu) according to Fig. 2 (a) (dash-dotted line).

The final step in the design (step 8) is to find stable transfer
functions for each entry of K̄p(s), such that the frequency
response magnitude of its entries approximately match the
nonzero entries of Ku shown in Fig. 3 (x-marked lines) for
each frequency. Notice that, in this example, the entries of
K̄p(s) can be chosen to be first order transfer functions,
such that the entries of K̄p( jω) approximately match the
nonzero entries of Ku at low frequencies, and vanish at high
frequencies, and another transfer function that approximately
match the nonzero entries of Ku at high frequencies, and
vanishes at low frequencies. A dynamic precompensator that
satisfies these requirements is given by:

K̄p(s) =

⎡
⎢⎢⎣

0 0.1
s+0.1

s
s+5

0.1
s+0.1

s
s+5 0

s
s+5 0 0.1

s+0.1

⎤
⎥⎥⎦ . (30)

Notice that there is a close agreement between the magni-
tudes of each entry of K̄p( jω) and Ku( jω), which leads to a
K̄p( jω) approximately unitary at low and high frequencies.

Fig. 2 (c) shows that GK̄p is also approximately aligned
at almost all frequencies (solid line) and therefore GK̄p is,
as expected, approximately normal at these frequencies; the
same conclusion can be drawn from Figs. 2 (a) and (b).
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Fig. 3. Magnitude for the optimum Ku( jω) (x-marked line) and for the
rational approximation K̄p( jω) (solid line).

It is also important to remark that, except at intermediate
frequencies (at the vicinity of the frequency where there are
jumps in the elements of Ku), the measures of normality and
misalignment of G( jω)K̄p( jω) are very close to the desired
one.
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