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Abstract— In this paper we consider various structural as-
pects of estimation and control over relative sensing networks.
We first expand on our earlier characterization of equivalent
sensing and control topologies that incorporates the presence
of measurement noise. Next, we consider the interplay be-
tween system minimality, network observability, and estimation
problems. We conclude our presentation by pointing out a
reciprocity between the relative sensing geometry on one hand,
and the control structure for distributed dynamic systems on the
other. Simulations and examples are incorporated throughout
the paper to further complement the theoretical analysis.

Index Terms— Relative sensing networks, algebraic graph
theory, estimation over networks, networked dynamic systems

I. INTRODUCTION

Our goal in this work is to gain a deeper understanding of
how the geometry of an underlying relative sensing network
(RSN) influences the observability, state estimation, and the
control system structure for a networked dynamic system.
The control configuration of interest is shown in Fig. 1 where
the signal z captures the coordination state among multiple
dynamic systems; signals x, w, y, and u, denote respectively,
the system state- comprised of states of the individual
dynamic elements- the exogenous signal, the information
vector available to the controller (sensed or communicated),
and finally, the control input. As the control objective is
the coordination of relative states among dynamic units,
it is assumed that z(t) in Fig. 1 consists of components
that are functions of vector differences xi(t) − xj(t) (i �=
j). Likewise, it is natural to assume that the information
available to the controller, y(t), consists of a subset of these
relative states. We refer to such a feedback system setup, and
the resulting host of control issues, as the problem of control
over RSNs. Such systems have recently been considered by
Smith and Hadaegh [14]; this reference has in fact motivated
our studies on RSNs in [13]. Other related works include [1],
[4], [9], [10], [16], and [17].

In the present work, we study the structural aspects of
estimation and control over RSNs to gain insight into the
problem of controlling a networked dynamic system. In this
direction, we first expand on our earlier characterization of
equivalent sensing and control topologies that incorporates
the presence of measurement noise in §II-III. Along the way,
we point out a direct ramification of such characterizations
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Fig. 1. The RSN feedback configuration

for robustness analysis of uncertain RSNs in §II-A. In §IV,
we consider the interplay between dynamic system mini-
mality, network observability, and estimation algorithms. We
conclude the paper by pointing out a reciprocity between
the geometry of the underlying RSN on one hand, and the
control structure of the networked system, on the other.
Simulations and examples are incorporated throughout the
paper to further complement the theoretical analysis.

We start the presentation with notation and a short discus-
sion on preliminaries.

A. Notation and preliminaries

A graph G = (V,E) consists of a vertex set V (G) and
an edge set E(G), whose elements (i.e., edges) connect
pairs of vertices, making them adjacent to each other. The
graphs considered in this paper are simple- multiple edges
connecting a pair of vertices and those starting and ending
at the same vertex (i.e., loops) are not allowed. Directed
graphs consist of oriented edges with “tails” and “heads.” A
complete graph on n vertices contains all potential n(n−1)/2
edges- with or without tails and heads. We denote by Gj/i

the graph obtained by removing the edges of Gi from Gj

when V (Gi) ⊆ V (Gj) and E(Gi) ⊆ E(Gj). In a connected
graph every vertex is reachable from every other vertex
by moving along its edges- for the directed case we will
allow traversing an edge in any direction along the way (i.e.,
weak connectivity). A minimally connected graph such that
removing any edge results in a disconnected graph is called a
tree. A spanning tree of G is a tree on V (G). Since a tree is
minimally connected, it cannot contain a cycle- a subgraph
where every vertex has exactly two adjacent vertices. In this
paper, we use the terms “sensing network” and “information
graph” synonymously to correspond to simple, directed, and
connected graphs.

Our distributed system consists of dynamic units indexed
as {1, 2, . . . , n}; this set will be denoted by [n]. We write
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Fig. 2. (a) An example of an information graph on four nodes, (b) Cut
V1 on a four noded network

|S| for the cardinality of set S. Thus | [n] | = n. The matrix
Ip denotes the p×p identity matrix; 1 is the vector of size n
with all entries equal to one, span {x} refers to the subspace
spanned by the vector x, and Diag {x} is the diagonal matrix
whose diagonal entries orderly correspond to the entries of
x. The Kronecker product of two matrices A and B will be
denoted by A ⊗ B [7]; f ◦ g refers to the the composition
of two mappings f and g. Lastly, R(A) and N (A) are,
respectively, the range and the null spaces of the matrix A.

B. The linear algebra of graphs

For the information graph G, the incidence matrix D(G)
is defined as the |V (G)| × |E(G)| matrix in the following
way: [D(G)]k l = 1 if vk is the head of el, [D(G)]k l = −1
if vk is the tail of el, and [D(G)]k l = 0 if edge el is not
incident on vertex vk . Thus for the graph of Fig. 2(a),

D(G) =

⎛⎜⎜⎝
e1,2 e1,3 e1,4 e2,3 e2,4 e3,4

v1 −1 −1 −1 0 0 0
v2 1 0 0 −1 −1 0
v3 0 1 0 1 0 −1
v4 0 0 1 0 1 1

⎞⎟⎟⎠.

Given the graph G consider a partition of V (G) into two
non-empty subsets X and Y . We refer to the set of edges
with one end in X and the other in Y as a cut; X and
Y are then called the shores of the cut. If we assign one
shore as positive and the other as negative, then we have an
oriented cut. The set of all such cuts constitute the cut space
T (G)- which for a graph on n vertices having c connected
components- has dimension n − c. For a cut one can define
a vector z ∈ R|EG|, referred to as its signed characteristic
vector, where each component is defined in the following
way: ze = 0 if the edge e is not in the cut, ze = 1
if the head of e lies in the positive shore, and ze = −1
if the head of e lies in the negative shore. Consider the
cut Vi associated with a vertex vi such that the partition
(X,Y ) consists of the singleton vi ∈ X on the positive
shore, and on the negative shore Y , lie vertices vj (j �= i).
Then the characteristic signed vector associated with Vi is
precisely the i-th row of the incidence matrix D(G); see
Fig. 2(b). In fact, the cut space can now be characterized
by R(D(G)T ). Analogously, define the subspace orthogonal
to T (G) as the cycle space C(G). Graphical construction of
C(G) is also possible: first define an oriented cycle as a cycle
with a particular cyclic direction; next construct a signed
characteristic vector w ∈ R|EG| associated with this cycle
such that each component of w is an element of {−1, 0, 1},
depending on the orientation of the edge with respect to the

chosen cyclic direction. Linear algebraically though one can
invoke the fundamental theorem of linear algebra to realize
that

T (G) := R(D(G)T ), C(G) := N (D(G)),
T (G)⊥ = C(G), and C(G)⊥ = T (G).

Moreover, C(G)⊕T (G) = R|EG|. Note that for a connected
graph, the rank of the incidence matrix is |V (G)| − 1 which
is also the dimension of T (G). Similarly, the dimension of
C(G) is |E(G)| − (|V (G)| − 1).

C. Problem setup

We consider distributed dynamic systems of the form

Σ : ẋ(t) = f(x(t), u(t), w(t)) (1)

y(t) = Cx(t) + w(t) (2)

z(t) = h(x(t), u(t), w(t)), (3)

where x = [xT
1 , xT

2 , . . . , xT
n ]T with xi ∈ Rp, represents

the state of the system, y is the information vector available
to the controller over an RSN; see Fig. 1 and the related
paragraph on the feedback setup in §I. The noise-free y(t)
in (2) (when w = 0) is assumed to have components of the
form

xij(t) := xj(t) − xi(t),

for some distinct i, j ∈ [n]. This information geometry can
naturally be represented in terms of a directed graph G. For
example Fig. 2(a) corresponds to the situation where

y(t) = [x12(t)T x13(t)T x14(t)T x23(t)T x24(t)T x34(t)T ]T .

The incident matrix provides a convenient way to represent
the information geometry as

yG(t) = (D(G)T ⊗ Ip)x(t) (4)

with G being the underlying information graph available to
each node of the networked system Σ. Occasionally, in order
to simplify the notation, we will use D(G) to denote both the
incidence matrix as well as its inflated version D(G) ⊗ Ip.

Now consider the scenario where a control law, Kd,
has been designed for a particular information geometry
represented by oriented graph Gd. Suppose however that the
actual relative states available to the controller is yj(t) :=
D(Gj)T x(t). As it was shown in [13], for a system without
measurement noise, there exists a linear transformation Tdj

such that for all t, yd(t) = Tdj yj(t). Equivalently one
can view these transformations as a mechanism for control
reconfiguration. Accordingly, the controller Kd constructed
to operate on information geometry Gd can be updated as
Kj = Kd ◦ Tdj , so that it can operate on the information
abstracted by the graph Gj [13]. The central idea in deriving
these transformations is the realization that the RSNs contain
algebraic redundancies; for example, for any i, j, k ∈ [n]
one has xik(t) + xkj(t)− xij(t) = 0. In the graph theoretic
framework, these redundancies correspond with the cycles of
the graph.
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In the present work, after postulating a framework for
constructing the above transformations, we characterize opti-
mal minimum variance transformations for noisy RSNs. Next
we look at the interplay between spanning trees, minimality,
and observability of the corresponding networked systems.
Lastly, we delineate upon a case where the structure of
the RSN guides the construction of local controllers for the
system (1)-(3).

II. T-TRANSFORMATIONS FOR NOISE-FREE RSNS

Our discussion on transformations that facilitate mapping
equivalent information geometries for RSNs, or alternatively,
characterize a mechanism for controller reconfiguration, re-
volve around three canonical cases. These cases include:
transformations from a connected graph to any of its sub-
graphs, from spanning trees to a connected graph, and
between two arbitrary connected graphs. Such mappings will
be collectively referred to as T -transformations.

First, consider the scenario where the desired sensing
graph, Gd, is a subgraph of the measured graph Gj . Given
that Gd has md edges and Gj has mj edges, the transfor-
mation Tdj is an md × mj matrix such that D(Gd)T =
TdjD(Gj)T . Consider the decomposition

Tdj = [ T̂dj | T̃dj ] ∈ Rmd×mj (5)

with T̂dj ∈ Rmd and T̃dj ∈ Rmd×mj−md and the corre-
sponding partitioning

D(Gj) = [D(Gd) |D(Gj/d) ];

hence T̂dj = I and T̃dj D(Gj/d)T = 0. The trivial solution
for T̃dj is the zero matrix while the general matrix solution
consists of rows that belong to the cycle space C(Gj/d).
When Gj/d is a tree the trivial solution is unique. The
second canonical case corresponds to the transformation
Tdj D(Gj)T = D(Gd)T , where Gj is a spanning tree and the
target graph Gd represents an arbitrary information network.
In this case, one can state the following result [13].

Proposition 2.1: Let Gj be a spanning tree. Then

Tdj =
{[

(D(Gj)T D(Gj))−1D(Gj)T
]
D(Gd)

}T
.

The last scenario corresponds to the transformation Tdj

such that D(Gd)T = Tdj D(Gj)T , where Gd and Gj are
arbitrary RSNs. There are at least two approaches to finding
this transformation: (a) transform the given graph Gj to a
spanning tree subgraph Gk, followed by the transformation
for second case above that converts this spanning tree to
desired graph, i.e., Tdj = Tdk Tkj , or (b) complete the
cycles of Gj to obtain a complete graph Gc then choose
an appropriate subgraph of Gc (re-orient edges if necessary)
that corresponds to Gd- then Tdj = Tdc Tcj . Yet another
MATLAB implementable transformation between arbitrary
RSNs is provided by the following procedure.

Proposition 2.2: For arbitrary RSNs Gj and Gd one has

Tdj =
{[

D̂(Gj)T (D̂(Gj)D̂(Gj)T )−1
]
D̂(Gd)

}T

, (6)
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Fig. 3. (a) Robustness analysis for the feedback control law designed for
RSN G1 when the actual RSN is G3, (b) Nominal control operating on
RSN G1 (left plot) and the difference between the resulting controls as
applied to RSN G1 and RSN G3 (right plot)

where D̂(Gj) and D̂(Gd) consist of any (n − 1) rows (or
cuts) of graphs Gj and Gd. As in the second case above,
if the initial RSN is a spanning tree, then the unique Tdj

is D̂(Gd)T (D̂(Gj)T )−1. However for an initial RSN with
cycles, such a transformation is not unique.

A. Robustness analysis for uncertain RSNs via T-
transformations

Consider the scenario where a stabilizing controller has
been designed for Σ (1)-(3), assuming the availability of
the RSN G1 in Fig. 3(a), while each node has in fact
the measurement graph G3 available to it. The control
objective is to drive the error between the desired and
actual states of the RSN G1 to the origin. Assume that
each node has double integrator dynamics and the rela-
tive states associated with G1 are: [ z1(t)T ż1(t)T ]T :=
[ (D(G1)T x(t))T (D(G1)T ẋ(t))T ]T . The transformation of
interest T13 : D(G3)T → D(G1)T , accounts for the dis-
crepancy between expected and available RSNs. In the case
when this transformation is not applied, however, the feed-
back configuration can become unstable; see Fig. 3(b). The
robustness of the designed control mechanism with respect
to variations in the underlying RSN can be addressed in the
robust control framework [3], [15]. For this purpose, assume
that the allowable variation of RSNs is among the class of
graphs consisting of spanning trees denoted by G. Denote by
Kd(s) the stabilizing linear control law designed for Gd ∈ G
for the system of relative states, żd(t) = Azd(t) + Bu(t)
and y(t) = zd(t); let Pd(s) be the corresponding input-
output transfer matrix from u to y. Furthermore assume that
Gj ∈ G is an unknown RSN available to each node. Setting
∆jd = Tjd−I with D(Gj)T = Tjd D(Gd)T , we realize that
the transfer matrix from u to y for this “perturbed” system
is now Tjd Pd(s). The following result is a consequence of
the small gain theorem applied in the context of feedback
configurations that operate on uncertain RSNs.

Theorem 2.3: The linear control law Kd(s) robustly sta-
bilizes the system of relative states for an uncertain RSN Gj

if ‖∆jd‖ < 1/‖S(Md,Kd)‖, where

Md(s) :=
[

0 Pd(s)
I Pd(s)

]
;
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S(Md,Kd) denotes the lower linear fractional transformation
of Md(s) and Kd(s), and the norm for a transfer matrix is
its maximum singular value across all frequencies (i.e., its
H∞-norm).

III. RSN TRANSFORMATIONS FOR NOISY NETWORKS

Consider now the scenario where a controller has been
designed for the minimal system specified by the sensing
spanning tree yd(t) = D(Gd)T x(t). Suppose that the mea-
sured sensing topology for one of the nodes is ỹj(t) =
D(Gj)T x(t) + vj(t), where vj is the noise on the corre-
sponding edges. In this section we consider the problem of
finding the transformation Tdj that results in the minimum
variance estimate for yd(t). We will denote this estimate by
ŷd(t); see Fig. 4. For this purpose, we assume a zero mean
measurement noise with measurement covariance σ2

ik for
each relative state measurement xik. The covariance matrix
for the complete graph is given by the diagonal matrix R:

R = Diag ([σ2
12 σ2

13 . . . σ2
(n−1)n ]T ).

The noise covariance on the graph Gj is denoted by Rj

with diagonal entries that coincide, in an orderly way, with
the diagonal entries of R for each measured edge of Gj .

We first show that the transformation Mdj satisfies the
cycle constraints. Observe that

ỹj(t) = yj(t) + vj(t) = Tjd yd(t) + vj(t).

The objective is to find the transformation Mdj : ỹj(t) →
ŷd(t) such that at time t the mean value of the error,

1
2

∑
i

E [ e2
i (t) ] :=

1
2

∑
i

E [ (ŷd(t) − yd)2i ],

is minimized. In the absence of noise one has ỹj(t) =
Tjd yd(t) = yj(t), ŷd(t) = yd(t), and yd(t) = Mdj yj(t) =
Mdj Tjd yd(t). Thus Mdj Tjd = I . Since each element of the
error vector is,

ei(t) = (ŷd(t) − yd(t) )i = (Mdj (yj(t) + vj(t)) − yd(t))i

the problem of minimizing the error covariance for estimated
relative states associated with Gd can be written as

min
Mdj

1
2

Trace Mdj Rj MT
dj (7)

subject to the equality constraint MdjTjd = I . The optimal
transformation solving (7) is then given as

Mdj = (TT
jd R−1

j Tjd)−1 TT
jd R−1

j .

Viewing the minimum variance transformation from yet
another perspective, we note that for the perfect measurement

d
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Fig. 5. Transformation between RSNs Gj and Gd in presence of noise

case, ỹj(t) = yj(t), and hence ŷd(t) = yd(t) = Mdj yj(t).
Thereby, yd(t) = Mdj yj(t) and D̂(Gd)T = Mdj D̂(Gj)T ,
where D̂(Gd) and D̂(Gj) are defined in the paragraph
following (6). Consequently, the optimization problem (7)
can also be represented by

min
Mdj

1
2

Trace Mdj Rj MT
dj (8)

subject to D̂(Gd)T = Mdj D̂(Gj)T that captures the cycle
constraints. The optimal transformation is now given by

Mdj = D̂(Gd)T
[
D̂(Gj)R−1

j D̂(Gj)T
]−1

D̂(Gj)R−1
j .

Note that when variances on all edges are equal, i.e., R = ρI ,
this transformation is exactly the transformation Tdj , given in
(6), for the perfect measurement case. Moreover, for the case
when the sensing geometry is a spanning tree the resulting
transformation is again Mdj = Tdj . The uniqueness of this
solution follows from the fact that the RSN transformation
from a spanning tree to any other graph is unique. In other
words, when the measured sensing graph is minimal, the
variance on the edges is irrelevant as the only feasible
solution is specified by (6).

Example 3.1: Consider a 4-noded network of damped
harmonic oscillators with identical dynamics θ̈i(t) =
−ω2

nθi(t) − 2ζωnθ̇i(t) with ζ =
√

2/2 and ωn = 1.
The desired and measured RSNs are shown in Fig. 5 with
covariances labeled on the edges. Simulation results that
compare the estimate ŷd(t) corresponding to the optimal
transformation Mdj versus the estimate obtained by applying
the T-transformation Tdj (6), is shown in Fig. (6). The esti-
mated edges correspond to the relative angle measurements
θij .

IV. MINIMALITY, OBSERVABILITY, AND SPANNING TREES

In this section, we consider the interplay between system
theoretic concepts of minimality and observability on one
hand, and the graph theoretic constructions such as spanning
trees, on the other. In this venue, let us first consider the
networked system consisting of n double integrators,

ẍi(t) = ui(t), yi(t) = D(Gd)T x(t), i = 1, . . . , n, (9)

where xi ∈ R, x := [x1, . . . , xn ]T and Gd corresponds
with an RSN. We note that system (9) describing the “node
dynamics” is controllable but not observable as the inertial
states can not be reconstructed via the relative state measure-
ments. To make this observation more precise construct the
observability matrix for (9) as

OT = 1 ⊗
[

D(Gd) 0 0 . . . 0
0 D(Gd) 0 . . . 0

]
.

6403



0 5 10

−2
−1
0
1
2
3

p
o
s
:

θ 1
2
/

θ e
s
t

T
dj

y
d

M
dj

0 5 10
−4

−2

0

2

4

e
r
r
o
r
:

θ e
s
t
 
−
 

θ 1
2

error: M
dj

3σ   : M
dj

error: T
dj

3σ   : T
dj

0 5 10

−2

−1

0

1

2

3

p
o
s
:

θ 1
3
/

θ e
s
t

0 5 10

−3

0

3

e
r
r
o
r
:

θ e
s
t
 
−
 

θ 1
3

0 5 10

−1

0

1

2

p
o
s
:

θ 1
4
/

θ e
s
t

0 5 10

−3

0

3

e
r
r
o
r
:

θ e
s
t
 
−
 

θ 1
4

Fig. 6. The estimate ŷd(t) under Mdj and Tdj transformations

Thereby, rankO = 2 rank D(Gd) = 2 (n − 1). The
observable subspace is thus completely characterized by
R(D(Gd)). Since each column of D(Gd) corresponds to
an edge of Gd, any (n − 1) linearly independent edges
define the observable subspace. These independent edges
are however exactly the edges of a spanning tree of Gd.
Similarly, the unobservable subspace of (9) is characterized
by N (DT

d ). For a connected graph this subspace is spanned
by 1, often referred to as the agreement subspace (see (15)).
Since (9) is not observable, there exists a similarity trans-
formation that brings into focus its observable component.
Let x̄(t) = Px(t) and P is such that y(t) = CP−1x̄(t) =
1 ⊗

[
C̃1 0

]
x̄(t). The transformed state can now be

partitioned into its observable and unobservable components
as x̄(t) = [xo(t)T xō(t)T ]T . This transformation is given by

P−1 = [Vo | Vō ] =
[

D(Gt) 0 1 0
0 D(Gt) 0 1

]
and hence

P =

⎡⎢⎢⎣
D(Gt)† 0

0 D(Gt)†

(1/n)1T 0
0 (1/n)1T

⎤⎥⎥⎦ (10)

where Gt is a spanning tree subgraph of Gd and

D(Gt)† := (D(Gt)T D(Gt))−1D(Gt)T . (11)

Let [ z(t)T ż(t)T ] := [ (D(Gt)T x(t))T (D(Gt)T ẋ(t))T ]
denote the vector of relative states associated with Gt;
we refer to the corresponding dynamics as the “edge dy-
namics.” The observable component of node states af-
ter applying the transformation (10) is thereby xo(t) =
(D(Gt)T D(Gt))−1[ z(t)T ż(t)T ]T . Consequently, the ob-
servable component of the state for a networked system of

double integrators is in direct correspondence with the edge
dynamics of an underlying spanning tree.

A. Node to edge dynamics: the general case

Consider now the more general scenario where each node
dynamics is governed by ẋi(t) = Aixi(t) + Biui(t), with
xi ∈ Rp and ui(t) ∈ Rm. The dynamic model for the
distributed system is then given by

ẋ(t) = Ax(t) + Bu(t), (12)

y(t) = 1 ⊗ (D(Gd)T ⊗ Ip)x(t), (13)

where x(t) ∈ Rpn, u(t) ∈ Rmn, and A ∈ Rpn×pn and
B ∈ Rpn×mn are block diagonal matrices with the (i, i)-
block entry of Ai and Bi, respectively; as always, Gd is
a connected RSN. The observability matrix for (12)-(13) is
given by

O = 1 ⊗

⎡⎢⎢⎢⎣
(
D(Gd)T ⊗ Ip

)(
D(Gd)T ⊗ Ip

)
A

...(
D(Gd)T ⊗ Ip

)
An−1

⎤⎥⎥⎥⎦ . (14)

Recall that for a quadruple A1, A2, A3, A4 of appropriate
dimensions (A1⊗A2)(A3⊗A4) = A1A3⊗A2A4. Hence for
any x ∈ Rp, (D(Gd)T ⊗Ip)(1⊗x) = (D(Gd)T 1)⊗x = 0.
We observe that if for some x ∈ Rp and for all j = 1, ..., n−
1, ((DT

d ⊗ Ip)Aj) (1 ⊗ x) = 0, then (1 ⊗ x) ∈ N (O) and
(12)-(13) is unobservable. In this case, the linear system that
describes the edge dynamics can be derived from the node
dynamics.

Let us refer to the set

A := {1 ⊗ x |x ∈ Rp} (15)

as the agreement subspace. Recall that a subspace V ∈ Rn

is called A-invariant if for all x ∈ V , Ax ∈ V .
Proposition 4.1: The node dynamical system (12)-(13)

is unobservable if the agreement subspace A (15) is A-
invariant. In this case, there exists a similarity transformation
such that the observable component of the node dynamics
coincides with the edge dynamics.

Proof: The proof follows from the fact that for a
connected graph the only elements of the null space of
D(Gd)T ⊗ Ip are of the form 1 ⊗ x, for some x ∈ Rp.
The similarity transformation of interest is now similar to
those derived previously (see (10)). In this case,

P−1 = [D(Gt) 1 ] ⊗ Ip and P =
[

D(Gt)†

(1/n)1T

]
⊗ Ip,

where D(Gt)† is defined as in (11). Applying this transfor-
mation to system matrices of (13) results in

PAP−1 =

[
Ã11 Ã12

Ã21 Ã22

]
; PB =

[
B̃1

B̃2

]
CP−1 = 1 ⊗

[
(D(Gd)T D(Gt) 0

]
⊗ Ip

with Ã12 = (D(Gd)† ⊗ I)A (1 ⊗ Ip). Since each column
of 1 ⊗ Ip is of the form 1 ⊗ x and A (15) is A-invariant,
Ã12 = 0.
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Corollary 4.2: Given a distributed system with identical
state matrices Ai = Ā (i = 1, ..., n), the system (12)-(13)
is unobservable. In this case, linear edge dynamics can be
obtained from the node dynamics.

Proof: In view of Proposition 4.1 it suffices to show
that the agreement subspace (15) is A-invariant. This follows
by observing that A(1⊗x) = (In⊗Ā)(1⊗x) = 1⊗Āx ∈ A.
Let Gt be the spanning tree subgraph of Gd. Note that

Ã12 = (D(Gt)† ⊗ Ip)(1 ⊗ Ā) = (D(Gt)†1 ⊗ Ā) = 0

and the corresponding minimal system assumes the form
(D(Gt)† ⊗ Ip) ẋ(t) = (In−1 ⊗ Ā) (D(Gt)† ⊗ Ip)x(t) +
(D(Gt)† ⊗ Ip) B̃1u(t). Multiplying both sides of this dy-
namic equation by D(Gt)T D(Gt) and defining the relative
state vector z(t) = (D(Gt)T ⊗ Ip)x(t) results in the linear
system ż(t) = (In−1 ⊗ Ā) z(t) + (D(Gt)T ⊗ Ip) B̃1u(t),
y(t) = 1 ⊗

[
D(Gd)T D(Gt)

(
D(Gt)T D(Gt)

)−1
]
z(t), de-

scribing the edge dynamics. Note that if the original RSN
Gd is a spanning tree, then y(t) = 1 ⊗ z(t).

The node dynamics (12)-(13) however can be observable
when the block diagonal system matrix A consists of hetero-
geneous blocks. In this case a network observer that outputs
the inertial node states given the RSN measurements (and
the control input) can be designed.

Example 4.3: Consider two first order systems, ẋi(t) =
aixi(t) + biui(t), i = 1, 2, with relative state measurement
y(t) = x2(t) − x1(t) = [−1 1 ]x(t). With a1 = a2 the
agreement subspace A is not observable. In the meantime,
when a1 = −2, a2 = 1, the observer gain L = [ 0 − 2 ]T

leads to a Hurwitz observer error state matrix A + LC with
eigenvalues −1 and −2.

V. LOCAL CONTROL LAWS FOR THE RSN

In this section, consider again the relative state dynamics
of a system of double integrators in 1-D associated with
a spanning tree G; denote this relative state by z(t). As-
sume that the relative state measurement associated with an
edge is available to both incident nodes. Next, construct
the error dynamics that corresponds to a given reference
signal, ζr(t) := [ zr(t)T żr(t)T ]T , taking the form ë(t) =
−D(G)T ẍ(t) = −D(G)T u(t). Consider the state feedback
controller u(t) = K [ e(t)T ė(t)T ]T , where the i-th row of
K is denoted by K(i). Set K = [D(G) D(G) ]; note that
this controller takes into account the incidence relation for
each node since the j-entry of K(i) is zero if the j-th edge
is not incident to node i. The resulting closed loop system
is[

ė(t)
ë(t)

]
=
[

0 I
−D(G)T D(G) −D(G)T D(G)

] [
e(t)
ė(t)

]
.

For the above state matrix Acl the characteristic equation
is det Acl = det(λ2I + (λ + 1)D(G)T D(G)) = 0. Since
λ = −1 does not satisfy this equation it is not an eigenvalue
of Acl. The eigenvalues of Acl thus satisfy det(λ2/(λ +
1) I + D(G)T D(G)) = 0. Denoting the eigenvalues of
−D(G)T D(G) by µ, one has for each i, µi = λ2

i /(λi + 1),
and hence λi =

(
µi ±

√
µ2

i + 4µi

)
/2; see also [12], [18].

As −DT D < 0, µi < 0 for all i, and Acl is Hurwitz
guaranteeing that {e(t), ė(t)} → 0 as t → ∞. If we convert
the edge dynamics back to the node dynamics, the closed
loop system assumes the form

η̇(t) = L(G) η(t) + D(G) ζr(t),

where η(t) := [x(t)T ẋ(t)T ]T ,

L(G) =
[

0 I
−L(G) −L(G)

]
, D(G) =

[
0 0

D(G) D(G)

]
,

and L(G) = D(G)D(G)T is the graph Laplacian [5]. The
closed loop system that corresponds to the relative state
dynamics with ζ(t) := [ z(t)T ż(t)T ]T is now

ζ̇(t) = −E(G) ζ(t) + E(G) ζr(t)

where

E(G) :=
[

0 I
E(G) E(G)

]
and E(G) = D(G)T D(G); this last matrix can be viewed as
the edge version of the graph Laplacian. Choosing ζr(t) = 0
now implies that the relative states asymptotically converge
to the origin. This observation parallels the general results
on the agreement protocol as considered for example in [6],
[8], [11], [12], [17].
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