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Abstract— This paper presents coordination algorithms for
mobile autonomous agents equipped with line-of-sight sensors
in a nonconvex polygon. The objective of the proposed algo-
rithms is to achieve rendezvous, that is, agreement over the
location of the agents in the network, using only information
from the line-of-sight sensors. Two key novel components of the
algorithms are the notions of locally-cliqueless visibility graph
and of convex continuous constraint set.

I. INTRODUCTION

Consider a group of robotic agents moving in a nonconvex

environment. For simplicity, we model the environment as a

simple polygon and the agents as point masses. Assume that

each member of the group is equipped with omnidirectional

line-of-sight sensors. By a line-of-sight sensor, we mean

any device or combination of devices that can be used

to determine, in its line-of-sight, (i) the position or state

of another agent, and (ii) the distance to the boundary of

environment. By omnidirectional, we mean that the field-

of-vision for the sensor is 2π radians. We assume that the
algorithm regulating the agents’ motion is memoryless, i.e.,

we consider static feedback laws. Given this model, the goal

is to design a provably correct discrete-time algorithm which

ensures that the agents converge to a common location within

the environment. See Fig. 1 for a graphical description of our

objective. Ideally, the algorithm would work asynchronously

but here we confine ourselves to the synchronous case.
This work is motivated by the recent surge of interest in the

study of groups of mobile autonomous robots. The “multi-

agent rendezvous” problem and the first “circumcenter algo-

rithm” have been introduced in [1]. The algorithm proposed

in [1] has been extended to various asynchronous strategies

in [2], [3]. A related algorithm, in which connectivity con-

straints are not imposed, is proposed in [4].
One important difference between these works and the

present one is that we consider visually-guided robots. In

fact, technical advancement in sensor technology and mo-

bile robotics have facilitated the implementation of these

algorithms on real systems. Examples of panoramic depth

sensors relevant to our work are (1) omnidirectional cameras,

e.g., [5], and (2) laser scanners with accurate distance mea-

surements at high angular density. We conclude our literature

review by mentioning that the problem of rendezvousing

at a specified location for visually-guided agents was first

Anurag Ganguli is with the Coordinated Science Laboratory, University
of Illinois at Urbana-Champaign, and with the Department of Mechanical
and Environmental Engineering, University of California at Santa Barbara,
Santa Barbara, CA 93106, USA, aganguli@uiuc.edu
Jorge Cortés is with the Department of Applied Mathematics and Statis-

tics, University of California at Santa Cruz, Santa Cruz, CA 95064, USA,
jcortes@ucsc.edu
Francesco Bullo is with the Department of Mechanical and Environmental

Engineering, University of California at Santa Barbara, Santa Barbara, CA
93106, USA, bullo@engineering.ucsb.edu

Initial position of the agents Final position of the agentsEvolution of the network

Fig. 1. Execution of the Circumcenter Algorithm described in Section IV-C
on a network of agents distributed in a polygon shaped like a typical floor
plan. The algorithm is run over the visibility graph Gvis,Q (see Section III).

introduced in [6]. However, the proposed solution was not

distributed, in the sense that each agent required the knowl-

edge of the locations of all other network agents.

The contribution of this paper is threefold. First, we

develop a geometric framework which makes it possible to

apply recently developed results on convergence analysis of

nonlinear systems, e.g., the LaSalle Invariance Principle for

set-valued maps, on a network of visually-guided agents in

a nonconvex environment. More explicitly, we constrain the

motion of agents to sets that (i) ensure that the visibility

between two agents is preserved, and (ii) changes continu-

ously as a function of the position of the agents. We call

such sets convex continuous constraint sets and characterize

their properties. Second, based on a discussion on visibility

graphs, we define a new proximity graph, called the locally-

cliqueless visibility graph, which contains fewer edges than

the visibility graph, and has the same connected components.

This construction can be, in general, useful for any problem

where the connectivity of the visibility graph is important and

fewer constraints on the agents, in terms of number of neigh-

bors, is beneficial. Examples of such problems might include

line-of-sight wireless routing and consensus problems over

line-of-sight wireless communication networks. Third, we

propose a coordination algorithm to solve the rendezvous

problem and provide a convergence proof.

II. CONVEX CONTINUOUS CONSTRAINT SETS

Here we design motion constraint sets for pair of agents

mutually visible to one another. By constraining the motion

of agents, we aim to preserve the connectivity of the network.

Additionally, we require that motion constraint sets change

continuously as a function of the position of the agents. This

turns out to be a critical property for the convergence analysis

of algorithms based on these sets. We emphasize that the

construction proposed here may be applied to any distributed
algorithm for a network of visually-guided agents.
We begin by reviewing some notation for standard geo-

metric objects. For p ∈ R2, let B(p, r) denote the closed ball
centered at p of radius r ∈ R+. We let R+ and R+ denote the
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positive and the nonnegative real numbers, respectively. For a

bounded setX ⊂ R2, we let co(X) denote the convex hull of
X . For p, q ∈ R2, we let ]p, q[= {λp+(1−λ)q | 0 < λ < 1}
and [p, q] = co({p, q}) denote the open and closed segment
with extreme points p and q, respectively. For a closed
convex set X ⊂ R2 and q ∈ R2, let projX(q) denote
the orthogonal projection of q onto X . For a bounded set
X ⊂ R2, we let CC(X) denote the circumcenter of X ,
i.e., the center of the smallest-radius circle enclosing X . The
computation of the circumcenter is a strictly convex problem.

Let |X| denote the cardinality of a finite set X in R2. Next,

we define continuous set-valued maps; see [7].

Definition II.1 Let X and Y be topological vector spaces
(real and Hausdorff). A set-valued map f : X → 2Y with
non-empty and compact values is continuous at a point x0 ∈
X if given any ε > 0, there exists a δ > 0 such that for all
x ∈ B(x0, δ), we have

f(x) ⊂
⋃

y∈f(x0)

B(y, ε) and f(x0) ⊂
⋃

y∈f(x)

B(y, ε)

Now let us turn our attention to the environment. A

polygon is simple if its vertices are the only points in
the plane common to two polygon edges and every vertex

belongs to at most two polygon edges. Such a polygon

has a well defined interior and exterior. Note that a simple
polygon can contain holes. Let Q denote the set of all simple
polygons. Let Q ∈ Q and let Ve(Q) = (v1, . . . , vn) be the
list of vertices of Q ordered counterclockwise. The interior
angle of a vertex v of Q is the angle formed inside Q by
the two edges of the boundary of Q incident at v. The point
v ∈ Ve(Q) is a reflex vertex if its interior angle is strictly
greater than π radians. Let Ver(Q) denote the list of reflex
vertices of Q ordered counterclockwise. Note that a reflex
vertex may be defined even for polygons that are not simple

but have a well-defined interior and exterior. If X is a finite
set of points inQn, letMPP(X,Q) be the minimal perimeter
polygon containing X which is a subset of Q (see Fig. 2 for
an example). Note that Q does not necessarily have to be

Fig. 2. Minimal perimeter polygon of a set of points inside nonconvex
polygonal environments. The environments are represented by dashed lines,
while the polygons represented by the solid lines are the minimal perimeter
polygons of the points represented by the solid circles. On the left, the
environment is a simple polygon whereas on the right the environment is
polygonal, not simple, and still has a well-defined interior and exterior.

simple for the minimal perimeter polygon to be defined; it

only needs to have a well defined interior and exterior.
A point q ∈ Q is visible from p ∈ Q if [p, q] ⊂ Q. The

visibility polygon S(p) ⊂ Q from a point p ∈ Q is the set of
points in Q visible from p. We can also think of p �→ S(p)
as a map from Q to the set of polygons contained in Q.

Definition II.2 Let v be a reflex vertex of Q, and let w ∈
Ve(Q) be visible from v. The (v, w)-generalized inflection
segment I(v, w) is the set

I(v, w) = {q ∈ S(v) | q = λv + (1 − λ)w, λ ≥ 1}.

If w ∈ Ver(Q), then we call I(v, w) a bitangent of Q. Let
{Iα}α∈A be the set of bitangents of Q. A reflex vertex v
of Q is an anchor of p ∈ Q if it is visible from p and
{q ∈ S(v) | q = λv + (1 − λ)p, λ > 1} �= ∅.

In other words, a reflex vertex is an anchor of p if it occludes
a portion of the environment from p. Next we define and
characterize certain useful convex sets depicted in Fig. 3.

Definition II.3 Given Q ∈ Q, let p, q ∈ Q such that
[p, q] ⊂ Q. Let v ∈ Ver(Q). Let e′v and e′′v be the edges of
Q determining v. Then we define Hv(p, q) ⊂ R2 as follows:

(i) if v /∈ [p, q], then Hv(p, q) is the half-plane with
the following properties: (a) the boundary of Hv(p, q)
contains v and is perpendicular to the line passing
through v and proj[p,q] v, and (b) p and q belong to
the interior of Hv(p, q);

(ii) if v = p with p �= q, then Hv(p, q) is the half-
plane with the following properties: (a) the boundary
of Hv(p, q) contains v and is perpendicular to the line
passing through p and q, and (b) q belongs to the
interior of Hv(p, q) (Note: a similar definition holds
when we interchange p and q);

(iii) if v ∈]p, q[ with p �= q, then Hv(p, q) is the half-
plane with the following properties: (a) the boundary
of Hv(p, q) contains the line passing through p and q,
and (b) the interior of Hv(p, q) intersected with e′v or
with e′′v is empty;

(iv) if v = p = q, then Hv(p, q) is the set H ′
v ∩ H ′′

v .
H ′

v is a half-plane with the following properties: (a)
the boundary of H ′

v contains the edge e′v , and (b) the
interior of H ′

v intersected with e′′v is empty. We define
H ′′

v similarly with e′′v interchanged with e′v .

q
v

p

p = v

q

q

v

p
v = p = q

proj[p,q] v

e′′v

e′v

Fig. 3. Definition of the sets Hv(p, q)
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Remark II.4 With the above definition, wherever defined,
Hv(p, q) is a closed and convex set containing p and q. Also,
if V ⊂ Q is convex and compact, then Hv(p, q) is well-
defined everywhere in (V)2 and (p, q) �→ Hv(p, q) is a set-
valued map over the domain (V)2 with range 2(R2).

Lemma II.5 Given any v ∈ Ver(Q) and a convex and com-
pact subset V of Q, the set-valued map (p, q) �→ Hv(p, q)∩Q
restricted to (V \ Ver(Q))2 is continuous.

Lemma II.6 Let V ⊂ Ver(Q) and V be a convex and
compact subset of Q. The following statements are true:

(i) the set-valued map (p, q) �→
⋂

v∈V

S(p) ∩ Hv(p, q) re-

stricted to (V \ (Ver(Q)
⋃

(∪α∈AIα)))
2 is continuous;

(ii) the set-valued map p �→
⋂

v∈V

S(p) ∩ Hv(p, p) re-

stricted to V \ (Ver(Q)
⋃

(∪α∈AIα)) is continuous.

Definition II.7 (Convex Continuous Constraint Sets)
Let p, q ∈ Q have the property that [p, q] ⊂ Q and let
IQ(p, q) = Ver(Q) ∩ S(p) ∩ S(q). The convex continuous
constraint set between p and q is

CQ(p, q) =
⋂

v∈IQ(p,q)

S(p) ∩ Hv(p, q).

Fig. 4 illustrates the constraint set.

p

q

vk1

vk2

vk3

p

Fig. 4. The figure on the left is an example of the constraint set CQ(p, q)
where IQ(p, q) = {vk1

, vk2
, vk3

}. The figure on the right is an example
of CQ(p, p) where IQ(p, p) = Ver(Q).

Theorem II.8 Let V ⊂ Q be convex and compact. For any
two points p, q ∈ V , the following statements are true:
(i) CQ(p, q) is convex, CQ(p, q) = CQ(q, p), and
(ii) the set-valued map (p, q) �→ CQ(p, p) ∩ CQ(p, q)

restricted to (V \ Ver(Q))2 is continuous.

III. THE LOCALLY-CLIQUELESS VISIBILITY GRAPH

In Section II we proposed the construction of motion

constraint sets to preserve the connectivity of the network.

The number of such constraints for an agent is the number

of the agents visible to it. It is intuitively clear that the

lesser the number of such constraints, the faster will be the

convergence of the algorithm. Here we introduce the notion

of locally-cliqueless visibility graph, which is a subgraph of

the visibility graph. In general, it contains fewer edges than

the visibility graph but has the same connected components.

In addition, we show that this graph can be computed based

on the information obtained only from the visibility graph.
We begin by introducing some concepts regarding prox-

imity graphs for point sets in R2. We assume the reader is

familiar with the standard notions of graph theory. We recall

that a clique of a graph is a complete subgraph of it. A
maximal clique of an edge is a clique of the graph that (i)
contains the edge and (ii) is not a strict subgraph of any other

clique of the graph that also contains the edge.
Given a vector space V, let F(V) be the collection of
finite subsets of V. Accordingly, F(R2) is the collection of
finite point sets in R2; we shall denote an element of F(R2)
by P = {p1, . . . , pn} ⊂ R2, where p1, . . . , pn are distinct

points in R2. Let G(R2) be the set of undirected graphs
whose vertex set is an element of F(R2). A proximity graph
function G : F(R2) → G(R2) associates to a point set P
an undirected graph with vertex set P and edge set EG(P),
with EG : F(R2) → F(R2 ×R2) such that EG(P) ⊆ P ×P \
diag(P×P) for any P . Here, diag(P×P) = {(p, p) ∈ P×
P | p ∈ P}. In other words, the edge set of a proximity graph
depends on the location of its vertices. General properties of

proximity graphs are defined in [8], [9]. Here, we define:

(i) a Euclidean Minimum Spanning Tree of a proxim-
ity graph G, denoted GEMST,G , assigns to each P a
minimum-length spanning tree of G(P) whose edge
(pi, pj) is assigned a length ‖pi − pj‖. If G(P) is
not connected, then GEMST,G(P ) is simply the union of
Euclidean Minimum Spanning Trees of its connected

components. For simplicity, when G is the complete
graph (P,P × P \ diag(P × P)), we denote the
Euclidean Minimum Spanning Tree by GEMST;

(ii) the visibility graph Gvis,Q, for Q ∈ Q, with (pi, pj) ∈
EGvis,Q(P) if the line segment [pi, pj ] ∈ Q;

(iii) the locally-cliqueless visibility graph Glc-vis,Q, for Q ∈
Q, with (pi, pj) ∈ EGlc-vis,Q(P) if (pi, pj) ∈ EGvis,Q(P)
and (pi, pj) belongs to a set EGEMST(P

′) for any maxi-
mal clique P ′ of the edge (pi, pj) in Gvis,Q.

Fig. 5 contains some examples of proximity graphs in a

nonconvex polygon Q shaped like a typical floor plan.

Fig. 5. From left to right, visibility graph, Euclidean Minimum Spanning
Tree for the five agents in the center, and locally-cliqueless visibility graph.

To each proximity graph function G, we associate the set
of neighbors map NG : R2 × F(R2) → F(R2), defined by

NG(p,P) = {q ∈ P | (p, q) ∈ EG(P ∪ {p})}.

Also, for p ∈ R2, define NG,p : F(R2) → F(R2) by
NG,p(P) = NG(p,P). Let G1 and G2 be two proximity graph

functions. G1 is spatially distributed over G2 if, for all p ∈ P ,

NG1,p(P) = NG1,p

(
NG2,p(P)

)
.
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It is straightforward to deduce that if G1 is spatially dis-

tributed over G2, then G1 is a subgraph of G2, that is,

G1(P) ⊂ G2(P) for all P ∈ F(R2). Two proximity graph
functions G1 and G2 have the same connected components if,
for any P ∈ F(R2), G1(P) and G2(P) have the same number
of connected components consisting of the same vertices.

Theorem III.1 For Q ∈ Q, the following statements hold:
(i) GEMST,Gvis,Q ⊂ Glc-vis,Q ⊂ Gvis,Q;
(ii) Glc-vis,Q is spatially distributed over Gvis,Q, for the case

when Q does not contain any hole;
(iii) Glc-vis,Q, Gvis,Q have the same connected components.

In general, the inclusions in Theorem III.1(i) are strict. Fig. 6

shows an example where GEMST,Gvis,Q � Glc-vis,Q � Gvis,Q.

Fig. 6. From left to right, visibility graph, locally-cliqueless visibility graph
and Euclidean Minimum Spanning Tree of the visibility graph.

IV. RENDEZVOUS VIA PROXIMITY GRAPHS

Here we state the model, the control objective, the coor-

dination algorithm, and the closed-loop system properties.

A. A synchronous network of visually-guided agents

By a visually-guided agent, we refer to any agent, oc-
cupying a location in Q ∈ Q, and capable of measuring
the relative position of every other agent visible to it, i.e.,

within line-of-sight. In addition to this, it can also sense the

boundary of Q. Each agent has a processor with the ability
of allocating continuous and discrete states and performing

operations on them. A collection of finite number, say n, of
such agents form a network. Note that as a consequence of

the above, wheneverQ contains no hole, the processor on any
agent has the capability to answer the query as to whether

two agents visible to it are mutually visible to one another.

The ith agent in such a network is capable of moving at any
time m ∈ N, for any unit period of time, according to the
synchronized discrete-time control system

pi(m + 1) = pi(m) + ui. (1)

We also assume that there is a maximum step size smax ∈ R+

for all agents, that is, ‖ui‖ ≤ smax, for i ∈ {1, . . . , n}.

B. The rendezvous motion coordination problem

We now state the control design problem for the network

of visually-guided agents. The rendezvous objective is to
steer each agent to a common location. This objective is

to be achieved with the limited information flow described

in the model above. Typically, it will be impossible to solve

the rendezvous problem if the agents are placed in such a

way that they do not form a connected graph. Arguably,

a good property of any algorithm to rendezvous is that of

maintaining some form of connectivity between agents.

C. The Circumcenter Algorithm

Here is an informal description of what we shall refer to

as the Circumcenter Algorithm over a proximity graph G:
Each agent performs the following tasks: (i) it de-

tects its neighbors according to G; (ii) it computes
the circumcenter of the point set comprised of its

neighbors and of itself, and (iii) it moves toward

this circumcenter while maintaining connectivity

with its neighbors.

This algorithm is inspired by the one introduced in [1]. Let

us clarify which proximity graphs are allowable and how

connectivity is maintained. Firstly, we are allowed to design

over any proximity graph G that is spatially distributed over
Gvis,Q. This is a direct consequence of our modeling assump-
tion that each agent can acquire the location of every other

agent visible to it. Secondly, we maintain connectivity by

restricting the allowable motion of each agent. In particular,

if agents pi and pj are neighbors in the proximity graph

G, then their subsequent positions are required to belong to
CQ(pi, pj) as defined in Theorem II.8.
If an agent pi has its neighbors at locations {q1, . . . , ql},
then define Mi = {q1, . . . , ql} ∪ {pi}. We define the
constraint set Cpi,Q(Mi) by

Cpi,Q(Mi) =
⋂

q∈Mi

CQ(pi, q).

Remark IV.1 • Cpi,Q(Mi) is a convex subset of Q
containing pi. This follows from the definition of

Cpi,Q(Mi) and Theorem II.8 (i).
• If Mi ∩ Ver(Q) is empty and the set of neighbors of

pi is fixed, then Cpi,Q(Mi) changes continuously as a
function of pi and of the positions of its neighbors.

This follows from the fact that for each pj ∈ Mi,

pi is constrained to remain in CQ(pi, pj) which is a
convex and compact subset of Q. The statement is then
a consequence of Theorem II.8 (iii) and the fact that

Cpi,Q(Mi) is an intersection of continuous maps.

With this, we are ready to formally describe the algorithm.

Name: Circumcenter Algorithm over G
Assumes: (i) smax ∈ R+ is maximum step size

(ii) Q ∈ Q
(iii) G is a spatially distributed proximity
graph over Gvis,Q

For i ∈ {1, . . . , n}, agent i executes the following at each
time instant in N:

1: acquire {q1, . . . , qk} := NGvis,Q,pi
(P)

2: computeMi := NG,pi
({q1, . . . , qk}) ∪ {pi}

3: compute Xi := Cpi,Q(Mi) ∩ co(Mi)

4: compute q∗i := projXi
(CC(Mi))

5: ui :=
min(smax,‖q∗

i −pi‖)
‖q∗

i
−pi‖

(q∗i − pi)

See Fig. 7 for examples of the constraint sets Cpi,Q(Mi).

In what follows we shall refer to the Circumcenter Algo-

rithm over the proximity graph G as the map TG : Qn → Qn.
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Fig. 7. Constraint sets Cpi,Q(Mi) generated by the algorithm encoded
as described in Section V

D. Asymptotic correctness of the Circumcenter Algorithm

Henceforth, P shall refer to tuples of elements in Q of
the form (p1, . . . , pn). With a slight abuse of notation, we
shall use P interchangeably with a point set P of the form
{p1, . . . , pn}. Before proceeding to analyze the convergence
properties of the Circumcenter Algorithm, let us first define

a candidate Lyapunov function Vperim,Q : Qn → R+, by

Vperim,Q(P ) = perimeter(MPP(P,Q)).

Lemma IV.2 For any polygon Q with a well-defined interior
and exterior, we have the following:
(i) for P ∈ Qn, MPP(P,Q) contains all the visibility

edges of Gvis,Q(P );
(ii) for P1 ∈ Qn and P2 ∈ Qm, we have that

MPP(P1, Q) ⊂ MPP(P1 ∪ P2, Q);
(iii) for any polygon X ⊂ Q with a well-defined in-

terior and exterior and P ∈ Xn, we have that
MPP(P,X) ⊂ MPP(P,Q);

(iv) Cpi,Q(Mi) ∩ MPP(Mi, S(pi)) = Cpi,Q(Mi) ∩
co(Mi), where pi and Mi are as in the description
of the Circumcenter Algorithm in Section IV-C;

(v) Cpi,Q(Mi) ∩ MPP(Mi, S(pi)) is convex;
(vi) if MPP(P ′, Q) is a strict subset of MPP(P ′′, Q), then

Vperim,Q(P ′) < Vperim,Q(P ′′).

Finally, we state an important lemma that is crucial in

characterizing the set to which the sequence of the positions

of the agents converges.

Lemma IV.3 Let P ∈ (Q \ Ver(Q))n. Let G(P ) be
any graph spatially distributed over Gvis,Q(P ). There ex-
ists at least one agent i with pi ∈ Ve(MPP(P,Q)) \
Ver(MPP(P,Q)) such that the following are true:
(i) there exists p ∈ Xi such that p �= pi and [pi, p] ⊂ Xi;
(ii) ‖pi − projXi

CC(Mi)‖ > 0.

We shall also require, at some times, to make the following

assumption on a sequence {Pm}m∈N∪{0} ⊂ Qn:

(A) There exists a compact set X ⊂ (Q \ Ver(Q)) such
that {Pm}m∈N∪{0} ⊂ Xn.

We are now ready to state the following convergence result.

Theorem IV.4 Let p1, . . . , pn be a network of visually-
guided agents in Q ∈ Q, with maximum step size smax ∈ R+.

Assume that Q does not contain any holes, and that the
proximity graph G is spatially distributed over Gvis,Q and
has the same connected components as Gvis,Q. Then, any
trajectory {Pm}m∈N∪{0} of TG has the following properties:
(i) if the locations of two agents belong to the same con-

nected component of Gvis,Q(Pk) for some k ∈ N∪{0},
then they remain in the same connected component of
Gvis,Q(Pm) for all m ≥ k,

(ii) Vperim,Q(Pm+1) ≤ Vperim,Q(Pm), for all m ∈ N ∪ {0},
(iii) if {Pm}m∈N∪{0} satisfies (A), then {Pm}m∈N∪{0} con-

verges to a point P ∗ ∈ Xn such that either p∗i = p∗j
or [p∗i , p

∗
j ] �⊂ Q for all i, j ∈ {1, . . . , n}.

The proof for Theorem IV.4 is based on the following

useful results. The technical approach in what follows is

similar to the one in [9].

To a proximity graph function G that is spatially distributed
over Gvis,Q, and a configuration P ∈ Qn, one may associate

a graph GG(P ) = ({1, . . . , n}, E) by defining (i, j) ∈ E
if (pi, pj) is an edge of G(P ). Clearly, for each P ∈ Qn,

NGG(P )
(i) is equal to the set of neighbors of pi with

respect to the graph G(P ). Given an undirected graph G =
({1, . . . , n}, E), define the Circumcenter Algorithm at Fixed
Topology TG : Qn → Qn whose ith component is

(TG)i(p1, . . . , pn) = (TG)i(p1, . . . , pn).

Lemma IV.5 For G = ({1, . . . , n}, E), the map TG : Qn →
Qn has the following properties:
(i) The map P �→ TG(P ) restricted to (Q \ Ver(Q))n is

continuous, and
(ii) MPP(TG(P ), Q) ⊆ MPP(P,Q), for P ∈ Qn.

Given Q ∈ Q, define the Circumcenter Algorithm at All
Connected Topologies T : Qn → 2(Qn) by

T (P ) = {TG(P ) ∈ Qn | G = ({1, . . . , n}, E) is connected}.

Proposition IV.6 For Q ∈ Q, the map T : Qn → 2(Qn) has
the following properties:
(i) the map P �→ T (P ) restricted to X , a compact subset

of (Q \ Ver(Q))n, is upper semicontinuous, and
(ii) MPP(T (P ), Q) ⊂ MPP(P,Q), for P ∈ Qn if there

exists pi, pj ∈ P such that .pi �= pj .

Now that we have analyzed the smoothness of T , let us
study the properties of the function Vperim,:Q

n → R+.

Lemma IV.7 The function Vperim,:Q
n → R+ has the follow-

ing properties:
(i) Vperim,Q is continuous, and is invariant under permu-

tations of its arguments;
(ii) Vperim,Q(P ) = 0 if and only if pi = pj for all pi ∈

P, i ∈ {1, . . . , n};
(iii) Vperim,Q is strictly decreasing along T as long as

Vperim,Q(P ) > 0.

We now present the asymptotic convergence properties of

the algorithm T . The proof of this relies on a discrete-time
LaSalle Invariance Principle for set-valued maps; see [9].
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Lemma IV.8 Let Q ∈ Q. Assume that Q does not contain
any holes, and that the proximity graph G is spatially dis-
tributed over Gvis,Q and has the same connected components
as Gvis,Q. Then, any sequence {Pm}m∈N∪{0}, defined by
Pm+1 ∈ T (Pm) and satisfying Assumption (A), converges to
a point P ∗ ∈ Xn such that p∗i = p∗j for all i, j ∈ {1, . . . , n}.

E. A variant of the Circumcenter Algorithm

In Section IV-D, we conjecture that the Circumcenter

Algorithm solves the rendezvous problem for visually-guided

agents if the network evolves in a compact subset of Q \
Ver(Q). In what follows we describe an algorithm that we
conjecture guarantees convergence without this assumption.

Name: Modified Circumcenter Algorithm over G
Assumes:
(i) smax ∈ R+ is maximum step size

(ii) Q ∈ Q
(iii) G is a spatially distributed proximity graph over Gvis,Q
with the property that two agents at the same location

have identical sets of neighbors.

For i ∈ {1, . . . , n}, agent i executes the following at each
time instant in N:

1: acquire {q1, . . . , qk} := NGvis,Q,pi
(P)

2: compute Wi := {qj | qj = pi, j ∈ {1, . . . , n}}

3: compute Bi := (NG,pi
({q1, . . . , qk}) \Wi)

4: computeMi := Bi ∪ {pi}

5: if Bi = {v}, for v ∈ Ver(Q), and pi /∈ Ver(Q) then
6: compute q∗i := v

7: else
8: compute Xi := Cpi,Q(Mi) ∩ MPP(Mi)

9: compute q∗i := projXi
(CC(Mi))

10: end if
11: ui :=

min(smax,‖q∗
i −pi‖)

‖q∗
i
−pi‖

(q∗i − pi)

Remark IV.9 The graph Glc-vis,Q fulfills assumption (iii) in
the statement of the Modified Circumcenter Algorithm.

V. SIMULATION RESULTS

To conduct experiments, a two-layer simulation environ-

ment has been developed in Matlab R©. Figs. 1, 8 and 9

illustrate the performance of the Circumcenter Algorithm in

Section IV-C.

Initial position of the agents Final position of the agentsEvolution of the network

Fig. 8. Simulation results of the Circumcenter Algorithm on a network
of agents distributed in a spiral polygon. The locations of the agents, at all
times, do not belong to reflex vertices. However, at some instants, reflex
vertices are approached very closely. The algorithm is run over Gvis,Q.

Initial position of the agents Final position of the agentsEvolution of the network

Fig. 9. Simulation results of the Circumcenter Algorithm on a network
of agents distributed in a polygon shaped like a typical floor plan. The
algorithm is run over Glc-vis,Q.

VI. CONCLUSIONS

This paper focuses on the distributed control of syn-

chronous networks of visually-guided robotic agents. We

have defined some useful geometric quantities, such as

continuous constraint sets and generalized visibility graphs,

and studied circumcenter algorithms for rendezvous. We have

provided a convergence proof as well as successful numerical

simulations. Possible future work involves coordination algo-

rithms for deployment and search for visuall-guided agents.
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