
Abstract—The standard formulation of linear shift-invariant 
feedback systems in the doubly infinite time axis setting lacks 
self-consistency with seemingly irreconcilable difficulties 
having been identified when the system is open-loop unstable. 
The available options for circumventing these difficulties for 
discrete-time SISO systems are highlighted and the manner in 
which they are exploited to obtain a self-consistent framework 
by reformulating the feedback systems in the space of 
distributions is clarified. In addition, it is explicitly 
demonstrated that causality and stability of a standard example 
are implied by the causality and stability of the equivalent 
system when reformulated in the self-consistent framework. 

I. INTRODUCTION

HE self-consistency of linear time-invariant feedback 
systems or, more precisely, of the mathematical 

models/representations of the input signals, output signals 
and sub-systems, is not obvious. Recently, there has been 
some considerable interest in the doubly infinite time-axis 
setting (the signals having support ),( ), [3]-[12]. 
Unfortunately, instead of delivering a self-consistent 
framework, this work has identified some seemingly 
irresolvable difficulties when the system is open loop 
unstable, [3]-[11]. Of course, the analysis of feedback 
systems can be restricted to the singly infinite time axis 
setting (the signals having support ),0[ ) the self-
consistency of which is well established, [1],[2]. 
Nevertheless, the former setting is not uncommon in control 
theory, e.g. Wiener-Hopf optimal control and LQG control. 
Furthermore, control systems are becoming ever more 
complex, varied and disparate in nature requiring extensions 
to the standard framework. In this paper, in Section II, the 
recent work, [3]-[11], is examined to highlight the 
underlying premises and, thereby, identify the available 
options for circumventing the above difficulties for discrete-
time SISO systems. In Section III, the self-consistent 
framework, proposed in [12], is discussed, the manner in 
which the available options are exploited being clarified. In 
addition, further to [12], it is explicitly demonstrated that 
causality and stability of a standard example are implied by 
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the causality and stability of the equivalent system when 
reformulated in the self-consistent framework. 

II. INTRINSIC DIFFICULTIES

 Consider the system of figure 1 for the operator 
TTT RD: . The elements in a coherent analysis 

framework for feedback systems are the classes of functions 
representing the inputs and outputs and the class of 
operators representing the systems. Since the feedback 
system is equivalent to the relationship 

TTT DyRyxxyI ,)(][     (1) 

the feedback loop is well defined provided 1][ TI  exists. 
To illustrate the role of these elements consider the 
following example. 

Example 1: Let the class of inputs and outputs be the 
integers and the operator be identity element, I. Since 

II 2
11][ T , the feedback system is not self consistent. 

This difficulty can be resolved by enlargement of the class 
of inputs and outputs to the rational numbers. 

Since linear systems are being represented, the operators 
must be linear and the classes of inputs and outputs linear 
spaces. Ideally, TD  and TR  should be the same linear space 
to ensure compatibility when embedded in a larger system. 

For the singly infinite time-axis, an explicit analysis in the 
input-output setting, establishing the self-consistency of 
feedback systems, is undertaken in [1] (continuous-time) 
and [2] (discrete-time). In the former, a dynamical system is 
considered to be a linear operator 

),0[),0[: 22 LLP PD  with the graph of P, PG ,
defined by 

),0[),0[ 22 LL
P
I

PP DG .    (2) 

The relation of the properties of the dynamical system, such 
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Fig. 1. Feedback system. 
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as stability and causality, to the mathematical properties of 
its graph is then investigated. One such property is 
stabilisability. Consider the feedback system in figure 2 
denoted by [P,C]. The feedback system, [P,C], is stabilisable 
if there exists a C such that the operator 

2
1

2
1:),0[),0[: 22 x

x
e
e

IP
CI

LLDDF PP (3)

has a bounded inverse. Stabilisability requires, firstly, the 
feedback loop to be self-consistent then, secondly, the linear 
operator corresponding to the closed loop system to be 
bounded. The term, graph theory, is employed in this paper 
when referring to the above approach to the analysis of 
feedback systems. The analyses in continuous-time and in 
discrete-time are wholly equivalent with the results in one 
readily transferred to the other with minimal adjustment. 

In the development of [1] (translated to discrete-time) and 
[2], the class of functions is )(2 Z . In graph theory, the 
definition of the operator is implicit rather than explicit. 
However, any linear shift-invariant operator on )(2 Z  can 
be represented by a convolution, [5]. Hence, although not 
explicitly stated, the class of systems in [1] is the 
convolutions on )(2 Z . The conditions for stabilisability 
are sufficient to ensure the feedback system is self-
consistent. 

To facilitate the usual analysis techniques for feedback 
systems, one final requirement for a framework is an 
equivalent representation in the transfer domain. In [1] 
(translated to discrete-time) and [2], the z-transform is 
integral to the derivation of results, it being an isometric 
isomorphism from )(2 Z  to the Hardy space H2(D) where 
D is the interior of the unit disc. (Note, each element of 

)()(~
2 DqX H  is defined by 1|)()(~

qz
zXqX where X(z)

is the z-transform of some )(2 Zx ). Hence, implicit to 
[1] is the equivalent transfer domain representation through 
the standard z-transform. 

For the doubly infinite time axis when P is unstable, the 
graph of the operator ),(),(: 22 LLP PD
need not be closed, a necessary condition [3] for 
stabilisability of the feedback system in figure 2. This 
observation has serious consequences for any attempt to 
establish a self-consistent framework. Graph theory for the 
doubly infinite time axis is investigated in [3]-[7]. 

A. Simple Example 
In [7], a simple example is investigated to illustrate the 

need to establish a self-consistent framework to prevent 
inconsistencies. The discrete-time, first-order convolution 
system 

][][;][])1[]1[(][
0

ikyiuidnivniuabiy
n

n (4)

is discussed. The output, y, the input, u, and the disturbance 
or noise terms, v and d, are all possibly double-sided. The 
following Theorem (Theorem 3, [8]) is proved by a wholly 
time-domain argument. 

Theorem 1: Consider the feedback configuration (4). Let a-
kb=0. There exists a (unique) solution y[i] for any i if and 
only if

0])[][(lim ivikda i

i
.       (5) 

Let the open-loop system be unstable, i.e. 1|| a . It follows 
from Theorem 1 that, when (kb-a)=0, the closed-loop system 
does not have a solution for every square summable v and d.
 The above system, (4), is also investigated in the 
transform domain. Let b 0 and v and d be double-sided 
square summable real sequences. The feedback system (4) 
becomes 

)()(;)()]()()[()( zkYzUzDzVzUzGzY  (6) 
where Y(z), U(z), V(z) and D(z) are the bilateral z-transforms 
of y, u, v and d, respectively, and )1/()( 11 azbzzG  is 
the usual transfer function for the open-loop system. On 
eliminating U(z),

)()()()()](1[ zDzVzGzYzkG .    (7) 
Hence,

)()](1[)()()](1[)( 11 zDzkGzVzGzkGzY .  (8) 
The conclusion from the above analysis, which is not 
qualified by any restriction on V(z) and D(z), is that, when 

1|| a , the closed-loop system is stable provided 
1|| akb , including 0|| akb  in contradiction to the 

time-domain analysis. 
It is worthwhile reconsidering the above z-domain 

analysis. In the conventional treatment, [13], the domain of 
X(z), the z-transform of x[i], is the region, XX RzR ||0 ,

in which  
i

izix ||][  converges; that is, X(z) is analytic for 

XX RzR ||  and the sequence, {x[i]}, is the coefficients of 

the Laurent Series for 1|)()(~
qz

zXqX . When {x[i]} is a 

square-summable doubly-infinite sequence, XX RR 1 .
Hence, it is more precise to define the z-transform of x[i] by 
the doublet {X(z),DX}, where DX is the region XX RzR || ,
rather than by X(z) alone. Similar considerations apply to the 

transfer function, 
0

)(
i

ii zazG . It is more precise to 

define the transfer function by the doublet {G(z),DG} where 

Fig. 2. Linear feedback system 

u1 y1d1

y2 u2 d2
C
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DG is the region in which the summation converges. For the 
open-loop system (4), DG is the region |z|>|a|. (Changing DG

is tantamount to changing the system since the coefficients 
of the Laurent Series and so the convolution in (4) changes.) 
Addition is now the doublet manipulation 

}),()({}),({}),({ BABA DDzBzADzBDzA   (9) 
and multiplication  

}),()({}),(}.{),({ BABA DDzBzADzBDzA .  (10) 
Hence, the right-hand side in (7) is more precisely restated 
as

})(),()()({ WGDVG DDDDDzDzVzG , where 
)()()( zVzkDzW . When 1|| WRa , WG DD

and the right hand side of (7) does not exist in a meaningful 
sense. Consequently, the closed-loop system only has a 
solution when WRa || , specifically, 0][iwa i  as 

i  is necessary, 0][iwb i  for some b>|a| sufficient. 
 The z-domain analysis is now in close agreement to the 
time-domain analysis. The source of the problem is not the 
step from (7) to (8) as stated in [8] but is already present in 
(7). Nevertheless, contradictory to the implications of 
Theorem 1, it remains a fact that the closed-loop system is 
stable and the output exists and is square summable when 

1|| akb , including 0|| akb .

B. Graph Theory Analysis 
 In [3], a continuous-time system, 

),(),(: 2211 LLDP , is discussed within the 
context of graph theory. The system, P1, is defined by the 
convolution 

duthty )()()(        (11) 

with ),(2Lu  and )0(0),0()( tteth t . It is 
established that the graph for P1 is not closed and, hence, 
does not satisfy the conditions for stabilisability. The 
argument is outlined below. On the restricted domain, 

),0[21 LD , P1 coincides with the system, 

),(),(: 22
22 LLDP , defined by (11) but with 

)0(),0(0)( tetth t . The graph for P2 in the Fourier 

domain is the closure of )(2
0

CGesT

T
H ,

where TsssG )1/(1)1/()1(  and )(2 CH  is the 
Hardy space on the right-half plane. Furthermore, the graph 
for P1 in the Fourier domain contains )(2

0
CGesT

T
H .

Hence, if the graph for P1 is closed it must contain the graph 
for P2. But there are elements in the graph for P2 (for 
example, the non-causal input-output pair 

)0(0),0()( ttetu t  and 2/||te ) that are not 
contained in the graph for P1 (causal). Consequently, the 
graph for P1 cannot be a closed graph. Moreover, the closure 
of the graph for P1 must contain the graph for P2 and be 

non-causal, [5]. An equivalent discrete-time system 
exhibiting the same difficulties, [7], is 

)()(: 22 ZZDP P ,
i

n
P

ni DunuiPu ,][2][    (12) 

The observation, that the closure of the graph for a system 
may not be causal, motivated the need to determine the 
necessary and sufficient conditions for the graph of a system 
to be causally closable. The discrete-time system, 

)()(: 22 ZZDP P , defined by the convolution 
i

n
PDununigiPu ,][][][    (13) 

is investigated in [5]. (MIMO systems are investigated in 
[7]). The following Theorem (Theorem 15, [5]) is 
established. 

Theorem 2 Let P be an LTI system on )(2 Z , given by (13). 
Further, let }0{)(2 ZDP , then the following 
statements are equivalent 
1)  P causally closable; 

2)
i

Zi

qigqG ][)(~
 belongs to the Smirnoff class. 

where the Smirnoff class [2] is defined by 

Definition 1 An analytic function CCDf f:  is said 

to belong to the Smirnoff class if it can be written 
as 21 / fff  with Hff 21,   and 2f  outer.    

An outer function can have no zeroes strictly inside the unit 
disc [2] and, so, a function belonging to the Smirnoff class 
cannot have any poles in the unit disc. However, 

1|)(~)(
zq

qGzG  is the usual system transfer function. 

Hence, the graph for an exponentially unstable system 
cannot be causally closable. Apparently, graph theory is 
unable to resolve the difficulties encountered with unstable 
systems and double-side inputs. 

C. Attempts at Resolution 
To resolve the difficulties with unstable systems and 

double-side inputs, one possibility is to replace its operator 
by some extension. In [4] and [6], it is proposed to replace 
the operator for a convolution system by its closure. 
(Closing the graph of the operator is not the same as closing 
the operator). Closure of the operator does not necessarily 
preserve causality; for example, in [3], the closure of the 
operator includes the non-causal solution. Furthermore, it is 
shown that the convolution system, )()(: ZZP pp ,

defined by the impulse response 1
1 |}{ k

kba , |a|>1, has no 
)(Zp  closure. A consequence of this observation is that, 

although finite )(Zp  stabilisability requires finite )(Zp

stabilisability, no finite )(Zp  gain stabilisable )(Zp
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extension of the system is possible. A subspace, 
)()(~

ZZ pp , must be specified such that the operator for 

this system is closable in )()(~)(~
ZZZ ppp . The 

subspace, )(~
Zp , needs to be chosen such that 

)(~,0][lim Zxixa p
i

i
. The conclusion reached is 

that it is very difficult to perform a complete analysis of this 
situation and the difficulties remain unresolved. 

A further possibility is proposed in [9]. The standard 
model for a system 

)(;)( yrCudvuGy      (14) 

where G and C are possibly unstable convolution operators 
in )(1 Z , is replaced by

YX
ND

U
Xr

DdNv
u
y

U WW ,    (15) 

where )()(:,,, ZZYXDN  are stable, causal, 
discrete-time, convolution operators in 1 ; more precisely, 
the coefficients of their impulse response are in )(1 Z .
There is a causal unique solution in )()( ZZ

provided 1
WU  is also a causal convolution operator in 1 .

However, on the space of all double-sided sequences, the 
null-space of WU  is not empty, thereby, rendering the 
solutions non-unique. Consequently, when the system inputs 
are zero, the system output may not be zero. The system, 
(15), is, therefore, not linear. The system, (15), is further 
modified to 

XVr
DHdNHv

u
y

YVXV
NHDH

   (16) 

with N and V any causal convolution operators. To regain 
uniqueness, a solution is required to satisfy (16) for all N
and V. Unfortunately, the way to directly apply transform 
methods to these modified models remains unclear.  

III. DIFFICULTIES RESOLVED

In the graph theory analysis, examined in Section II, the 
class of inputs and outputs is chosen to be )(2 Z  and the 
class of operators the convolutions on )(2 Z . Since it is 
integral to the derivation of results, the transition to the 
transfer domain description is through the z-transform. In 
the attempts at resolution, the class of inputs and outputs is 
chosen to be )(Zp , for some 0p , and the class of 
operators again the convolutions. As in [11], the analysis is 
wholly in the time-domain and the transition to the transfer 
domain description is not discussed. 

With the above choice of classes for the inputs, outputs 
and operators, there appears to be no prospect of a self-
consistent framework for feedback systems. However, in 
example 1, the lack of self-consistency is resolved by 
enlarging the class of inputs and outputs from the integers to 
the rational numbers. By analogy, one option for feedback 

systems is, thus, enlargement of the class of inputs and 
outputs. Furthermore, such simple, if unjustified, arguments 
as (6) to (8) must be supported by the transfer domain 
representation equivalent to that enlargement. The option, in 
this case, is to make the transition to the transfer domain less 
direct. These two options are exploited in the self-consistent 
framework discussed below, [12]. 

A. Equivalent Reformulation 
In [12], a causal but possibly unstable open-loop system is 

first recast as an equivalent stable but possibly non-causal 
system. Establishing that the closed-loop system for the 
latter is causal establishes that the closed-loop system for the 
former is stable. For the simple example of [8], (4), the 
equivalent system is 

].[][

1||,][])1[]1[(][
0

ikyiu

aidnivniuabiy
n

n

 (17) 

The solution to (17), 2,1,][],[ pidiv p , is 

][])[][()(][
0

1 idnikdnivakbbiy
n

n  .  (18) 

That stability of system, (4), can be inferred from the 
causality of system, (18), follows from Theorem 3 below. 

Let SS: RS pST , p=1,2, be a linear shift-invariant 
operator such that 

S][],[*][][][ SixixiixixTS

0,0
0,1

][;1||,1||,][)(][ )1(

i

i
ikbaaikbakbi i

and, with the analogous definitions, let 
])[1(][;][],[*][][ )1(

PP ikbaiixixiixT iS

][][;][],[*][][ )1(
GG ikbaiixixiixT iS

)1(
RR ][;][],[*][][ ikbaiixixiixT S .

Theorem 3: (i) pix ][ , ][])[)(( ixixTTI SP

and equations 
pp iyiuiriyiriuiuiy ][],[],[;][][][,][T][   (19) 

have, pir ][ , the solution 
][T][,][*][][TT][ SSP iriuiriiriy .

(ii)   pp
iaix ][ , 0])[( ixTT SR

and equations 
pG iyiuiriyiriuiuiy ][],[],[;][][][,][T][  (20) 

have, ppp
iair ][ , the solution 

][T][,][*][][TT][TT][ SSPSG iriuiriiririy .

Proof: Clearly, pPS SS  and pPS RR ,  but 

p
i

RG ixaix }][:][{ 1SS  and 

}][:][{, i
RG aixixRR . Hence, Six S][ ,

][][*])[*][(][*][][*][][
])[)((

ixixiiixiixiix

ixTTI SP
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since

].[][][)())(1(

][*][

)1()1( iinkbakbnikba

ii

n

nni

Part (i) follows immediately. Furthermore, 

1])[(*])[)(( ixaikbaa iii  when 1][ixa i  and

][)(][][*][ )1()1( ikbakbnkbaii n

n

ni .

Hence, Rix S][ , ])[*][(*][ ixii  exists and equals 
][*])[*][( ixii . Consequently, 

0][*])[*][(][*][])[( ixiiixiixTT SR

and part (ii) follows immediately since RP TTTG .

The solutions to equations (19) and (20) are the same, for all 

pp
iair ][ . Furthermore, the open-loop systems for 

(4) and (17) are equivalent to the operators TG and TP,
respectively, and the solution (18) to TPTS. Hence, system, 
(17), being stable (and causal) implies system, (4), is causal 
(and stable) but only for the inputs pp

iair ][ .

In [11], to recast a causal but possibly unstable open-loop 
system as an equivalent stable but possibly non-causal 
system, the transfer function for the former is analytically 
continued into an analytic region containing the unit circle. 
The transfer function for system, (4), is }||),/({ azazb

and for system, (17), is }||),/({ azazb . For the latter, 
restricting the domain to |z|=1, Tjez

azb |)/(  is a periodic 

function the Fourier coefficients of which are the time series 
for the impulse response of system, (17). The transition to 
the transfer domain is now less direct being the analytic 
continuation of the transfer function. However, it enables a 
straightforward enlargement of the class of inputs and 
outputs to the distributions, [14]. 

B. Distributions 
Let S be the linear space of functions defined almost 

everywhere on the real line. A sub-space, SŜ , is shift-
invariant when, Ŝ)(tf , Ŝ)( atf  for all a. Clearly, S
itself is shift-invariant. Let T be the linear space of linear 
functionals with domain a shift-invariant sub-space of S. In 
addition, let TTD  be the sub-space of functionals with 
domain containing D and continuous in D where D is the 
class of good functions with finite support. Furthermore, let 

TTT DT  be the sub-space of functionals with domain 
containing S and continuous in S where S is the class of 
good functions of infinite support. The restriction of the 
functionals in TD to D is the linear space of distributions, D,
and the restriction of the functionals in TT to S is the linear 
space of tempered distributions, SD . The value assigned to 
each f(t) in its domain, by the functional, Tx , is denoted 
by x[f(t)]. A shifted functional is indicated by a subscript; 

that is, xa is defined such that )]([)]([ atfxtfxa  for all 
f(t) in the domain of x. An operator, T, with domain in T is 
shift-invariant if aa Txy , a , whenever y=Tx.

The following linear sub-spaces of D are required 

}{ :
k

kTk
T axx DD

}{ 0|)|1/(: someforsummablesquareNTT
E Nkax kDD

0;|)|1/(: }{ summablesquareNTT
EN Nkax kDD

for some T>0, where the functional DT  is defined by 

D),()]([ t       (21) 

The definitions of TD , T
ED  and T

END  are specific to some 

value of the parameter, T, and T
ED  and T

END  are sub-classes 
of SD , the class of tempered distributions. 

Each functional Dx  is related by a linear bijection to a 
functional UX , the class of ultra-distributions, such that 

)]([2)]([ ** Xtx  for all D)(t  with )(  the 
Fourier transform of )(t . The functionals, x and X,
constitute a Fourier transform pair with }{xX F  and 

}{Xx -1F . The sub-classes, SU , TU , T
EU  and T

ENU  of U
are defined as those for which the members are the Fourier 
transforms of the members of the corresponding sub-class of 
D. UT and T

EU  are the sub-classes of U consisting, 
respectively, of all periodic functionals in U and SU  of 
period 2 /T.

The most general extension to Fourier series is provided 
by UT. For any sequence {x[i]}, the functional TDx  with 
ai=x[i] is related by the Fourier transform to a periodic 
functional TUX  such that }{xX F  and 

i
iTixXx ][}{1F . There thus exists a linear bijection 

between the class of all sequences and UT. Furthermore, 

i iTi iT eixix ][}][{F

where kTe  is the regular functional defined by the function 
Tjke . The functional 

i iTeix ][  is the Fourier series 
and the sequence {x[i]} the Fourier coefficients for X.

C. Enlargement of Signal Class 
In [12], the classes of inputs and outputs are both chosen 

to be T
ED , i.e. the discrete-time signal, x[i], is represented by 

the distribution, 
i

iTix ][ . The class of systems is chosen 

to be those convolutes with Fourier transforms, i.e. system 
functions, the periodic multipliers in SU  of period 2 /T. In 
this framework, the representation for system (17) is 

kyudvuy ;)(*P      (22) 
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where T
Edvuy D,,,  and 

0

1P
n

nT
nab . The solution to 

(22), T
ENdv D, , is 

dkdvy )(*       (23) 

 where 
0

1)(
n

nT
nakbb . }P{F  and }{F  are the 

multipliers in SU  defined by the functions, )/( aeb Tj  and 

)/( akbeb Tj , respectively. Both P and H are stable, 

[12], in the sense of mapping T
END  into T

END , N , but only 
H is causal. The representation for system (4) is 

kyudvuy ;)(*G      (24) 

where
0

1G
n

nT
nab . Note, that G is not a convolute and 

so the equations, (24), do not necessarily have a solution. 
That existence of stable solutions for (22) can be inferred 
from the causality of (23) follows from Theorem 4 below. 

Let SRSS SS:~
S  be a linear operator such that 

S
)1( )(),(][)()()(~

StfiTtfikbakbtftfS
i

i .

Note that both SS and RS are shift-invariant sub-spaces of S
and that SD S . Let TTS  be the restriction of the 
functionals in T to RS. The shift-invariant linear operator, 
TS, is defined by 

SS ,)](~[)]([:T TxtfSxtfyxy .

The domain of y is the f(t) such that )(~
tfS  is in the domain 

of x. Similarly, the shift-invariant linear operators, TP, TG
and TR, are defined by 

PP ,)](~[)]([:T TxtfPxtfyxy

GG ,)](~[)]([:T TxtfGxtfyxy

RR ,)](~[)]([:T TxtfRxtfyxy .
with the analogous definitions, where 

P
)1( )(),(])[1()(~

StfiTtfikbatfP
i

i

G
)1( )(),(][)(~

StfiTtfikbatfG
i

i

R
)1( )(),()(~

StfiTtfkbatfR
i

i .

Theorem 4: (i) D)(,D tx T , )]([)]([T)TI( SP txtx
and equations 

Dp ,,;,T Tyuryruuy     (25) 
have, DS TDr , the solution 

rurry SSSP T,)TI(TT .
(ii)   D)(,D tx T , 0)]([TT SR tx

and equations 
DG ,,;,T Tyuryruuy     (26) 

have, DS TDr , the solution. 

Proof: Clearly, TDPS ,T,T TT xxx  but TGx and TRx need 
not. DTx , D)(t , )]([)]([)TTI( SP txtx  since 

)](~~)(~[)]([T)TI( SP tPStSxtx  and, D)(t ,

)()~()(~~
tSItPS . Part (i) follows immediately. Also, 

for all DTx , D)(t , 0)]([TT SR tx  since 

)](~~[)]([TT SR tRSxtx  and, D)(t , 0)(~~
tRS . Part 

(ii) follows immediately. 

The solutions to equations (25) and (26) are the same, for all 
SDr . Furthermore, the open-loop systems for (22) and 

(24) are equivalent to the operators TG and TP, respectively, 
and the solution (23) to TPTS. Hence, the solutions to (24) 
exist T

E, Ddv  and are stable. 

IV. CONCLUSION

Clearly by reformulating in the framework of [12], self-
consistency of discrete-time unstable systems with doubly 
infinite time axis is achieved. The class of inputs and outputs 
is greatly enlarged to any polynomially bounded signal. In 
the equivalent transform domain, the standard transfer 
function analysis applies. 
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