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Abstract— This paper deals with the tracking control of
robot systems in presence of perturbations such as modelling
errors and disturbance forces. More specifically, this paper
aims at reviewing the well-established robust computed torque
controller. The first goal consists in establishing a global and
encompassing formalization for a large class of robust computed
torque schemes by using a Lyapunov approach. Then the second
goal is to use this formalization to improve a particular scheme.
It consists in deriving lower gain thresholds by exploiting the
passivity property of robot systems.

I. INTRODUCTION

This paper deals with the tracking control of robot systems
in presence of perturbations such as modelling errors and
disturbance forces. More specifically, this paper aims at
reviewing the well-established Robust Computed Torque
(RCT) controller. Designing a RCT scheme consists in both,
selecting subclasses of robot models and, establishing con-
ditions on the control parameters leading to the robustness
of the system. Generally, it amounts to the elaboration of
a gain threshold beyond which robustness is achieved. One
challenging problem, is to develop the minimum threshold
for the less conservative conditions on the control and the
model.

The Encompassing Formalization (EF) is an extension
of the RCT formalization developed in [1] based on the
Lyapunov direct method. Then for the specific RCT scheme
[2], EF combined with passivity property will be used to
elaborate lower gain thresholds. This result is presented as a
theorem for which an original proof is proposed in the last
part of the paper.

This paper is organized as follows. In section II, the robot
nonlinear model is described and its properties are listed.
Section III deals with the computed torque scheme, going
from the ideal case of perfect model knowledge to the robust
control problem in case of modelling errors. The encom-
passing formalization is presented in section IV followed
by illustrative examples. Under the title of ’Living choice’,
section V, develops the paper theorem and demonstration and
discusses the contributions with respect to the original former
one.

II. ROBOT MODEL

In this paper, the system under consideration is a robot
given by the nonlinear dynamical equation

M(q)q̈ + C(q, q̇)q̇ + g(q, q̇, t) = τ, (1)
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with t ≥ 0 indicating the time dependency1. q = (qi)i=1..n

is a n-dimensional set of coordinates describing the robot
motion (for instance, the set of articular coordinates, or the
vector of the end effector displacements).

• M(q) = (mij)i,j=1..n is the mass tensor defining the
kinetic energy EK as the quadratic expression EK =
1
2 q̇T M(q)q̇.

• C(q, q̇)q̇ is the vector of Coriolis and centripetal forces.
The matrix C = (cij)i,j=1..n is computed using the
Christoffel symbols γijk(q):

cij =
n∑

k=1

γijk(q)q̇k, i, j = 1..n, (2)

where

γijk =
1
2
(
∂mij

∂qk
+

∂mik

∂qj
− ∂mkj

∂qi
) , i, j, k = 1..n. (3)

• g(q, q̇, t) is the negative sum of the gravity forces vector
obtained by derivating the system potential energy EP

in the q coordinates and all friction and disturbance
forces f(q̇, t):

g = −
(
− ∂

∂q
EP + f(q̇, t)

)
. (4)

• τ is the set of forces (torques) acting on the robot
(written in the q coordinates).

The formulas of C and g can be directly derived from the
Lagrange Euler calculation method. In particular, one can
recover formulas (2) and (3) from the quadratic expression
of the kinetic energy.

Mathematical properties

1) M is symmetric positive semi-definite. In fact, singu-
larities could appear for purely mathematical reasons2.

2) Passivity property: Ṁ − 2C is skew symmetric. Pas-
sivity is a noteworthy feature which can be used to
reduce conservatism in establishing stability for some
control schemes (see section V).

3) The Coriolis and centripetal forces have a quadratic
form: C(q, q̇)q̇ could be rewritten as

(
q̇T Υiq̇

)
i=1..n

where (Υi)i=1..n are symmetric matrices of general
term: (γijk)j,k=1..n.

1Implicitly, time starts at t = 0.
2For example, when the system of coordinates q is not minimal, or for

some three dimensional rotation parameterization.
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III. THE COMPUTED TORQUE

As presented in [8], “The computed torque controller was
developed in the early seventies and has been analyzed and
modified extensively. Essentially, this method calculates a
torque to negate the effects of load disturbances due to cross-
coupling from adjacent links, so that the closed-loop robotic
manipulator resembles a linear decoupled system”.

A. Perfect model knowledge

The computed torque is a feedback linearization tracking
algorithm. Let qd(t) be the desired regular trajectory. This
algorithm consists in using the control:

τ = M(q)(q̈d + Kv ė + Kpe) + C(q, q̇)q̇ + g(q, q̇, t). (5)

The position tracking error is defined by

e = qd − q. (6)

Kv and Kp are symmetric positive definite (s.p.d.) matrices.
Consequently the closed loop system (1) and (5) is an
exponentially stable second order system in e:

ë + Kv ė + Kpe = 0. (7)

Remarks:

• It is implicitly assumed that M is s.p.d. This hypothesis
will be assumed throughout the paper.

• There are variations of this formalization. One could,
for instance, add an integral term to transform the PD
into a PID controller.

B. Modelling errors

Unfortunately the former technique requires a perfect
knowledge of the robot (M , C and g). Generally, models
used in control are different from the real ones. There are
two major reasons for it: (a) modelling difficulties (the robot
might be quite complex, some dynamical parameters could
be difficult to estimate,...) (b) implementation requirements
such as high computation speed for real time applications.
The standard computed torque controller accounts for the
last two points and takes advantage of the structure of (5).
It is defined by

τc = Mc(q)(q̈d + Kv ė + Kpe) + Nc(q, q̇, t), (8)

where Mc and Nc are the new design parameters besides Kv

and Kp. The parameter Nc can always be written as

Nc(q, q̇, t) = Cc(q, q̇)q̇ + gc(q, q̇, t) + uc. (9)

The designer could actually express his partial knowledge of
the model thanks to the triplet (Mc, Cc, gc) by using the
Lagrange Euler method. The computed parameters (indexed
by ’c’) could actually be interpreted as the estimations of
the real entities. Furthermore uc is a latitude parameter which
could help the designer to act freely (in an unstructured way)
and directly on the robot. The general closed loop system (1)
and (8) is

ë + Dė + Fe + w = 0, (10)

involving the following quantities⎧⎨
⎩

F = M−1McKp

D = M−1 [McKv + ∆C]
w = M−1 [∆Mq̈d + ∆Cq̇d + ∆g − uc] .

(11)

∆a = a − ac with the alphabetic letter a ∈ {M,C, g}. The
question that will be studied and formalized is:

Under which conditions on the control parameters (Mc,
Cc, gc, uc, Kp and Kv) the system (10) is ’robustly stable’
i.e. uniformly ultimately bounded (the error vector (e, ė)
converges to a ball around the origin within a finite time)?

Unfortunately, due to the modelling errors, this system
presents nonlinear terms F , D and w and no direct con-
clusion can be drawn on its stability. Subclasses have been
derived for which several results have been carried out. For
these subclasses the standard computed torque scheme is
said to be robust. The first goal of this paper, is precisely
to develop an encompassing formalization that gathers the
subclasses found in the literature.

IV. THE ENCOMPASSING FORMALIZATION

A. Preliminary classification

RCT schemes, aim at proving the intuitive idea that is:
by choosing the gains Kp and Kv sufficiently high3, the
non-linearities induced by modelling errors are compensated
and the system is uniformly bounded. In fact, each scheme
states hypothesis and conditions on the model and the
control parameters to extract lower bounds on the gains. One
challenging problem, is to develop the minimum lower bound
for the less conservative conditions on the model and the
control.

To the authors knowledge, RCT schemes can be classified
following the following diagram. The general idea consists
in making a linear change of coordinates. The error vector
is transformed into

(e, ė) → (e, s), (12)

where depending on the new variable s, the tree of possibil-
ities can be drawn

• The transformation is

s = ė + Le, (13)

where L is a strictly positive4 matrix (not necessarily
symmetric). There are two sub-cases

– L(t) depends on time. This is called : the living
choice. Indeed L is determined naturally by the
system dynamics.

– L constant and arbitrarily set by the control de-
signer.

• The transformation is the identity s = ė. It could be
seen as the complementary case of the previous linear
transformation (examples in [3]).

The first case L > 0 (and particularly, the living choice),
will be studied further in this paper. Indeed, it presents

3In a more rigorous way: the lower eigenvalue is sufficiently high
4The definition of L > 0 is ∀x �= 0, xT Lx > 0
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an interesting interpretation. The new dynamical equation
written with this change of coordinates are{

ṡ = (L − D)s +
[
L̇ + Π

]
e − w

ė + Le = s,
(14)

with
Π = −F − (L − D)L. (15)

If L̇ + Π = 0, this transformation could be seen as a back-
stepping strategy where the control would act in two stages.
The first action is a minimization of ‖s‖ (first equation of the
system). Then s acts subsequently (as a control) on e thanks
to the second equation. As L > 0 then e will converge to
0 if s does. More generally, if s converges to a hyper-ball
around the origin then e will do as well.

B. Mathematical formalization

To illustrate this classification, one needs a unifying math-
ematical formalization. Here the direct Lyapunov method
developed by Qu and Dawson [1] is adopted and extended.
The stability of the closed loop system (10) is studied
through the use of two general Lyapunov candidate functions
V1 and V2 (subject to an adequate choice of P and K)

V1 =
1
2
sT Ps, V2 =

1
2
eT Ke. (16)

These Lyapunov candidate functions are parameterized by P
and K which are s.p.d. matrices possibly dependent on time.
The goal of this formalization is to build Lyapunov functions
that are strictly negative except around the origin. This result
implies the uniform ultimate boundedness of the system i.e.
the error vector (e, ė) starts to be bounded after a finite time
(Khalil [6] theorem 4.18).

Illustration by some examples:
• The scheme given in [2] is used as an example for the

living choice of L (that will be improved). By choosing
V = V1 with P = Mc as the system Lyapunov function,
one can recognize the terms involved in it. The general
idea can now be seen as the cancellation of the cross
term sT Mc

[
L̇ + Π

]
e in the time derivative of V :

V̇ = sT
[
Mc(L − D) + 1

2Ṁc

]
s+

sT Mc

[
L̇ + Π

]
e − sT Mcw,

(17)

by setting L as a positive definite solution5 of the non-
autonomous non symmetric Riccati equation [5]

L̇ = −Π = F + (L − D)L. (18)

Thus the time derivative of V is

V̇ = sT

[
Mc(L − D) +

1
2
Ṁc

]
s − sT Mcw, (19)

and, given that ‖Mcw‖ is bounded, a sufficient condi-
tion on L for the uniform ultimate boundedness of the
system is that:

Mc(L − D) +
1
2
Ṁc < 0 (20)

5It could also be seen as the triangulation of the system (14).

• Qu and Dawson in [1], choose to set L constant.

V. THE LIVING CHOICE THEOREM

This section will first present the living choice theorem. It
is an improvement of the theorem given in [2] thanks to the
passivity property and the use of the spectral norm which is
defined for a matrix A, by

‖A‖ = max
x �=0

‖Ax‖2

‖x‖2

. (21)

Afterwards, the passivity property is given up. A second
theorem is derived. The differences between these results
are discussed.

A. Living choice theorem

The theorem hypothesis are:

• H1 M , C, g and their corresponding computed terms
are continuous with respect to q and q̇. M and Mc are
s.p.d.

• H2 Kp = kpI and Kv = kvI are homothetic trans-
formations (possibly dependent on time). The strictly
positive gains kp and kv are related by a proportionality
constant coefficient µ > 0

kp(t) = µkv(t). (22)

• H3 There exist two constants σ and σc such that the
coercivity conditions are satisfied

0 < σ < ‖M‖ and 0 < σc < ‖Mc‖ (23)

• H4 M is continuously differentiable. Cc, ∆C and w
are bounded.

• H4c Mc is continuously differentiable. Ṁc, ∆C and w
are bounded.

Theorem 1: (Living choice theorem) Under hypothesis
H1, H2, H3 and H4, if kv > klife with

klife = κlife

(‖Cc‖
∥∥M−1

∥∥ + ‖∆C‖ + 3µ

+µ
√

‖M‖
σ + α

√‖M‖ ‖w‖
)

,

(24)

and
κlife =

∥∥M−1
c

∥∥ ‖M‖ , (25)

α > 0 being a parameter, then the system (10) is uniformly
ultimately bounded.
In this theorem, passivity was used to eliminate Ṁ in the
expression of the minimum gain klife (it was replaced by
Cc). As Ṁ is unknown (and not necessarily bounded), this
substitution with Cc is very useful since the latter quantity
is a control parameter (which bound is set by the designer).

B. Other theorems

The authors used the same technique as for the living
choice theorem and relaxed the passivity property. They
obtained the “relaxed theorem”. This theorem answers the
following question: in the absence of passivity, how could
we derive a minimum gain threshold without Ṁ?
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Theorem 2: (Relaxed theorem) Under hypothesis H1, H2,
H3, H4c, if kv > krelax with

krelax = κrelax

(√
‖Mc‖

σc

(
2 ‖∆C‖∥∥M−1

∥∥ + µ
)

+α ‖w‖√‖Mc‖ + 1
2

∥∥∥Ṁc

∥∥∥∥∥M−1
c

∥∥ + 3µ
)

,
(26)

and
κrelax =

∥∥∥M
− 1

2
c MM

− 1
2

c

∥∥∥ (27)

then the system is uniformly ultimately bounded.
Actually, the original theorem [2], answers the same question
as before:

Theorem 3: (Original theorem) Under hypothesis H1, H2,
H3, H4c, if kv > k with

k = κ

(√
‖Mc‖

σc

(
(n + 1) ‖∆C‖∥∥M−1

∥∥ + (n + 1)µ
)

+α ‖w‖√‖Mc‖ + 1
2

∥∥∥Ṁc

∥∥∥∥∥M−1
c

∥∥ + 2µ
)

,

(28)
and

κ = κrelax (29)

then the system (10) is uniformly ultimately bounded.
Then with respect to our theorems one major drawback
emerges: the system size n appears in the threshold. This
means that k increases with the size of the system.

C. Proof of the living choice theorem

This theorem is based on the study of the Lyapunov
function V = V1 with P = M (choosing M instead of Mc

in IV-B, will allow to exploit passivity). Its time derivative
is

V̇ = sT
[
M(L − D) + 1

2Ṁ
]
s

+sT M
[
L̇ + Π

]
e − sT Mw.

(30)

Then, the general idea is to cancel the cross term
sT M

[
L̇ + Π

]
e and to ensure the negativity of matrix

M(L − D) + 1
2Ṁ . The following lemma is at the center

of the proof.
Lemma 1: Under hypothesis H1 to H4, if kv > k1 with

k1 = κlife

(
‖Cc‖

∥∥M−1
∥∥ + ‖∆C‖ + 3µ + µ

√
‖M‖

σ

)
,

(31)
then, there exists L(t) on [0,∞[, solution of the system L̇ +
Π = 0 with the initial condition L(0) = µI (I is the identity
matrix) that fulfills the following inequality

‖L(t) − µI‖ < µ, ∀t ≥ 0. (32)

This result is crucial because it allows to ensure the
positiveness and the boundedness of L:

Corollary 1: ∀t ≥ 0, the following inequalities are satis-
fied

0 < L(t) < 2µI (33)
The boundedness of L is then used to show the second
corollary:

Corollary 2: The first term of the Lyapunov function V̇ is
negative because

M(L − D) +
1
2
Ṁ < 0 (34)

This corollary implies that in (30) V̇ is negative when
s is outside a hyper-ball which radius depends on Mw.
Consequently, the final step is to control this radius and to
bound it:

Lemma 2: ∀α > 0, if

kv > klife = k1 + κα
√
‖M‖ ‖w‖ , (35)

then the system is uniformly ultimately bounded

∀t ≥ Tb, ‖s(t)‖ ≤ 1/α
√

σ, (36)

with Tb =
∥∥∥(M

1
2 s)(t = 0)

∥∥∥ /µα2.
Remarks:

• The ultimate bound 1/α
√

σ and Tb can be reduced by
increasing α.

• Here one can use the sliding control sign term [7]
instead of adding κlifeα

√‖M‖ ‖w‖. If k > k1 and
uc = −β sgn(s) with

β > ‖∆Mq̈d + ∆Cq̇d + ∆g‖ (37)

then V̇ is strictly negative and the system is asymptot-
ically stable.

VI. PROOFS

A. Lemma 1

There exists T > 0 such that the differential Riccati
equation (18) with initial condition L(0) = µI admits a
(local) solution L(t) for t ∈ [0, T ]. On this time interval, we
define Q as L − µI . Then Q is given by a Riccati equation
derived from (18){

Q̇ = −DQ + (F − µD) + (Q + µI)2

Q(0) = 0
(38)

From (22) and the formulas of D and F in (10), we obtain

Q̇ = −kvM−1McQ−M−1∆C(Q+µI)+(Q+µI)2, (39)

in which, the gain kp disappears from the equation of
evolution of Q.
Assume momentarily the matrix M−1Mc positive definite,
and as kv can be as high as needed then in equation (39) Q̇
can always be ’set negative definite’6. This idea will be used
in the following. However, despite the fact that both M−1

and Mc are positive, their product is not. This justifies the
transformation

Y = M
1
2 Q, (40)

where M
1
2 is the s.p.d. square root of M . Then, to fulfill

condition (32), it is sufficient to have (from (23))

‖Y ‖ <
√

σµ, (41)

6i.e. ∀x, xT Q̇x < 0
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Eigenvalues variations

In order to prove the boundedness of the spectral norm
of Y , we will study the time variations of its eigenvalues.
Let (λi)i=1..n be the set of Y T Y eigenvalues. As Y T Y
is continuously differentiable, then (Kato [4], theorem 5.4)
there exists a unitary xi belonging to the proper subspace
associated to λi such that

λ̇i = xT
i

(
d

dt
Y T Y

)
xi. (42)

Moreover λi is continuously differentiable (Kato [4], theo-
rem 6.8). From (40)

d

dt
Y T Y =

d

dt
QT MQ = 2QT MQ̇ + QT ṀQ. (43)

Therefore the equation of evolution of λi can be summarized
as:

λ̇i = −2kvυi + ωi, (44)

where
υi = xT

i QT McQxi ≥ 0, (45)

and

ωi = 2xT
i QT

(−∆C(Q + µI) + M(Q + µI)2
)
xi

+xT
i

(
QT ṀQ

)
xi.

(46)

The passivity property simplifies the equation of ωi and gives

ωi = 2xT
i QT

(
CcQ − µ∆C + M(Q + µI)2

)
xi, (47)

which satisfies (after replacing Q by M− 1
2 Y and bounding)

|ωi| ≤ 2W, (48)

with

W = ‖Y ‖2
(
‖Cc‖

∥∥M−1
∥∥ + 2µ +

∥∥∥M− 1
2

∥∥∥ ‖Y ‖
)

+ ‖Y ‖
(
µ ‖∆C‖

∥∥∥M− 1
2

∥∥∥ + µ2
∥∥∥M

1
2

∥∥∥)
.

(49)

Besides, υi fulfills the inequality

υi ≥
∥∥M−1

c

∥∥−1 ‖M‖−1
xT

i QT MQxi = λi/κlife, (50)

with
κlife =

∥∥M−1
c

∥∥ ‖M‖ . (51)

Final step: proof by contradiction: Now assume that
there exists an instant tc ∈ [0, T ] at which ‖Y ‖ reaches for
the first time the bound

√
σµ i.e. for 0 ≤ t < tc

‖Y (t)‖ <
√

σµ and ‖Y (tc)‖ =
√

σµ. (52)

We will show that by choosing kv > k1, the derivative
d
dt ‖Y ‖ at t = tc is strictly negative. Consequently, such
instant tc doesn’t exist and condition (41) is fulfilled for
t ∈ [0, T ]. Moreover T can be extended to infinity, because
otherwise, there would exist an escape time which contradicts
the non existence of a finite tc.

The contradiction: Let t = tc and λj one of the
maximum eigenvalues of Y T Y at this instant, then

‖Y (tc)‖2 = λj(tc) = σµ2, (53)

and from (44), (48), (50):

λ̇j ≤ −2(kv
λi

κlife
+ 2W ). (54)

So if kv > k1 with

k1 = 2W
κlife

2λj(tc)
, (55)

(k1 expression is expanded in (31)) then

λ̇j(tc) < 0, (56)

and
d

dt
‖Y ‖

∣∣∣∣
t=tc

=
1
2
λ̇j(tc)λ−1

j (tc) < 0. (57)

B. Corollary 1

Using the singular value decomposition of Q = UΣV T

we have QT Q = V Σ2V T . As Σ2 is the diagonal matrix
of QT Q eigenvalues, what we have been showing so far is
that they are bounded by µ2. Consequently (as U and V are
unitary) ∀x, ∣∣xT Qx

∣∣ =
∣∣xT UΣV T x

∣∣ < µ ‖x‖2
2 . (58)

Consequently

−µxT x < xT Qx < µxT x, (59)

so

0 < xT Lx < 2µxT x, (60)

and finally

0 < L < 2µI. (61)

C. Corollary 2

In order to show M(L − D) + 1
2Ṁ < 0, examine further

M(L − D) +
1
2
Ṁ = −kvMc − ∆C + ML +

1
2
Ṁ. (62)

Then (using passivity) it is equivalent to show the negativity
of

M(L − D) +
1
2
Ṁ = −kvMc + M(M−1Cc + L). (63)

The decomposition in two blocks gives this sufficient condi-
tion on kv

kv > κlife(
∥∥M−1

∥∥ ‖Cc‖ + 2µ). (64)

As k1 includes κlife(
∥∥M−1

∥∥ ‖Cc‖+2µ) then it is sufficient
to have k > k1. Moreover we have

k1 > κlifeµ + κlife(
∥∥M−1

∥∥ ‖Cc‖ + 2µ). (65)
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D. Lemma 2

Actually, so far, no attention has been paid to the resid-
ual error w. If it is bounded then the last conditions are
sufficient to show the uniform ultimate boundedness of the
system (Khalil [6], theorem 4.18). Otherwise, a correction
term has to be added to the minimum gain to ensure the
boundedness of the convergence radius. It is sufficient to
add κlifeα

√‖M‖ ‖w‖ to the gain k1 so that the new gain
is

klife = κlife

(‖Cc‖
∥∥M−1

∥∥ + ‖∆C‖ + 3µ

+µ
√

‖M‖
σ + α

√‖M‖ ‖w‖
)

,

(66)

where α is a strictly positive parameter. Indeed if kv > klife

the Lyapunov derivative

V̇ = sT

[
M(L − D) +

1
2
Ṁ

]
s − sT Mw, (67)

satisfies, thanks to (65) and (66)

V̇ < ‖M‖ ‖w‖
∥∥∥M

1
2 s

∥∥∥ (−α
∥∥∥M

1
2 s

∥∥∥ + 1) − µ
∥∥∥M

1
2 s

∥∥∥2

.

(68)
Consequently, if

∥∥∥M
1
2 s

∥∥∥ ≥ α−1 then V̇ < 0 and

V̇ < −µα2, (69)

which means that
∥∥∥M

1
2 s

∥∥∥ goes to the hyper-ball of radius

α−1 in a time less than Tb:

Tb =
∥∥∥(M

1
2 s)(t = 0)

∥∥∥ /µα2. (70)

VII. CONCLUSION

The RCT controller has been studied. An encompassing
formalization has been carried out and a particular scheme
was improved. For this scheme, a theorem deriving a lower
gain threshold has been established and proved. Eventually,
the differences between this paper result and the original
one have been discussed. Besides the passivity property
contribution, the use of the spectral norm, has made the
minimum lower threshold independent of the size system
n.
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