
Abstract— In this paper, set and trajectory-based approaches 
to interval observation of uncertain systems are presented and 
compared. The kind of uncertain systems considered are those 
systems described by a discrete linear time-invariant model with 
parameters bounded in intervals. The aim of this paper is to 
study the viability of using set-based approaches coming from 
the interval analysis community to solve the interval 
observation problem. Set-based approaches are appealing 
because of a lower computational complexity compared to 
trajectory-based approaches but they suffer from the wrapping 
effect and do not preserve uncertain parameter time-invariance. 
On the other hand, trajectory-based approaches are immune to 
these problems but their computational complexity is higher. 
However, these two families of approaches are equivalent when 
the observer satisfies the isotonicity condition, which give 
criteria to tune the observer gain.  Finally, these two families of 
interval observation philosophies will be presented, analysed 
and compared by using them in an example. 

I. INTRODUCTION

N  this paper, set and trajectory-based approaches to 
interval observation of uncertain systems are presented 
and compared. The kind of uncertain systems considered 

are those systems described by a discrete linear time-
invariant model with parameters bounded in intervals that 
can be expressed in state space form  
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being  the vector of uncertain parameters with their values 
described by a  region of confidence  of box type, i.e. 

by an interval for every uncertain parameter: , ii i .

A system described by a model with parameters bounded in 
intervals is called an interval dynamic system. When such a 
model is used for simulation or state observation, the 
evolution of system states at every time instant will not be 
described by a point in the state space but by a set [17]. In 
general, the exact set will be very complicated to be 
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described on a computer [1]. Typically, this set is 
approximated by, for example, a box, a polytope or an 
ellipsoid. This type of simulation or state observation is 
known as set-membership.  In case that the approximate set 
is the interval hull of the exact set, then, we talk about 
interval simulation or state observation. A recent survey of 
this field can be found in [17]. In the literature, algorithms 
can be classified according to if they compute the 
approximate set of estimated states using one step-ahead 
iteration based on previous approximate sets (set-based 
approaches) [1][4][14], or a set of point-wise trajectories 
generated by selecting particular values of  using 
heuristics or optimisation (trajectory-based approaches)
[15][16][18]. In the first case, the set of states ( )kX  is 
approximated at each iteration and some propagation 
algorithm is used to produce the approximate set of states 

( 1)kX . This approach is affected by several problems 
(specially, in case that the approximate set is the interval 
hull): the wrapping effect, range evaluation of an interval 
function (in this case, the state space function) and the 
uncertain parameter time dependency that will be reviewed 
in Section III. However, in the second case, the interval hull 
of ( )kX is built following real trajectories generated by 
selecting particular values of . Consequently, this 
approach overcomes the wrapping effect and preserves the 
uncertain parameter time dependency, but the problem of the 
interval function (in this case the trajectory function 

( , , , )k ox u x ) range evaluation still remains. However, set-
based approaches present a lower computationally 
complexity than trajectory-based approaches being their 
main interest. 

The aim of this paper is to study the viability of using set 
based approaches coming from the interval analysis 
community to solve the interval observation problem. Set-
based approaches are appealing because of a lower 
computational complexity but they suffer from the wrapping 
effect and do not preserve uncertain parameter time-
invariance. On the other hand, trajectory based approaches 
are immune to this problem but the computational 
complexity is higher.  Additionally, it will be shown that 
selecting the observer gain in such a way that the interval 
observer verifies the isotonicity condition, both approaches 
provide the same results. To the knowledge of the authors, 
algorithms for interval observation presented in this paper 
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have never been compared, being another contribution of this 
paper.

The structure of rest of the paper is the following: in Section 
II, interval observers are introduced and reformulated as 
interval simulators. In Section III, problems to be considered 
in interval observation are presented. In Section IV and 
Section V, set and trajectory-based approaches to interval 
observation are presented, respectively. In Section VI, the 
selection of the observer gain for the resulting interval 
observer avoids the wrapping effect and the problem of 
uncertain parameter time-invariance is discussed. In Section 
VII, set and trajectory- based approaches are compared using 
a test example discussing the effect of the observer gain. 
Finally, in Section VIII, the main conclusions are presented. 

II. INTERVAL OBSERVATION

A. Interval  Simulation 

Definition 1. The solution set of a system, whose model is 
described by (1) for the time interval [0,N] consists of 

0, ) ( , , , ) : 0, , ,o o o( N k k NX x u x x X , where 

( , , , )okx u x  denotes the solution of (1) at time k for some 
vector of parameters  and some initial condition 

o ox X  at time k=0. The set of values for a fixed time 
interval [0,N] will be referred to as the reachability set at 
time k and denoted by 

( ) ( , , , ) : ,o o ok kX x u x x X .

Herein, it will be assumed that the uncertain system is stable 
for all . This assumption will allow X(k) to be a 
bounded region for each [0, )k .

Definition 2. The interval simulation of a system, whose 
model is described by (1), for the time interval [0,N] consists 
in computing the interval hull of the reachability set X(k),
i.e., the smallest interval vector containing it: X(k) 

( ), ( )k kx x , where  is used to denote the interval hull

of X, for all k [0,N].  The sequence of interval vectors 
X(k) with k [0,N] will be called the interval solution or

envelopes of (1) . 

B. Interval State Observation 

Let the model for the state observer of the system described 
by (1) be formulated as 

1ˆ ˆ ˆ( ) ( ) ( )
ˆ ˆ( )

k k k k k

k k
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(2)

where: is the vector of uncertain parameters and K
the observer gain, that has been designed to stabilise it. This 
observer is known as an interval observer. Using (2) as the 
expression of the estimator model, it can be rearranged as a 
discrete-time system with two inputs that can be reorganised 
as: 

1ˆ ˆ ˆ( ) k o
k k o k o k

k

u
x A KC x B K A x B u

y
(3)

where: oA A KC , oB B K  and t
kk

0
k yuu .

Then, the problem of interval state observation can be 
formulated as a problem of interval simulation. 

III. PROBLEMS TO BE CONSIDERED IN INTERVAL 
OBSERVATION

A.  Wrapping effect 

The problem of wrapping is related to the use of a crude 
approximation (its interval hull) of the interval observer 
solution set and its iteration using one-step ahead recursion 
of the state space observer function. This problem does not 
appear if instead the estimated trajectory function is used. On 
the other hand, when using the one-step ahead recursion 
approach, at each iteration, the true solution set  is wrapped 
into a superset feasible to construct and to represent on a 
computer (in this paper, its interval hull ).  Since the 
overestimation of the wrapped set is proportional to its 
radius, a spurious growth of the enclosures can result if the 
composition of wrapping and mapping is iterated [7]. This 
wrapping effect can be completely unrelated to the stability 
properties of the observer, and even stable observers are 
shown to exhibit exponentially fast growing enclosures that 
are useless for practical purposes. Not all the interval 
observers exhibit this problem. It has been shown that those 
that are monotone with respect to states do not present this 
problem. This kind of observers (systems) is known as 
isotonic [3] or cooperative [5]. In case of linear discrete-time 
systems, a system is isotonic if all the elements of the system 
matrix A are positive [3]. 

B. Range evaluation of an interval function 

Many approaches to interval observation need to evaluate 
the range of an interval function at any iteration, in order to 
determine the interval hull for systems states. One possibility 
for evaluating the function range of the function is to use 
interval arithmetic [10]. But, although the ranges of basic 
interval arithmetic operations are exactly the ranges of the 
corresponding real operations, this is not the case if the 
operations are composed. This phenomenon is termed as 
interval dependence or multi-incidence problem [10]. 
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C. Temporal variance on uncertain parameters 

An additional issue that should be taken into account is 
how uncertain parameter time-invariance is assured since set-
based approaches are based on one step-ahead algorithms do 
not preserve it. Instead they consider implicitly uncertain 
parameters as a time varying [4][14]. This is because the 
relation between parameters and states is not preserved at 
each iteration since every parameter contained in the 
parameter set is combined with every state in the state set 
X(k) when determining the new state set X(k+1).  On the 
other hand, trajectory-based approaches allow considering 
that uncertain parameters are unknown but bounded in their 
confidence intervals and they cannot vary at each time step 
[15][16].

IV. SET BASED APPROACHES TO INTERVAL OBSERVATION

A. Moore’s algorithm [10]

This algorithm, when applied to a linear discrete-time system 
as (3), computes the interval for estimated states )1k(x̂
at time k+1 using as initial condition the interval for 
estimated states )k(x̂  at time k. It is based on computing 
the natural interval extension of the state space function by 
replacing each occurrence of )k(x̂  and by its 
corresponding interval and each standard function by its 
interval evaluation (absolute algorithm) [10]: 

)k()()k(ˆ)()1k(ˆ ooo uBxAx (4) 

However, as explained in Section III.B replacing real 
numbers in a function by intervals often leads to large 
overestimations that derive in an interval for estimated states 

)1k(x̂  that always increases, even if the true solution 
contracts. A better approach is to apply the interval mean-
value theorem [10] to equation (4) (relative algorithm):

))k(ˆ)k(ˆ)((

)1k(ˆ)1k(ˆ

co

c

xxA
xx       (5)

where )k()ˆ()k(ˆ)ˆ()1k(ˆ oococ uBxAx  with 

)1k(ˆ cx , )k(ˆ cx  and ˆ  being the mid-points respectively 
of intervals )1k(x̂ , )k(x̂  and .

However, this method suffers from the wrapping effect in 
some ill-conditioned systems, as for example, those with 
eigenvalues with very different magnitudes  [11]. 

B. Lohner’s algorithm [9] 

In cases where Moore’s algorithm is ill-conditioned,  
equation (5) should be modified according to [9]: 

)k()()1k(ˆ)1k(ˆ kc rAxx (6)

and then: )k()()1k( k
1
1k rAr

with: oo ˆ)0( xxr , IA0 and )1k(ˆ cx , )k(ˆ cx

and ˆ  being the mid-points of their corresponding intervals 
as in (5). 1k  is chosen as the Q-factor from the QR-
factorisation of the mid-point of k)(A . Lohner’s 
algorithm can avoid the wrapping effect in many systems but 
Kühn [7] has discovered some cases where this approach 
fails. 

C. Neumaier’s algorithm [12] 

Instead of using the interval hull of the set of estimated 
states, Neumaier [12] proposes to use the smallest ellipsoid 
containing it. An ellipsoid is a set of the form: 

0r,r,),,( nLzrLzE (7) 

where nz  is the centre, nnL  is the axis matrix and 
r is the radius. Neumaier’s algorithm generalises for an 
uncertain system described as (3), the property that for a 
linear certain system, given the ellipsoid enclosing the set of 
possible states at time k such that  )r,,(ˆ kkk Lzx E , then 
the enclosing ellipsoid at time k+1 )r,,(ˆ 1k1k1k Lzx E
can be constructed by propagating separately the centre and 
axis matrix according to: 

k1k

kk1k

ALL
BuAzz

  (8)

being implicitly relative. Then, the interval simulation can be 
generated by computing the interval hull of the ellipsoid 

),,( kk rLzE  at each time instant according to 

tikk r,rˆ Lzx (9)

where i  represent the ith row of the matrix Lt.

The advantage of using ellipsoids instead of parallelepipeds 
as in Moore’s and Lohner’s algorithm is that the rotation of 
the state space of the interval system is implicit being not 
necessary to make additionally computations.  The 
disadvantage is that the algorithm for computing with 
ellipsoids is more complicated than those of parallelepipeds 
and in general the wrapping effect when uncertain 
parameters are considered is not avoided [12].  

D. Kühn’s algorithm [7] 

Kühn’s algorithm [7] is based on approximating the set of 
system states using zonotopes. A zonotope Z of order m is 
the Minkowski sum 
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m1 PPZ (10)

of m parallelepipeds iP . The order m is a measurement for 
the geometrical complexity of the zonotopes. It can be 
chosen freely and is a performance parameter for the Kühn’s 
algorithm. Given the zonotope 1kZ  enclosing the set of 

estimated states   ˆ ( k 1)X by system observer (3), then the 

set of estimated states ˆ ( k )X is enclosed by the following 
zonotope 

)( 1kkkk ZRZ TE    (11) 

where kT are square matrices and kE are intervals such that 

1kkk1koo1k )()()( ZZ TEuBAf (12)

and the reduction operator R is defined in the following 
way: let m1 PPP 0Z be a m+1 zonotope and 

m1 be the largest integer such that: 

)(diam)diam( 11 PPPP 0 (13) 

or 1 otherwise, then: 

:)(ZR m11 ) PPPP(P 0  (14)

According to [1], the set of estimated states ˆ ( k )X  is a 
zonotope when the state function f is linear and only 
uncertainty in initial conditions is considered. Then, Kühn’s 
algorithm provides a good solution to the enclosure of ˆ ( )kX .
However, only including uncertainty in parameters, the set 

ˆ ( )kX becomes a more complex than a zonotope [1]. In this 
case even approximating this set using subpavings [8] and 
algorithms to propagate them [7], the wrapping effect could 
no avoided at a reasonable computing time. However, 
Kühn’s algorithm can manage parameter uncertainty bigger 
than in the case of Lohner’s and Neumaier’s algorithms, as it 
will be shown in the test example.  

V. TRAJECTORY BASED APPROACHES TO INTERVAL 
OBSERVATION

A. Puig’s algorithm [15] 

At any time instant k, the observer state region kX̂  will be 

bounded by its interval hull kk k
ˆ ˆ ˆ,X x x where: 

k 1
k k 1 j

k o o o o
j 0

ˆ ˆmax ( ) (0 ) ( ) ( ) ( j )x A x A B u (15) 

subject to: and o 0
ˆx̂ X and kx̂  is computed 

substituting max for min, in the previous optimisation 
problem. In deriving Eq. (15), it has been assumed time-
invariant uncertain parameters. This is why this approach is 
known as time-invariant [15]. At the same time that time 
invariance is preserved, the wrapping effect is avoided due to 
the fact that uncertainty is not propagated from step to step 
but instead always from the initial state. This approach yields 
the accurate time-invariant interval observation without any 
conservatism, assuming that the previous optimisation 
problems could be solved with infinite precision and the 
global optimum could be determined. However, in practice it 
only could be solved with a given precision. On the other 
hand, one of the main drawbacks of this approach, besides its 
high computational complexity, is that the objective function 
is a polynomial with degree increasing by one at every 
iteration [16]. So, the amount of computation needed is 
increasing with time being impossible to operate over a large 
time interval. Then, some kind of approximation should be 
introduced to make the approach more tractable. If the 
observer given by Eq. (3) is asymptotically stable, any 
transients settle to negligible values in a finite-time, more 
precisely in ts/T samples, being ts the observer settling time 
and T the sampling time. This assumption implies that the 
outputs of the observer at time k depend only on the inputs 
that occurred during the last ts/T samples. Therefore, for any 
time k, it is possible to approximate algorithm (15) using a 
sliding window of the length L of the order of the settling 
time measured in number of samples [16]: 

k 1
L k 1 j

k o k L o o j
j k L

ˆ ˆmax ( ) ( ) ( )x A x A B u (16)   

subject to:
and k L k L

ˆx̂ X

and kx̂  is computed substituting max for min, in the 
previous optimisation problem. Of course, with this 
approximation parameter time-invariance is only guaranteed 
inside the sliding window. This is why this approach is called 
almost time-invariant [15].

B.  Kolev’s algorithm [6] 

Kolev proposed an algorithm that provides an inner solution
for the interval observation problem by solving the 
optimisation problems (15) involved in previous algorithm 
but subject to: )(V and o o

ˆˆ V( )x X  where: 

)(V and o
ˆV( )X denotes the set of vertices of the 

uncertain parameters and initial states sets, respectively.  
This is why this algorithm is also known as a vertices 
algorithm. According to Nickel [13], the inner solution 
coincides with the interval hull of the solution set for some 
systems, those without the wrapping effect that verify that 
their state function is isotonic with respect to all state 
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variables [3].  For such systems, set and trajectory-based 
approaches will provide the same results.  

VI. DESIGNING THE OBSERVER GAIN TO AVOID THE 
WRAPPING EFFECT AND TIME-INVARIANCE PROBLEMS

Given a non-isotonic interval system described by (1), an 
interval observer described by (2) could be designed to fulfil 
the condition of isotonicity if all the elements of the observer 
matrix A0 satisfy 0o

iia . This implies that all the coefficients 
of the system matrix A should be cancelled through the 
corresponding observer gain. Such requirement also implies 
which measurements should be available in order the 
isotonic interval observer could be designed. In case of an 
isotonic observer is designed through appropriate selection 
of the observer gain, the wrapping effect is not present 
[3][5]. Consequently, a simple iterative scheme as Moore’s 
algorithm will work providing the same results than Puig’s 
Algorithm starting from the initial state (i.e, infinite window 
length). That means, the optimisation problem (15) can be 
simplified since computations must not be referred to the 
initial state but only to previous iteration (i.e,  window length 
L=1).  Such equivalence establishes that in case isotonicity 
condition is fulfilled, set and trajectory based approaches to 
interval observation produce the same results, as already 
noticed in Section V.B.   Then, in this case, interval 
observation using any of the (set or trajectory based) 
algorithms presented in this paper will provide the same 
results. Additionally, as stated in Section III, considering 
either a trajectory or set-based approach to interval 
observation parameter time-invariance is or not, respectively, 
preserved. In [2], the relation between the observations 
produced preserving or not uncertain parameter time-
invariance for the same interval observer is presented. In 
particular, it is established that yingvariantvarin IOIO  where: 
IO means interval observation. This means that interval 
observing an uncertain time-invariant system using the time-
varying approach can be very conservative. However, in case 
of isotonic discrete-time observer a set-based (therefore 
time-varying) interval observation based on one-step 
recursion and a trajectory based (therefore time-invariant) 
interval observation based on recursion (15) or even vertices 
algorithm presented in Section V.B will provide the same 
interval observation [3]. This result can be interpreted 
intuitively: interval hull of states at any iteration can be 
computed independently from uncertain parameters and 
states since parameters and states are decoupled because of 
the isotonicity condition. In this case, not preserving the 
relation between parameters and states is not important at all. 

VII. SET VERSUS TRAJECTORY-BASED APPROACHES ON A
TEST EXAMPLES

An example based on a linear interval system proposed in 
Neumaier [12] is considered: 

1 1 1 1 2 2

2 1 1 1 2 3

( ) ( 1) ( 1)
( ) ( 1) ( 1)

x k x k x k

x k x k x k
(17)

with uncertain initial conditions: x1(0) [-1,1],  x2(0) [-1,1] 
and parameters: 1 0.4,0.5 , 2, 3 [-10-12,10-12]. In order 
to show the effectiveness in propagating state uncertainty, 
first previous algorithms will be tested when applied to solve 
the interval observation problem in the hardest conditions, 
i.e., when observers gain K is equal to zero (interval 
simulation). Later, the observer gain will be appropriately 
tuned such that the resulting observer will satisfy the 
condition of isotonicity [5] discussed in last section. System 
given by Eq. (17) suffers from the wrapping effect because it 
does not fulfil the isotonicity condition [3]. So, the naive 
approach based on the absolute Moore’s algorithm will fail. 
Fig. 1 shows the results of the application of algorithms 
presented in this paper. It can be observed that algorithms 
which use set propagation, except Moore’s algorithms 
(absolute and relative), avoid the instabilisation due to the 
wrapping effect, but just provide an outer solution with a 
certain degree of conservatism depending on the kind of 
geometry used to approximate the real state set. Neumaier’s 
and Kühn’s algorithms provide a better approximation 
because of the use of ellipsoids and zonotopes (of order 
m=5), respectively, than Lohner’s algorithm which uses 
parallepipeds. Additionally, an inner solution is obtained 
taking the vertex solution provided by Kolev’s algorithm 
providing in this case a good approximation of the exact 
solution derived using Puig’s algorithm referring all the 
computations to initial state. If the parameter uncertainty is 
increased in such way that 1 0.4,0.7 , all set-based 
algorithms would fail, while only trajectory based 
approaches (Kolev’s and Puig’s algorithms) could avoid the 
increase of uncertainty due to the wrapping effect. Finally, 
the observer gain matrix will be selected in such a way that 
the resulting observer satisfies the isotonicity condition In 
particular, in this case, the observer gains should satisfy  

11 1 11 11 1

12 1 12 12 1

21 1 21 21 1

22 1 22 22 1

0

0

0

0

o

o

o

o

a k k

a k k

a k k

a k k

(18)

assuming that the two states are measured ( 1 1( ) ( )y k x k

and 2 2( ) ( )y k x k , i.e., [1 0;0 1]C ). Additionally, the 
observer should be stable for all  and with a dynamic 
faster than that of the observed system. Selecting 21 1k
in order to the resulting observer satisfies isotonicity 
condition, and selecting the observer poles for the nominal 
model 0

1,2 0.2p , faster than the nominal system poles 
located at 1,2 0.45 0.45p j , the following values for the 
rest of observer gains are: 11 22 120.25, 0k k k . The 
stability of the interval observer has been checked using 
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interval tools presented in Jaulin [8]. In Figure 2, results of 
designed isotonic interval observer are presented with 
uncertain initial conditions: x1(0) [-1,1],  x2(0) [-1,1] using 
any of the methods presented in this paper. This allows 
verifying that if the observer gain is selected to fulfil the 
isotonicity condition all algorithms produce the same results. 

VIII. CONCLUSIONS

Results on previous example have allowed showing the 
difficulty of interval observing/simulating a system when 
uncertain parameters are present, even it the system is linear. 
After analysing those results, we can conclude that although 
set-based approaches look appealing because their lower 
complexity compared with trajectory-based approaches, in 
many cases they can derive in unstable observations because 
of the wrapping effect. This seems to reinforce the use of 
trajectory-based approaches, but still in this case the 
computational complexity limits their applicability where 
real-time computations are required. Reached this point, the 
need to design the observer gain such that the isotonicity 
condition is satisfied seems a possible solution. In this case, 
set-based approaches will not suffer from the wrapping effect 
and will provide the same results as trajectory based 
approaches. Additionally, the problem of uncertain 
parameter time-invariance is solved. As a future research, the 
idea of selecting the observer gain to fulfil the isotonicity 
condition should be further investigated in order to better 
understand the limits of applicability.  
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Figure 1. Algorithms results comparison  

Figure 2. Isotonic interval observer
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