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Abstract—In this paper, energy-based nonlinear controllers
are designed to globally asymptotically stabilize an underactu-
ated mechanical system. An interesting aspect of the problem is
that the equilibrium points of some states are defined by contact
with a surface while the equilibrium points of remaining states
are defined by noncontact positions. To stabilize the states of
the system an energy coupling strategy is employed. The energy
coupling approach is motivated by the desire to improve the
transient response of the system. A Lyapunov stability analysis
and numerical simulations are provided to demonstrate the
stability and performance of the developed controllers.

I. INTRODUCTION
The control of mechanical systems subject to impact is a

theoretically interesting problem with practical importance.
Large stresses arise as a consequence of impact, demanding
that the impact forces be properly recognized and con-
trolled to prevent system failure. As described in [12], some
useful short-duration effects such as high stresses, rapid
dissipation of energy, and fast acceleration and deceleration
may be achieved from low-energy sources by controlling
the impact of robots operating at low force levels. Some
robotic examples in which controlled contacts are required
include: the impact between a walking robot and the ground,
the interaction of a robot manipulator with an object, and
the cooperation and contact of multi-robots. One of the
difficulties in controlling impact is that the equations of
motion are quite different when the system status changes
quickly from a noncontact condition to a contact condition.
Thus, it is challenging to develop a uniform controller that
behaves well in both free motion and contact conditions.
For the past decade, many researchers have addressed the

modeling and control of impact [1]-[3], [7], [9]-[14]. In
[14], a switching control strategy is designed to guarantee
the stability of the impact controller. In [10], a stable
discontinuous transition controller is proposed to deal with
the contact transition problem. In [9], Lee et al. use a
hybrid impedance/time-delay controller that establishes a
stable contact and achieves the desired dynamics for contact
or noncontact conditions. In [11], a discontinuous Lyapunov-
based control scheme is introduced to regulate the impact
of a hydraulic actuator coming in contact with a nonmoving
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environment. In [12], a continuous PD controller is proposed
to control the impact of an underactuated system where the
actuators are used to regulate the contact coordinates, and the
noncontact coordinates are indirectly regulated. Particularly,
two kinds of models are proposed in [12] to describe the
impact phenomenon: smooth impact and nonsmooth impact.
In [7], static and dynamic PD controllers are proposed
to address global asymptotic stabilization problem of the
underactuated mechanical system subject to smooth impact.
The result in this paper is motivated by the idea that

energy-based controllers (e.g., [4] [5]) can be used to couple
the states of the underactuated system as a means to improve
the transient response over an uncoupled controller (e.g.,
the PD controllers in [7] and [12]). The energy coupling
controllers designed in this paper globally asymptotically
stabilize the generalized free motion and contact coordinates
of an underactuated mechanical system subject to impact
conditions. An interesting aspect of the problem is that the
equilibrium points of some states are defined by contact
with a surface while the equilibrium points of the remaining
states are defined by noncontact positions. A Lyapunov
stability analysis and numerical simulations are provided to
demonstrate the stability and performance of the developed
controllers.

II. MOTIVATING EXAMPLE
An example of the class of systems considered in this

paper can be described by the mass spring system introduced
in [7] (several other academic examples are also provided in
[7]) that is depicted in Fig. 1. As depicted in Fig. 1, the
system consists of two masses 1 and 2 that are coupled
to each other and to a fixed surface through springs. The
generalized coordinates, denoted by ( ) R , that denote
the positions of the masses are defined as

4
=
£ ¤

(1)

where ( ) R = 1 and ( ) R =
1 defined as

4
=
£

1 · · · ( )

¤
(2)

4
=
£

1 · · · ¤
(3)

denote the generalized coordinates of the states associated
with masses that are not in contact and that are in contact
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with a surface, respectively. For the system in Fig. 1, = 2
and = 1. Based on the definitions given in (1) and (3) the
following relationship can be developed

= (4)

where R × denotes a constant transformation matrix.

q2q1

M2

M1

0

k1

k2
F

Fig. 1. The mass spring system represents an academic example of a
general underactuated Euler-Lagrange system with contact and noncontact
states.

The objective for this example is to design an input force
( ) so that 2 is regulated to be in contact with the

surface of a fixed object while 1 is regulated to a stable
noncontact equilibrium point. Intuitively, if the controller
does not actively compensate for oscillation by 1( ) = ( )
the state will exhibit a long settling time, especially for
systems with low stiffness. The control development in this
paper is motivated by the desire to couple the states through
an energy-based method as a means to improve the transient
response. Specifically, in the subsequent sections two energy
based controllers are developed for general Euler-Lagrange
systems in free motion and in contact conditions. The sta-
bility of the controllers is analyzed through a Lyapunov-
based analysis. A simulation is also provided for the example
of mass spring system to illustrate the performance of the
developed energy coupling controllers.

III. DYNAMIC MODEL

The dynamic model for an -degrees-of-freedom (DOF)
Euler-Lagrange system in free motion and in contact condi-
tions is assumed to have the following form [7]:

¨+ ( ˙) ˙ + ( ) +
P
=1

= (5)

In (5), ( ) R × denotes the inertia matrix, ( ˙) ˙
R denotes the centripetal-Coriolis effects, ( ) R
denotes conservative forces (e.g., spring forces, gravity),
( ) R denotes the control input, R = 1
denote positive constants determined by the free motion
system and by the contact surface, and ( ) R denotes

a function defined as

4
=

½
0
1

¾
where 4

=
£ ¤

R denotes a constant vector of
the equilibrium points defined as

=
h

1 · · · ( ) 1 · · ·
i

where R and R denote the equilibrium
points for the noncontact states and the contact states (at the
contact position), respectively.
The energy, denoted by ( ˙), for systems described by

(5) can be written as

=
1

2
˙ ˙ + ( ) ( ) +

P
=1

1

2
( )2

¸
(6)

where the first two elements in the brackets represent the
potential energy of the free motion system, and the last term
in the brackets denotes the potential energy caused by the
contact.
Assumption 1: The inertia matrix ( ) is assumed to

be symmetric, positive definite, and can be upper and lower
bounded by the following inequalities

1|| ||2 2|| ||2 R (7)

where 1 2 R are positive constants. The following skew-
symmetric relationship is also assumed to be satisfied

(
1

2
˙ ( ) ( ˙)) = 0 R (8)

Assumption 2: Since ( ) in (5) is assumed to be a
conservative force, the associated work is equal to the change
in potential energy as

˙ ( ) ˙ ( ) = 0 (9)

The conservative spring force for the example mass spring
problem is given by

( ) =
( 1 + 2)( 1 1) 2( 2 2)

2( 1 1) + 2( 2 2)

¸
(10)

and the potential energy of the system is

=
1

2
1( 1 1)

2 +
1

2
2( 1 2 1 + 2)

2 (11)

The differential expression in (9) is satisfied for (10) and
(11).
Assumption 3: The system energy ( ˙) is a continu-

ously differentiable, positive definite and radially unbounded
function where it is assumed that if ( ˙) then
( ) .
Assumption 4: The system (5) with output ( ) and ˙ ( )

is assumed to be zero-state observable [8] in the sense that
no solution of (5) with ( ) = 0 can stay identically in the
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set = {( ˙) 2 | k ˙ k = 0 = } other than the
trivial solution given by ( ) = and k ˙( )k = 0. That is,
since the system is assumed to be zero-state observable

if k ˙ k = 0 = and k k = 0 (12)
then = and k ˙k = 0

Remark 1: Assumptions 6 and 7 of [12] are comparable
to Assumption 4 in this paper, and are required in [12] to
guarantee the steady state solution is unique, and ( ) =
and k ˙( )k = 0

IV. CONTROL DEVELOPMENT

A. Control Objective

The motivation of this research is to globally asymp-
totically regulate the states of an underactuated system to
equilibrium points that are defined by impact and nonimpact
conditions (i.e., ( ˙) ( 0)). The control objective is
based on the assumption that ( ) and ˙( ) are measurable,
and the states ( ) and ˙( ) are zero-state observable with
respect to the output ( ) and ˙ ( ). The following regula-
tion error system, denoted by ( ) R , is introduced to
quantify the control objective

=
£ ¤

(13)

where ( ) R and ( ) R denote the states of the
regulation error for the contact and noncontact coordinates,
respectively, and are defined as

= = (14)

Based on (12)-(14) the subsequent development will focus
on the objective to prove that

lim k ˙ ( )k = 0 lim k ( )k = 0 lim k ( )k = 0

B. Open-Loop Error System

The following expression can be obtained after taking the
second time derivative of (13) and utilizing (5) and (7)

¨ = 1( ¯( ˙) ˙ ¯( )
P
=1

) (15)

where

¯( ˙) = ( + ˙) ¯( ) = ( + ) (16)

After premultiplying (15) by the dynamics of the contact
coordinates can be written as

¨ =
+

det( )
(17)

where the auxiliary signals ( ) R × and ( ˙)
R are defined as

4
= ( ) (18)
4
= ( )( ¯( ˙) ˙

+¯( ) +
P
=1

) (19)

Based on (6) and (13), the system energy can be rewritten
as

=
1

2
˙ ˙+ ( + ) ( )+

P
=1

1

2
2 (20)

Taking the derivative of (20) and substituting (15) into the
resulting expression yields

˙ = ˙ (
1

2
˙ ¯( ˙)) ˙ + ˙

¡
¯( )

¢
+ ˙ ( + )

(21)
where (7) has been utilized. The expression in (21) can be
reduced as

˙ = ˙ = ˙ (22)

where (8) and (9) were utilized.

C. Nonlinear Energy Coupling Controller

Based on (17), (22), and the subsequent stability analysis,
a nonlinear energy coupling controller is designed as

= [ ] 1( ˙
det( )

) (23)

where ( ˙) R × is defined as

4
= +

det( )
(24)

R are positive constant feedback gains,
denotes the × identity matrix, and ( ) and
( ˙) were defined in (18) and (19), respectively. Since
( ˙) and ( ) are assumed to be positive definite,

Theorem 4.2.1 of [6] can be invoked to ensure that ( ˙)
is positive definite; hence, ( ˙) is invertible. After substi-
tuting (23) into (17), the closed-loop error system for ¨ ( )
can be obtained as

¨ =

[ ] 1( ˙
det( )

)

det( )
(25)

+
det( )

After substituting (23) into (22), a closed-loop expression for
the system energy can be obtained as

˙ = ˙ [ ] 1( ˙
det( )

) (26)

Theorem 1: The equilibrium points of the open-loop sys-
tem in (5) with the controller defined in (23) are globally
asymptotically stable in the sense that

lim ( ) = and lim k ˙( )k = 0 (27)
Proof: Let 1( ˙) R denote the following continuously

differentiable, positive definite, radially unbounded function
(i.e., a Lyapunov function candidate)

1 =
1

2
2 +

1

2
+
1

2
˙ ˙ (28)
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Based on the closed-loop error systems in (25) and (26), the
time derivative of (28) can be expressed as

˙
1 = ˙ [ ] 1( ˙

det( )
) (29)

+ ˙ + ˙
det( )

˙

det( )
( [ ] 1( ˙ + +

det( )
))

The expression in (29) can be rewritten as

˙
1 = ˙ ( +

det( )
)[ ] 1( ˙ (30)

det( )
) + ˙ + ˙

det( )

The expression in (30) can be simplified as

˙
1 = ˙ ˙ 0 (31)

where (24) was utilized (i.e., ˙1( ˙) is negative semi-
definite). From (28) and (31), the origin of the closed-loop
system is stable in the sense of Lyapunov and 1( ˙) L ;
hence, ( ˙), ( ), ˙ ( ) L . Since ( ˙) L (20)
can be used to prove that ˙( ) L , and Assumption 3 can
be used to conclude that ( ) L ; hence, ( ) L .
Since ( ), ˙( ) L , (1), (13), and (14) can be used to
prove that ( ), ( ), ( ), ˙ ( ), ˙ ( ), ˙( ) L . The
definitions in (18), (19), and (24) can now be used to prove
that ( ), ( ˙), ( ˙) L .
The proceeding arguments can be used along with (23)

to prove that ( ) L . Based on the fact that all of
the closed-loop signals remain bounded, LaSalle’s Invariance
Theorem can now be utilized to prove Theorem 1. To this
end, let ¯ denote the following set

¯ = {( ˙) R ×R : ˙1 = 0} (32)

In the set ¯ , it is clear from (31) that

˙ ( ) = 0 ¨ ( ) = 0 (33)

and hence, from (26) we can conclude that

˙ ( ˙) = 0 (34)

The expressions in (26), (28), and (32)-(34) can be used to
prove that ( ), ( ˙), and 1( ˙ ) are constant. To
prove that ( ) is constant in ¯ , we rewrite (17) as

1

det( )
= ¨

1

det( )
(35)

and substitute (35) into (23) to obtain the following expres-
sion

= [ ] 1( ˙ (¨
1

det( )
)) (36)

After multiplying ( ˙) on both sides of (36), the following
simplified relationship can be developed

=
˙ ¨

(37)

Since ( ) and ( ˙) have been proven to be constant in
¯ , (37) can be used to conclude that ( ) is equal to the
following constant

= (38)

To continue the analysis, we consider the following cases:
( ) 0, ( ) 0, or ( ) = 0 for all = 1 .

Based on (38), if ( ) 0 then ( ) will be the only force
acting on the system, and it will equal some positive force
that will cause ( ) to change and violate the results in
(33). Based on (38), if ( ) 0 then ( ) will equal some
negative force that acts on the system in the same direction
as the reactive forces from the contact. These additive forces
will cause ( ) to change and violate the results in (33).
Based on (38), if k ( )k = 0 then k ( )k = 0. Hence, the
only possible value for ( ) and ( ) in ¯ is k ( )k =
k ( )k = 0. The assumption that the system is zero-state
observable [8] (i.e., Assumption 4) can be used along with
the facts that k ( )k = k ( )k = k ˙ ( )k = 0, to conclude
the result in (27).

D. Control Extension
To illustrate how additional controllers can also be derived,

an alternative energy coupling controller is designed as

=
˙ 1

+
(39)

( (det( ) 1)) ˙

2 ( + )

where R are positive constant control
parameters, ( ) is introduced in (18), and ( ˙) is
defined in (19). Since ( ) is assumed to be positive
definite, (18) can be used to conclude that ( ) is also
positive definite and invertible. After substituting (39) into
(15) and then premultiplying by , the following closed-
loop error system is obtained

¨ =
( ˙ + )

det( ) ( + )
(40)

1

2

( (det( ) 1))

det( ) ( + )
˙ +

det( )

After substituting (39) into (22), a closed-loop expression for
the system energy can be obtained as

˙ =
˙ ˙ ˙ ˙ 1

+
(41)

˙ ( (det( ) 1)) ˙

2 ( + )

Theorem 2: The equilibrium points of the open-loop sys-
tem in (5) with the controller defined in (39) are globally
asymptotically stable in the sense that

lim ( ) = and lim k ˙( )k = 0 (42)
Proof: Let 2( ˙) R denote the following continuously

differentiable, positive definite, radially unbounded function
(i.e., a Lyapunov function candidate)

2 = +
1

2
+
1

2
˙ (det( ) 1) ˙ (43)
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Based on (40) and (41), the time derivative of (43) can be
simplified as

˙
2 = ˙ ˙ (44)

and hence, the origin of the closed-loop system is stable in
the sense of Lyapunov, and 2( ˙) L . Since 2( )
L , (43) can be used to prove that ( ˙) ( ) ˙ ( )
L . Based on the fact that ( ˙) L , (20) can be used
to prove that ˙( ) L , and Assumption 3 can be used
to conclude that ( ) L ; hence, ( ) L . Given that
( ), ˙( ) L , (1), (13), and (14) can be used to prove that
( ), ( ), ( ), ˙ ( ), ˙ ( ), ˙( ) L . The definitions in

(18) and (19) can now be used to prove that ( ), 1( ),
1( )

,
det ( ( ))

, ( ˙) L .
The proceeding arguments can be used along with (39)

to prove that ( ) L . Based on the fact that all of
the closed-loop signals remain bounded, LaSalle’s Invariance
Theorem can now be utilized to prove Theorem 2. To this
end, let ¯ denote the following set

¯ = {( ˙) R ×R : ˙2 = 0} (45)

In the set ¯ , it is clear from (44) that

˙ ( ) = 0 ¨ ( ) = 0 (46)

and hence, from (26) we can conclude that
˙ ( ˙) = 0 (47)

The expressions in (26), (43), and (45)-(47) can be used to
prove that ( ), ( ˙), and 2( ˙) are constant. To prove
that ( ) is constant in ¯ , we rewrite (17) as

1 = det( ) 1¨ (48)

and substitute (35) into (39) to obtain the following expres-
sion

=
1
( ˙ det( ) 1¨ (49)

1

2
( (det( ) 1)) ˙ )

Since ( ) has been proven to be constant in ¯ , (49) can be
used to conclude that ( ) is equal to the following constant

= (50)

The result in (42) can now be obtained by following the same
arguments as that in the proof of Theorem 1.

V. NUMERICAL SIMULATION
To illustrate the performance of the energy-based con-

trollers in (23) and (39), numerical simulations were per-
formed for the example system depicted in Fig. 1. The
equations of motion of the system are given by the following
differential equations

1 1̈ + ( 1 + 2)( 1 1) 2( 2 2) = 0
(51)

2 2̈ 2( 1 1) + ( 2 + 2( 2))( 2 2) =

where 1( ), 2( ) denote the positions of 1 and 2,
respectively, and 1 , 2 denote the equilibrium points of 1

and 2, respectively. After utilizing (13), the dynamics in
(51) can be expressed as

1¨ + ( 1 + 2) 2 = 0 (52)
2¨ 2 + 2 + 2( ) =

where ( ) = ( ). The energy of the system is given by

=
1

2
1
2 +

1

2
2( )2 +

1

2
2( ) 2 (53)

+
1

2
1 ˙
2 +

1

2
2 ˙
2

where the top line in (53) denotes the potential energy of
the system and the bottom line represents the kinetic energy.
Based on (51), the definitions in (4), (18), and (19) can be
expressed as

=
£
0 1

¤
(54)

= 1 (55)
= 1( 2 2 2( ) ) (56)

Remark 2: To verify that the system is zero-state observ-
able (i.e., Assumption 4), we set ( ) = 0, ( ) = 0, and
˙ ( ) = 0 (and hence ¨ ( ) = 0) to obtain the following
dynamics

1¨ + ( 1 + 2) = 0 (57)
2 = 0

The dynamics in (57) can be used to conclude that a neces-
sary and sufficient condition for ( ) = 0 and ˙ ( ) = 0, is
for ( ) = 0, ˙ ( ) = 0, and ( ) = 0.
Based on (51) and (54)-(56), the two energy-based con-

trollers given in (23) and (39) can be expressed as follows.
• Energy coupling nonlinear controller in (23):

=
˙

+
2

(58)

2
( 2 ( ) 2( ) )

+
2

• Alternative energy coupling controller in (39):

=
˙

+
(59)

( 2 ( ) 2( ) )

+

Remark 3: In (58), the energy ( ˙) appears directly in
the controller giving the most coupling information. Whereas
in (59), the energy does not appear directly, but some cou-
pling information is still contained in the controller because
of the use of energy in the controller synthesis and the
stability analysis. As will be seen in the simulation results,
the controller in (58) generates better transient response than
the controller in (59) due to the more coupling information
supplied by energy.
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For the simulation, the physical parameters of the mass
spring system were selected as

1 = 1 [kg] 2 = 1 [kg]
1 = 103 [N/m] 2 = 5× 103 [N/m]
= 106 [N/m].

The equilibrium positions of 1 and 2 were set to the
following values£

1 2

¤
=
£

1 0 5
¤
[ ]

where the initial conditions for 1( ) and 2( ) were selected
as £

1(0) 2(0)
¤
=
£

1 5 0 8
¤
[ ]

The controllers in (58) and (59) were tuned to yield the
best performance for approximately equal control efforts.
The integral of the control effort squared

R 1
0

2( ) for the
controller in (58) is 2 4×104[ 2] and the counterpart for the
controller in (59) is 2 1×104[ 2]. From Fig. 2 and Fig. 3, the
controller in (58) exhibits improved transient performance
because the controller provides improved coupling of the
underactuated states.
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Fig. 2. Results for the energy-based coupling controller. The top figure
depicts the control input. In the middle figure the solid curve is the position
of 1, and the dashed curve is the position of 2. In the bottom figure
the solid curve is the velocity of 1, and the dashed curve is the velocity
of 2.

VI. CONCLUSIONS

The efforts in this paper are inspired by the idea that
improved transient response will result from using the system
energy to couple the states in the controller. Based on
this idea, two examples of energy-based controllers are
proven to globally asymptotically stabilize a general class of
underactuated Euler-Lagrange systems. A Lyapunov-based
stability analysis and numerical simulations are provided to
demonstrate the stability and performance of the developed
controllers.
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Fig. 3. Results for an alternative energy coupling controller. The top figure
depicts the control input. In the middle figure the solid curve is the position
of 1, and the dashed curve is the position of 2. In the bottom figure
the solid curve is the velocity of 1, and the dashed curve is the velocity
of 2.
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