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Abstract— This paper presents an algorithm for obtaining
the minimum order MISO transfer function model for the use
in a model-based predictive controller. The source model can
be either a non-minimal ARX model, a state-space model or
any interconnection of linear models of mixed state-space and
transfer function representations. The algorithm is based on
polynomial interpolation theory, representing polynomials by
their values on a set of points in the complex plane. Using this
theory, we can find the minimum order from the dimension of
the null space of a particular matrix. Finding the minimum
order model is equivalent to finding a specific base of the null
space. A novel feature of the presented approach is using a set
of complex interpolation nodes obtained by mapping the
standard set of real Chebyshev nodes by a bilinear transform.

1. INTRODUCTION

HIS paper addresses the problem of obtaining minimum
order multi-input/single-output ARX model of the form

W) ==Y @y —i)+ 3 S b, (k=i =y, ) +e(k) (1)
i=1

r=li=1
where y is the output variable; u, is the input variable; e is

Gaussian white noise. Further, n, is the time delay

T
associated with r-th input. This model is used in model-
based predictive controller (MPC) described in [3]. It is very
simple as far as process model representation is concerned,
and economical from the point of view of the on-line
computational effort and data storage. On the other hand, its
noise model may not be realistic; it performs poorly under a
significant measurement noise, i.e. a situation where an
output error model or a state-space model with process and
output noises would be appropriate. However, it is very
costly to change the engine of a commercial MPC. To
enhance the ARX-based MPC, Kalman filter is used as an
incremental improvement. Its function is twofold: first, it is
used for estimating unmeasured disturbances, to improve
control performance. Second, it is used to modify internal
data of the predictor (the past output values y(k—1),...,

y(k — s)) to obtain predictions that are the same as if they

were obtained from the state-space model with a more
complete noise model. The integration of Kalman filter and
an ARX-based MPC is described in the recent paper [2].
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This integration requires that both the state-space and the
ARX models are input-output equivalent in the noise-free

case. The stochastic part of (1), represented by e(k),

becomes irrelevant, because noises are handled by Kalman
filter. The natural choice of the master model is the state-
space one, which is able to reflect the physical structure of
the plant. In particular, it can capture the multi-input multi-
output (MIMO) nature of the process with cross-channel
coupling, whereas the model used in MPC is a collection of
multi-input-single-output (MISO) models. When obtaining
MISO transfer function models from MIMO state-space
ones, the issue of model minimality arises.

Minimizing order of model representation is an old
problem. In the state-space, a classical staircase form of
Rosenbrock is well known, see [6]. This algorithm is
suitable for low-to-medium size problems. Modern,
balanced realization based methods (e.g., [7]) are
numerically reliable even for high orders, but have
limitations, in particular, in handling unstable non-minimal
modes.

As far as reducing order in the transfer matrix framework
is concerned, an approach based on manipulation with the
coefficients of the full order transfer matrix is given (in a
wider context of minimum-order solution of rational matrix
equations) in [5] and references therein. A related problem
of finding a greatest common divisor in polynomial matrix
fractions is treated in [8] using Sylvester matrix.

A modern approach to numerical problems involving
polynomial matrices is based on polynomial matrix
interpolation of Antsaklis and Gao [1]. This approach is
applied here to reduce MISO transfer matrices; solving this
problem by polynomial interpolation is new to the best of
our knowledge. This approach does not require the non-
minimal transfer matrix coefficients, but its values evaluated
on a set of selected interpolation nodes in the complex plane.
Therefore, we can skip the cumbersome computation of the
full-order transfer matrix and obtain the interpolation values
directly from the state-space data. In a similar fashion, the
full order system can be represented as an interconnection of
linear sub-systems, each of them given either by a transfer
function or by a state-space model.

This paper further suggests some improvements to
enhance numerical stability. First, the Chebyshev
polynomial basis is used, which is a standard approach.
Second, the Chebyshev nodes, which are distributed in the [-
1,1] interval, are mapped to a set of points in the complex
plane via the bilinear transform. Thus the advantages of the
Chebyshev basis are preserved, whereas a new set of
interpolation nodes is obtained which can well capture the
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properties of the interpolated model. By exploiting
symmetries in the interpolation set and the problem
structure, only real matrices are involved in the computation.
In this way, we are able to achieve a high accuracy for mid-
sized problems (the order of the target (minimum-order)
system being around 15) for a fixed set of interpolation
points. If we allow changing this interpolation set (by
changing parameters of the bilinear transformation) we are
able to a handle systems whose order is, after reduction, well
over twenty. The proposed algorithm is more effective in
order reduction than the state-space staircase algorithm as
well as the mineral function of the Control Toolbox of
Matlab ([12]).

We assume that there is no uncertainty in the source (full
order) model. Order reduction of uncertain systems is
beyond the scope of this paper; results in this direction can
be found in [9], [10], [11]. Finally we remark that rich
theory has been developed on the Nevanlinna-Pick
interpolation and its use in control, see e.g. [13]. There,
additional conditions are imposed on the interpolating
functions, namely stability and positive realness, which are
not required in the present context.

II. INTERPOLATION FRAMEWORK FOR TRANSFER MATRIX
REDUCTION

An equivalent representation (in the deterministic part) to
model (1) is the transfer matrix in Z-transform given by

s a | s )
[2 bl[Zs+n07ndlﬂ : . : zbm[Zs#anndmﬂ :|
G(z) = i=1 | . | i=1 )
s+np + 2 a[ZY+nD —i
i=1
n, =max{n,,,...,n, }. This can also be written as
1
G(Z) = [Gl (Z) Gm (Z)] :%[bl (Z) bm (Z)] (3)

To simplify the notation, we shall consider polynomials in
and b(z)=3b,7,
i=0

which differs from the form in (2) by the
indexing convention. Transfer functions can be represented
equivalently in the interpolation framework as introduced in
[1]: For any complex z,, the Z-transform images of the

inputs and the output evaluated at z, denoted as u,...,u,

2 "m

the standard form a(z)= iiz’

i=0

n=s+n,,

and ), respectively, satisfy the equation
u

[6) = bz -a@)] =0 @

This can be expressed in terms of the coefficients as

V,Gu
[1;10 l;ln : : l;mO "‘l;mn C_ZO _En] V_(;_)_L _0’ (5)
ACHY

where V, (z) = |:1 z

rational-function matrix (with coefficients defined over the
field of complex numbers) can be represented by a finite set
of interpolation triplets is stated in the following theorem:

T
z"] . A condition under which a

Theorem 1 ([1]). Let d =(m+1)n+m and let d triplets

: z[,l:uf,...,ufn ], ' }il be given so that the matrix

Vi VE e Vo

P I T
Vi Vi v ©
V.(z)y' V,(z,)y V,(z,)y"

is of full column rank. Then the 1 X m rational-function
matrix G(z)satisfying the interpolation condition

v =G

given set of interpolation triplets.

T
u,”n} is uniquely determined by the

This theorem states that the complex-valued rational
function G(z) can be obtained from a given interpolation

set, provided a rank condition is satisfied. Let us denote
b=[b, - b,]. a=[a, - a] (7)
Then the desired vector [l;l b, I —E] is the rank-one

m

left kernel space of matrix M. This subspace parameterizes
all representations of one transfer function, which differ by a
constant multiplicative factor of the numerator and
denominator polynomials. If we wish to obtain the transfer
function in a normalized form, such as that with a, =1, the
problem can be re-formulated as a solution of a matrix
equation, see [1].

Now the question is how to choose the right set of
interpolation points to obtain the full rank matrix. We
formulate a lemma regarding the minimum order of SISO
transfer functions. First, let us condense the notation as
V=V (z,). From now on, we shall assume that 7 is the

order of the known non-minimal representation of G(z).
. -q2n+l
Lemma 1. Let a set of n triplets {z,,u’',)’ }-71 be given
so that z, # z, Vi, j, none of the interpolation points z, is a

pole of G(z), ¥y =G(z,)u' and u' #0 for i=1,..,.2n+1.
Let the 2(n+1)X2n+1 matrix M be given as

anul . Vn2n+1u2n+1
e - ®

V2n+1 2n+l1
n

The minimum order of the transfer matrix satisfies
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=Rank(M)-n-1.

Proof: First, in the single input case we shall drop the
input index r . Notice, that in this case the rank of matrix
M does not depend on the choice of u'; with no loss of
generality, we can consider u' = a(z'). Then some simple

algebraic manipulations yield

Via(z) - V'"a(z,,,)
_n_________________"t S V2n+1 , 9
Vb(z) - V,"b(z,,,) [ a ] 2
where
(@, a a, 0 ]
0 C_ZO _nfl an
0O --- 0 a T . 7
S = :———_——————f_lo—————1 —————— @ . (10)
by b .o b, 0 ... 0
0 bO ) bnfl bn
[0 -~ 0 b b b, |

V] in (9) is the
(2n+1)x(2n+1) Vandermonde matrix which is invertible

whenever the interpolation points are distinct. Hence, the
rank of M is the same as the rank of S in (10); the latter is
the Sylvester matrix. It is well known from linear system

We can see that the matrix |:V21

theory, that polynomials a(z) and b(z) are coprime,
whenever S is of full rank. Moreover, it is proven in [8] that
Rank(S)=n+1+n,. |

Now, let us outline the procedure of obtaining the transfer
function coefficients from the above interpolation matrix,
assuming Rank(M)=n+1+mn,. First, with no loss of
generality, we assume u' =1 for i =1,...,2n + 1 -- this is
only a column scaling. Therefore, we have y' = G(z,). The
following equation holds

[b_ fE]M =0. (11)
Post-multiply this equation by the inverse Vandermonde

-1
matrix [Vzln Vzi"“] to get

[b_ "7} Inpﬂ ;—0’ (12)
where

Denominator coefficients thus belong to the left null space
of the (n+1)xn matrix @ whose rank is n,. Let the

singular value decomposition of Q be

*

V. (14)

______l________
l
|
|

The asterisk denotes the conjugate transpose. The left null
space is spanned by the rows of matrix N given by

*
N=|u T

n0+1 n+1 (15)

Obtaining @ belonging to this subspace such that its last
n —n, elements are zero is straightforward: a numerically

robust way is using a modified QR factorization of N

LT o Ny

N=Ww , (16)

n

nn+1—71071 n+1-n0,n0+41 0

where the lowest order numerator coefficients are in the last
row of the factorized matrix. The numerator coefficients are
obtained from the denominator ones uniquely by
b =aP,
which concludes the procedure for the SISO case.
Extending this procedure to MISO cases is done as
follows: first, define for each input u matrix M, as in (8).

Set u' =1 for all r=1,..., 2n+1 and let

y. =G (z,), where G.(z) denotes 7" column of G(z). Let,
as in the SISO case,

(17)

m,i=1,...,

Vl V2n+1
M, = Vig .y (18)
Partition this matrix as
M 1 0
M = 7 n_+_1___ [Vl V271+1 (19)
ro M P Q 2n 2n .
Let us build the (m 4 1)(n +1)xm (2n + 1) matrix M as
M, 0
M B 0 M(]Wl (20)
M, M,

The result corresponding to that of Lemma 1 to MISO
systems now can be stated:

Lemma 2. Let matrix M be given by (18)--(20). The
minimum order of the 1xm transfer matrix is
=Rank(M)—-m(n+1).
Only a sketch of the proof: From the assumption, there holds
[6 - b, |-a]|M=o0. 1)

This is equivalent to
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b b)=alp - BlaEle - Q]=0.02

Further, it is clear from the above development that the
fact that an order- 73, realization of G(z)exists is equivalent
to the existence of vectors

@ =la, - @, 0 - 0, k=0,.n—n,(23)
—
such that
@, e (Null(Q,), k=0,....n—n,. (24)
r=1
This in turn implies that Rank ([Q1 Q, D =n,. N

Hence, the procedure for obtaining the numerator and

denominator coefficients is the same as that of the SISO
system, for @ :=|Q, le. As we do not need the

right singular vectors contained in the V matrix, then a
column-wise recursive procedure can be used; a possible
implementation is as follows:

Q1 =@ Q1 = U1'91V1*§
QL:-H :[Sk(ln+]‘?]‘n) U:QA}.}

that matrix M has

(25)

Notice m(2n + 1) columns, as

opposed to d =(m+1)n+m columns of matrix M in (6). It
would be possible to modify this procedure so that we would
deal with lower dimensional matrix. However, decoupling
the computation of @ and b_rwould be slightly more
complicated and sometimes resulting in the loss of accuracy
due to the propagation of round-off errors. On the other
hand, the computation of the left null space via singular
value decomposition is numerically robust and the accuracy
does not degrade with the number of columns.

III. TRANSFORMATIONS FOR ENHANCING NUMERICAL
STABILITY
In the order reduction procedure outlined above, there are
two main causes of the loss of numerical stability. First, it is
the poorly conditioned Vandermonde matrix, and second, a
possible collision of the plant poles with the interpolation
nodes. These issues are addressed in this section.

A. Chebyshev polynomial basis

Vandermonde matrices tend to be ill-conditioned even for
medium orders. Therefore, polynomial bases different from
1,z,2*,.... are used. A typical choice is using Chebyshev
polynomials ¢,(z), see [1], [4], generated recursively as

L(2)=1, t(z)=2z, 1,(2)=2z1,_,(2)—1,,(z) (26)

These polynomials are orthogonal with respect to a
suitably defined inner product. Further, these polynomials
map the interval [-1,1] to [0,1]. The zeros of #,(z) are

distributed between —1 and 1, as follows:

z, = cos(w ), i=1,..,k 27)

2k
Let us denote Tn(z)z[to(z),tl(z),...,tn(z)]T. Then, the

(n+1)Xx(n+1) matrix [T,(z,),....,T,(z,.,)]is nonsingular if

and only if the points z,,....,z

T Zn+l

are distinct. Again, we shall

use the condensed notation 7' = T, (z,). In this basis, the

n

interpolation matrices in (18) become

Tl T271+1
M, = iij‘{""iﬂ:;f?ﬁﬁ
(28)
I, O
= 70 1z, T

Moreover, if the interpolation nodes are as in (27) for
k =2n+1, this matrix satisfies

atl 7 PEts L
[7n T ] = [T T ] dlag(2n,&;%@).(29)

Hence, if the Chebyshev polynomial basis is used, and the
zeros of (n 4 1) -th order Chebyshev polynomial are used as

interpolation nodes, the decomposition of M, in (28)

avoids using the matrix inverse thus eliminating the major
source of numerical instability.

The Chebyshev interpolation nodes are real numbers
between -1 and 1; they are distributed more densely near the
interval borders than in the middle of the interval. Their
realness is a significant advantage, because all matrices
involved are real as well. On the other hand, these fixed
nodes may become close to the plant poles, making the
problem ill-conditioned. A way of moving the interpolation
nodes to locations where a collision with plant poles is
unlikely, while preserving the advantage of the Chebyshev
basis, is in the next subsection.

B. Bilinear transform of Chebyshev nodes

We shall use the bilinear transform to map the complex
plane in the z-domain, to a complex plane in the p-domain
and vice versa as

—J z/r—l 1+ jop
p=l— s, ZEr—
o z/r+1 1-jop

where jdenotes the imaginary unit, « and r are positive

(30)

real parameters. The real interval [-1,1] in the p-domain is
mapped to a circle arc in the z-domain with the center in the
origin, radius r and phase bounded by

iarctan(Za/ (1—0:2)). Two sets of interpolation nodes,

obtained by mapping Chebyshev roots for order 20 by (30),
for two pairs of parameters is in Figure 1. A typical choice
for the radius is the number slightly larger than the expected
spectral radius of the plant. The choice of parameter « shall
be discussed later. Note that (28) requires 2n+1
interpolation nodes. In this case, one interpolation node
would always be a real one equal to 7, possibly in a
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proximity to a plant pole at, or close to 1. To avoid this
situation, we shall use an even number of interpolation
points, at the cost of increasing the number of columns of
the interpolation matrix by m (the number of inputs). Let

Fotrz+e+r,z" =(z+l)H(z—l)[, i=0,1,..,n, (31)
Rl R=[f - 1. (D)

Let Ep be the denominator coefficients of the transfer

7[:[’/[0

function computed in the p-domain. Then, the corresponding
vector in the z-domain is computed as
(33)

a=a, diag:(~j/a)}  R-dig{i/r},

The same transformation holds also for the numerator

polynomials b_l, ...,l?m .

Using a set of complex interpolation nodes implies
complexity of the interpolation matrices as well as the
intermediate polynomials in the p-domain. However, the
target polynomials must be real and therefore it follows from
(33) that in the p-domain, the even coefficients are real and
the odd ones are imaginary. The real representation of the

numerator polynomial is then
a,=[Re(a,) Im(a,) Re(a,) -]  (34)

The interpolation matrices are, in the Chebyshev basis and
the p-domain, expressed as

(2, 0,1=[T,(p)G(z) ~ T, ($p.2)G(2:.1)]x

(35)

T .
X[Tznn(ﬁ) T2n+1(pzn+2)] -diag| 1,1/2,...,1/2 |(2n+1)

2n+1
for r =1,...,m . These matrices can be modified for the real
representation (34) of the p-domain polynomials. Let us

denote them as P,

tr

and @, ; their elements are computed as

t(py)
B(ks) =4 (P)¥e (P ] AL
t.r—l(pn‘i»l)
. t 1 (Pi2)
0,(k,s)=[t,,(p)®,, OSSN PR € 1)
t 1 (Pansa)
for k,s =1,....,n +1, where
Re(G,(z,)), fork+j odd
= (38)
ey Im(G,(z,)), otherwise,
Re(G(z,)), fork+(n+1-j)odd
= (39)

- (-1 Im(G,(z))), otherwise
for j=1..,n+1 and £ isequalto 2n+1 for s=1 and
n+1/2 otherwise.

This concludes the description of the minimum order ARX
computation. We shall make a few comments on the choice

of bilinear transform parameter «; its optimal choice
[meaning the value producing resulting best accuracy of the
resulting model] depends on the distribution of poles and
zeros and cannot be chosen a priori. It has been observed,
that higher values of « (say 1.5--3) are better for estimating
the minimal order. This order is estimated using the singular
values in (14) as

<g&i=Ll.,n}  (40)

Estimating the minimum order correctly is essential—if it
is overestimated, the interpolation procedure may produce
spurious modes which may be arbitrary, even unstable.
Hence it is better to underestimate than overestimate the
order, which should be taken into account in choosing the
tolerance € . On the other hand, large values of « result in
interpolation sets, which are crude around the positive real
axis, resulting in lower accuracy in modeling the low
frequency behavior. The way around it is to estimate the
minimal order n, using the full interpolation set, for av = 2

n, = arg min[ { O-[+1/O-[|O-'

i+l

and tolerance ¢ = 10" ; then, compute the minimum order
coefficients using the reduced interpolation set of 2n, + 2
points, the bilinear transform parameter v = 1 and tolerance
€ = 107" (the risk of overestimating the order is now low).
This setting works well for nearly all cases of systems of
minimal order up to 15, which is sufficient in most
applications. It works reasonably well in the vast majority of
cases with the minimum order of 25; the failures are
typically due to the fact, that several plant poles are clustered
near the unit circle, and near an interpolation node. Then, an
interactive parameter change of the bilinear transform
parameters usually helps. This situation may also indicate a
fast sampling rate; its reduction results in a more precise
model conversion.

interpolation nodes distribution
1.5 w ; w w

0000 0 o

1t W@ @0

-1t %@oo

-1.5 : - : ‘
-1 -0.5 0 0.5 1 15
real(z)
Figure 1 Mapping of Chebyshev nodes (order 20) by bilinear transform: (a)

r =1.05, a = 1(diamonds); (b), 7 = 1.2, o = 2 (circles).

©00 0 o

1V. EXAMPLE

As an example, we choose a transfer function of non-
minimal order 10 with two inputs, given by

312



G o= 107 (z=1)(z+5)(z-0.89)(z - 0.1) (= 0.5+ 0.25)
(2)= z? (z=1)(z-0.1)(z=0.7£0.5,)(z—0.89)(z—0.94)(z - 0.5£0.05 /)

G(s) = -10*(z2-2.3)(z—-.5)(z—0.89)(z—0.1)(z—3%2.55)
2 ) (22 0.0) (2= 0.720.5) (2 ~ 0.89) (=~ 0.98) (=~ 0.5 £ 0.05)

The minimum order is 8. The singular values of the Q-matrix
are shown in Figure 2, where the minimum order is obvious.
It can be seen in Figure 3 and Figure 4 that the match of the
full/minimum order responses is perfect.

Figure 2 Singular value analysis of Q: log,, (O'[) (top), log,, (O'M/O'[)
(bottom).

0.1 1

0.05-

-0.05¢

Im

-0.1F

-0.15¢

-0.2F

20.25 L L L L L L
-0.2 0 0.2 0.4 0.6 -0.6 -0.4 -0.2 0 0.2

Re Re

Figure 3 Nyquist plots: the original system (X), transfer matrix after
cancellation (0).

-0.05 L .
0 50 100

t (samples)

-0.5 L
150 0 50

t (samples)

100 150
Figure 4 Step responses: the original system (x), transfer matrix after
cancellation (0).
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