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Abstract— The pole sets of linear differential SISO systems
are considered in the paper by using polynomial factorizations
and state-space formalism. A state-feedback control algorithm
is then constructed, which guarantees the stability of the closed-
loop system. A similar methodology is used to form a stable
time-varying observer to the system.

I. INTRODUCTION

Controller design for linear time-varying differential sys-
tems is generally a difficult problem, because of the fun-
damental problems related to the analysis of such systems.
The classical theory does not provide much help because the
concepts of poles and zeros do not carry over to time-varying
systems. This is basically a consequence of the fact that the
solution of the system equations cannot generally be solved
in closed form, i.e. the state transition matrix cannot usually
be expressed in terms of elementary functions. There have
been attempts to define time-varying poles, and based on
them to design appropriate controller algorithms, but these
methods have not received a general acceptance.

It is well-known that the eigenvalues of the system matrix
calculated pointwise in time do not provide enough informa-
tion regarding stability, see e.g. [1]. A considerable contribu-
tion to the theory of time-varying poles (or more specifically
pole sets) was introduced in [2], where factorizations of
operator polynomials were used to define the pole sets. Based
on this analysis conditions for the stability of the system were
obtained. A similar method by using polynomial algebra was
also investigated in [3], and in the time-varying case in [4].

Recently there has been another approach to the problem,
in which state-space techniques and state transformations
were used to study the stability of the system [5], [6]. The
well-known theory of Lyapunov transformations [7] has been
used because of its stability preserving characteristics in the
state transformation. In [8] it was shown that any time-
varying system matrix of a continuous linear state-space
representation can be changed into a constant matrix, but the
needed state transformation depends on the state-transition
matrix, which is generally impossible to solve analytically.
Hence it is not possible to know, whether the transformation
is a Lyapunov transformation or not. The topic has further
been discussed in [9].

In this paper a novel concept of pole-placement design
in the case of time-varying linear differential single input
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- single output (SISO) systems is discussed. Starting from
a canonical realization of a general input-output model a
time-variable state feedback controller is designed. The idea
is that the closed loop equations are transformed into a form
from which the pole sets can be calculated. These sets can be
chosen arbitrarily by the designer, and the tuning coefficients
of the controller can then be calculated. A fundamental result
is that the state transformation turns out to be a Lyapunov
transformation implying that stability is preserved in the
design.

The paper is organized as follows. In Section II a linear
time-varying input output differential system is considered
by using algebraic methods, especially skew polynomial
algebra. In Section III the general concept of time-varying
poles is discussed, whereafter the results are linked to time-
varying state transformations in Section IV. Based on the
developed formalism a stabilizing state-feedback controller
algorithm is presented in Section V, and an observer is
designed correspondingly in Section VI. An example is
presented in Section VII. Conclusions are given in Section
VIII.

II. TIME-VARYING LINEAR SYSTEMS

Time-varying linear single-input-single-output (SISO) dif-
ferential systems can be described by models of the form

n

∑
i=0

ai(t)
diy(t)

dti =
n

∑
j=0

b j(t)
d ju(t)

dt j (1)

or shortly by
a(p)y = b(p)u (2)

where u,y ∈X are (real- or complex-valued) input and output
signals on a time set T , p is the differential operator on X ,
and a(p),b(p) are polynomials in p with coefficients from a
suitable space K of (real- or complex-valued) functions on T .
The existence and uniqueness of the solutions as well as the
realizability of the models are difficult mathematical ques-
tions depending on the signal and coefficient spaces but they
are not considered in this paper. Many analysis and design
methods presume that the coefficients are differentiable at
least once but often several times. Therefore for methodology
development it is easiest to assume that the coefficients are
infinitely differentiable functions [4].

The multiplication of these time-varying polynomials de-
fined by composition of operators is not commutative be-
cause of the property

pa = ap+
da
dt

(3)
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Therefore this multiplication makes the polynomials to (left)
skew polynomials.

The set of skew polynomials is a noncommutative ring
with coefficient space K as a subring. Most of the concepts
and properties of ordinary polynomials can be generalized to
skew polynomials. However, for stronger algebraic structures
the coefficient ring K should be a field which is difficult to
satisfy in the time-varying case without extension of coef-
ficients and signals to corresponding fractions with nonzero
coefficients as denominators [4].

In particular, this holds for the division algorithms. For
instance, the right division algorithm

a(p) = q(p)b(p)+ r(p)
deg(r(p)) < deg(b(p)) (4)

is satisfied for all a(p),b(p) �= 0 only if the coefficient ring K
is a field. This is important because the division algorithm is
needed for manipulation of skew polynomial matrices used
in descriptions of multivariable systems.

In multivariable (MIMO) case the input-output description
is

A(p)y = B(p)u (5)

where A(p) and B(p) are skew polynomial matrices with full
column rank and A(p) square. Obviously, the system

S = {(u,y)|A(p)y = B(p)u}
= (ker[A(p) |−B(p)])−1 (6)

where (·)−1 means the converse operation, is uniquely deter-
mined by the generator [A(p)|−B(p)]. On the other hand,
there can be infinitely many generators for the same system.
Two generators determine the same system if they are row
equivalent as polynomial matrices i.e. they can be obtained
from each other by premultiplication with a unimodular
matrix [3], [4].

The system can also be decomposed to a state space
representation (or description).

S =
{

(u,y) |∃x

[
px = Ax+Bu
y = Cx+Du

]}
(7)

where A,B,C,D are matrices over K of time-varying
coefficients. Conversely, the input-output description
[A(p)|−B(p)] can be obtained from the state space
representation by bringing the equations in (7) to a row
equivalent upper triangular form[

A1(p) A2(p)
0 A(p)

][
x
y

]
=

[
B1(p)
B(p)

]
u (8)

by unimodular elementary row operations. The state space
representation is completely observable if A1(p) is unimod-
ular which in the so-called canonical upper triangular form
means that A1(p) = I, [3], [4].

III. POLES OF TIME-VARYING SYSTEMS

The (output) modes and poles are defined by means of
solutions of first order differential equations

(p−λ )y = 0 ⇔ y(t) = y0e

t∫
0

λ (t)dt
(9)

where y0 is a constant.
Putting the mode to the equation a(p)y = 0 leads to

a(p)y0e

(.)∫
0

λ (t)dt
= aS(λ )y0e

(.)∫
0

λ (t)dt
= 0 (10)

where λ �→ a(p)S(λ )=̂aS(λ ) is a skew polynomial function
K → K associated with a(p) [5]. The skew polynomial
functions have the following properties

(a0)S(λ ) = a0 (11)

(p)S(λ ) = λ (12)

(a(p)+b(p))S(λ ) = aS(λ )+bS(λ ) (13)

(a(p)b(p))S(λ ) = (a(p)bS(λ ))S(λ ) (14)

Now the poles (pole functions) can be solved from

aS(λ ) = 0 (15)

This is a nonlinear differential equation of order (n− 1)
and the existence of its solutions depends on the chosen
coefficient ring and initial values.

Using the right division algorithm of skew polynomials
it can be proven [5]:

Proposition 1: aS(λ ) = 0 if and only if (p−λ ) is a right
factor of a(p).
This means that all modes are related to linear right factors.
For multi-variable systems described by (5) the output modes

y(t) = y0e

t∫
0

λ (t)dt
(16)

where y0 ’s are constant vectors, satisfy the equation

AS(λ )y0 = 0 (17)

where AS(λ ) is defined in the obvious way. Now the problem
is to find a λ and a y0 �= 0 such that for all t

AS(λ )(t)y0 = 0 (18)

Note that only in few special cases (e.g. if A(p) is diagonal)
λ can be obtained from detAS(λ )(t) = 0.

The multiplication of (5) by a unimodular matrix does not
change the poles, thus the modes and poles are independent
of descriptions [5].

In terms of the state-space representations (7) the (internal)
modes satisfy for all t[

pI −A 0
−C I

]S

(λ )(t)
[

x0

y0

]
=

[
λ (t)I −A 0

−C I

][
x0

y0

]
= 0 (19)

Thus the poles of the state space representation are such
pointwise eigenvalues of A(t) for which there exist constant
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eigenvectors x0 with C(t)x0 constant. Only those eigenvalues
satisfying C(t)x0 = constant �= 0 are also poles of the system.
Obviously, the internal poles are also poles of the state
system described by

px = Ax+Bu (20)

Suppose that the equations in ( 7) can be brought to upper
triangular form[

A1(p) A2(p)
0 A(p)

][
x
y

]
=

[
B1(p)
B(p)

]
u (21)

by elementary row operations (note that the right division
algorithm is needed). Further, assume that λ is a pole of the
system generated by (5) i.e. it holds that AS(λ )y0 = 0 with
y0 �= 0. Then λ is also a pole of the state space representation
only if the equation

AS
1(λ )x0 +AS

2(λ )y0 = 0 (22)

has a non-zero constant solution x0. All this means that in
the time-varying case there are state-space representations
the poles of which are different from the poles of the system
even in the observable case, where A1(p) can be taken equal
to I. The problem is to find such state-space representations,
which have the same poles as the system itself. This question
is discussed in the next section.

IV. TRANSFORMATION OF STATE SPACE

REPRESENTATIONS

Consider a SISO input-output differential system

ẋ(t) = A(t)x(t)+B(t)u(t), x(t0) = x0

y(t) = C(t)x(t)+D(t)u(t) (23)

where A(·), B(·), C(·) and D(·) are continuously differen-
tiable matrix functions with suitable dimensions. The linear
but possibly time-varying transformation

x(t) = P(t)z(t) (24)

where P(·) is an invertible square matrix of the same dimen-
sion as A(·), is used to change the system representation (23)
into the form

ż(t) = E(t)z(t)+F(t)u(t)
y(t) = G(t)z(t)+H(t)u(t) (25)

(z(t0) = P−1(t0)x0) with

E(t) = P−1(t)[A(t)P(t)− Ṗ(t)]
F(t) = P−1(t)B(t)
G(t) = C(t)P(t)
H(t) = D(t)

(26)

It has been shown in [8] and [9] that the matrix E(·) of the
target system can be chosen arbitrarily by choosing

P(t) = ΦA(t, t0)P(t0)Φ−1
E (t, t0) (27)

where ΦA(·, ·), ΦE(·, ·) are the state transition matrices
related to A(·) and E(·), respectively.

To investigate the preservation of stability, the important
concept of a Lyapunov transformation can be used. Results

related to this theory can be found in the literature, see e.g.
[7], [10], [1]. A definition used in [1] is: An n×n matrix P(t)
that is continuously differentiable and invertible at each t is
called a Lyapunov transformation if there exist finite positive
constants ρ and η such that for all t

‖P(t)‖ ≤ ρ, |detP(t)| ≥ η (28)

which is equivalent to finding a finite positive constant ρ
such that

‖P(t)‖ ≤ ρ,
∥∥P−1(t)

∥∥ ≤ ρ (29)

If a system matrix is changed into another one by a
Lyapunov transformation, the stability of the original and
target representations remain invariant. The key issue is
then to determine, whether the matrix (27) is a Lyapunov-
transformation matrix or not. As long as the transition
matrices ΦA(·, ·) and ΦE(·, ·) are not known, there seems
to be no general procedure to determine this.

The interesting point to notice is that a triangularization
procedure exists, which transforms the system matrix into an
upper triangular form, see [11], [6]. For the transformation
matrix it holds that detP(t) = 1, which implies that P(·) is a
Lyapunov transformation, if its elements are bounded.

To apply, consider again the SISO input-output differential
system described by (1). The system has a state space
representation (23) with

A(t) =

⎡⎢⎢⎢⎢⎢⎣
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
−a0(t) −a1(t) · · · · · · −an−1(t)

⎤⎥⎥⎥⎥⎥⎦

B(t) =

⎡⎢⎢⎢⎣
γ1(t)
γ2(t)

...
γn(t)

⎤⎥⎥⎥⎦
C(t) =

[
1 0 · · · 0

]
D(t) = γ0(t)

(30)
and ⎧⎪⎪⎨⎪⎪⎩

γ0(t) = bn(t),
γi(t) = bn−i(t)

−
i−1
∑

k=0

i−k
∑
j=0

(n+ j−i)!
j!(n−i)! an−i+k+ j(t)

d jγk(t)
dt j

(31)

(i = 1,2, · · · ,n), [12].
This representation is observable and has a constant output

matrix C(t) but, in general, it does not satisfy the property
(c.f. the previous section)

x0 = −AS
2(λ )y0 =

⎡⎢⎢⎢⎣
1
p
...

pn−1

⎤⎥⎥⎥⎦
S

(λ )y0 = const (32)

so that its poles are not guaranteed to be equal to the poles
of the system itself.

Suppose next that a(p) can be factored to

a(p) = (p− p1)(p− p2) · · ·(p− pn) (33)
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where pn is a pole of the system. Then there exists a
transformation (24) such that the system representation (23)
is changed into the form (25) where

E(t) = P−1(t)[A(t)P(t)− Ṗ(t)]

=

⎡⎢⎢⎢⎢⎢⎣
pn(t) 1 0 · · · 0

0 pn−1(t) 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
0 0 · · · · · · p1(t)

⎤⎥⎥⎥⎥⎥⎦
F(t) = P−1(t)B(t)

G(t) = C(t)P(t) =
[

1 0 · · · 0
]

H(t) = D(t)

(34)

P(t) can be chosen as

P(t) =

⎡⎢⎢⎢⎢⎢⎣
1 0

pn(t) 1
x31(t) pn−1(t)+ pn(t)

...
...

xn1(t) xn2(t)
0 · · · 0 0
0 · · · 0 0
1 · · · 0 0

... 1
...

xn3(t) · · · p2(t)+ p3(t)+ · · ·+ pn(t) 1

⎤⎥⎥⎥⎥⎥⎦
(35)

where the entries xi j(t) represent appropriate expressions
containing the pi(t)’s and their derivatives.

The resulting state space representation is observable and
has a constant output matrix C(t). It further satisfies

z0 = −ÃS
2(pn)y0

=

⎡⎢⎢⎢⎢⎢⎣
1

p− pn

(p− pn−1)(p− pn)
...

(p− p1)(p− pn2) · · ·(p− pn)

⎤⎥⎥⎥⎥⎥⎦
S

(pn)y0

= constant

(36)

Therefore this state space representation has exactly the same
poles than the system itself.

Consider again the SISO system described by (2) with left
coprime a(p) and b(p). Its transfer matrix can be factored
into right factorization

a(p)−1b(p) = d(p)c(p)−1 (37)

using elementary column operations to the generator
[a(p)|−b(p)] for construction of a greatest common left
divisor of a(p) and b(p). This gives

[a(p)|−b(p)]
[

q1(p) q2(p)
q3(p) q4(p)

]
︸ ︷︷ ︸

Q(p)

= [1 |0] (38)

so that
a(p)q2(p)−b(p)q4(p) = 0 (39)

resulting in q2(p) = d(p) and q4(p) = c(p).

The right factorization corresponds to the series composi-
tion of the system described by c(p)z = u followed by the
system described by y = d(p)z.

The system described by

(pn + cn−1 pn−1 + · · ·+ c0)z = u (40)

has a state space representation (cf. 30)

ẋc = Acxc +Bcu
z = Czcxc +Dzcu

(41)

with

Ac =

⎡⎢⎢⎢⎢⎢⎣
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
−c0 −c1 · · · · · · −cn−1

⎤⎥⎥⎥⎥⎥⎦

Bc =

⎡⎢⎢⎢⎣
0
0
...
1

⎤⎥⎥⎥⎦
Czc =

[
1 0 · · · 0

]
Dzc = 0

(42)

(time variable t dropped out for brevity). When this is
composed with the system described by

y = (dn pn +dn−1 pn−1 + · · ·+d0)z (43)

the output equation is changed to the form

y = Ccxc +Dcu (44)

with

Cc =
[

d0 −dnc0 d1 −dnc1 · · · dn−1 −dncn−1
]

Dc = dn

This kind of representation is said to be of controllability
canonical form.

Consider again a SISO system described by

(pn +an−1 pn−1 + · · ·+a0)y
= (bn pn +bn−1 pn−1 + · · ·+b0)u

(45)

Write here the left skew polynomials a(p) and b(p) as right
skew polynomials

(pn + pn−1ãn−1 + · · ·+ ã0)y
= (pnb̃n + pn−1b̃n−1 + · · ·+ b̃0)u

(46)

and regroup the terms

p(p(p(· · · p(p(y− b̃nu)+ ãn−1y
−b̃n−1u) · · ·)+ ã2y− b̃2u)+ ã1y− b̃1u)

= b̃0u− ã0y
(47)

Choosing the expressions in parentheses on the left hand side
as state variables

xo =

⎡⎢⎢⎢⎣
y− b̃nu

py− pb̃n + ãn−1y− b̃n−1u
...

pn−1y− pn−1b̃n + · · ·+ ã1y− b̃1u

⎤⎥⎥⎥⎦ (48)
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leads to a state space representation

ẋo = Aoxo +Bou
y = Coxo +Dou

(49)

with

Ao =

⎡⎢⎢⎢⎢⎢⎣
−ãn−1 1 0 · · · 0
−ãn−2 0 1 · · · 0

...
...

...
...

...
−ã1 0 0 · · · 1
−ã0 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎦

Bo =

⎡⎢⎢⎢⎣
b̃n−1 − ãn−1b̃n

b̃n−2 − ãn−2b̃n
...

b̃0 − ã0b̃n

⎤⎥⎥⎥⎦
Co =

[
1 0 · · · 0

]
Do = b̃n

(50)

This is said to be of observability canonical form. The output
matrix Co is constant but the equation xo0 +AS

o2(λ )y0 = 0 has
not in general a constant solution xo0, so that the poles are
not the same than the system has.

However, the observability canonical form can be brought
to the form (25) directly using the same kind of lower trian-
gular transformation matrix Po than (35) above, with entries
containing pi’s in factorization (33) and their derivatives.

V. STATE FEEDBACK

Suppose that the system under consideration is described
by a controllability canonical state space representation (41),
(44)

ẋc = Acxc +Bcu
y = Ccxc +Dcu

(51)

The problem is to construct a state feedback law

u = −Kx+ r (52)

where K = [k1 k2 · · · kn] is a time-varying feedback matrix
and r is a reference signal. The closed loop system has then
the state space representation

ẋc = (Ac −BcK)xc +Bcr
y = (Cc −DcK)xc +Dcr

(53)

of controllability canonical form with

Ac −BcK

=

⎡⎢⎢⎢⎢⎢⎣
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
−c0 − k1 −c1 − k2 · · · · · · −cn−1 − kn

⎤⎥⎥⎥⎥⎥⎦
(54)

Suppose then that the desired closed loop dynamics is given
by a state space representation of the form (25) which
contains the desired poles pn of the closed loop system. The
transformation P (35) can be used to bring this to the same
form than (53), (54)

ẋc = Aclxc +Bclu
y = Cclxc +Dclu

(55)

with

Acl =

⎡⎢⎢⎢⎢⎢⎣
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
−acl,0 −acl,1 · · · · · · −acl,n−1

⎤⎥⎥⎥⎥⎥⎦ (56)

Comparing the matrices Ac−BcK and Acl gives the equations
for solving

ki = acl,i−1 − ci−1, i = 1, . . . ,n (57)

VI. OBSERVER

For construction of a state observer, suppose that the
system under consideration is described by an observability
canonical state space representation (49)

ẋo = Aoxo +Bou
y = Coxo +Dou

(58)

The problem is to construct a full state observer

˙̂xo = Aox̂o +Bou
+L(y−Cox̂o −Dou) (59)

where L = [l1 l2 · · · ln]T is a time-varying weighting matrix.
The behavior of the errors x̃ = x− x̂ satisfies the equation

˙̃xo = (Ao −LCo)x̃o (60)

with
Ao −LCo

=

⎡⎢⎢⎢⎢⎢⎣
−ãn−1 − l1 1 0 · · · 0
−ãn−2 − l2 0 1 · · · 0

...
...

...
...

...
−ã1 − ln−1 0 0 · · · 1
−ã0 − ln 0 · · · · · · 0

⎤⎥⎥⎥⎥⎥⎦
(61)

Suppose then that the desired error dynamics is given by a
state space representation of the form (25) which contains
the desired poles pn of the dynamics. A transformation Po

similar to P (35) can be used to bring this to the same form
than (61)

˙̃xo = Aex̃o (62)

with

Ae =

⎡⎢⎢⎢⎢⎢⎣
−ãe,n−1 1 0 · · · 0
−ãe,n−2 0 1 · · · 0

...
...

...
...

...
−ãe,1 0 0 · · · 1
−ãe,0 0 · · · · · · 0

⎤⎥⎥⎥⎥⎥⎦ (63)

Comparing the matrices Ao−LCo and Ae gives the equations
for solving

li = ãe,n−i − ãn−i, i = 1, . . . ,n (64)
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VII. EXAMPLE

Consider the two-dimensional system

ÿ(t)+a1(t)ẏ(t)+a0(t)y(t) = b(t)u(t) (65)

which has a realization

A(t) =
[

0 1
−a0(t) −a1(t)

]
, B(t) =

[
0

b(t)

]
C(t) =

[
1 0

]
, D(t) = 0

(66)

The transformation matrix

P(t) =
[

1 0
p2(t) 1

]
(67)

gives the input-output representation

E(t) =
[

p̄2(t) 1
0 p̄1(t)

]
, F(t) =

[
0

b(t)

]
G(t) =

[
1 0

]
, H(t) = 0

(68)

where
p̄2(t) = p2(t)
p̄1(t) = −p2(t)−a1(t)

(69)

and
−p2

2(t)−a0(t)−a1(t)p2(t)− ṗ2(t) = 0 (70)

using an arbitrary initial condition. The system structure
corresponds to the polynomial factorization

p2 +a1(t)p+a0(t)
= (p− p̄1(t))(p− p̄2(t))

(71)

where p̄2(t) is the pole of the system. If p2(t) is a bounded
function, P(t) is a Lyapunov transformation.

The controllability and observability canonical forms be-
come

ẋc =

[
0 1

−a0 −a1
ḃ0
b0
− b̈0

b0
−a1 −2 ḃ0

b0

]
xc +

[
0
1

]
u

y =
[

b0 0
]

xc
(72)

ẋo =
[ −a1 1

−a0 + ȧ1 0

]
xo +

[
0
b0

]
u

y =
[

1 0
]

xo

(73)

Using the state feedback the closed-loop system is

ẋc =

[
0 1

−a0 −a1
ḃ0
b0
− b̈0

b0
− k1 −a1 −2 ḃ0

b0
− k2

]
xc

+
[

0
1

]
r

y =
[

b0 0
]

xc

(74)

Given the desired closed loop pole sets p1, p2 it follows

acl,1 = −(p1 + p2)
acl,0 = p1 p2 − ṗ2

(75)

Finally, the controller parameters can be calculated, and the
result is

k1 = −a0 −a1
ḃ0
b0
− b̈0

b0
− p1 p2 + ṗ2

k2 = −a1 −2 ḃ0
b0

+ p1 + p2
(76)

VIII. CONCLUSIONS

The pole sets of linear time-varying differential systems
have been defined by using polynomial factorizations and
state-space realizations. The concept of Lyapunov transfor-
mation has been utilized to show that the poles determine
the stability of the system. Time-variable canonical forms
are used to design state-feedback control algorithms, which
can be proved to give a stable closed-loop system. Time-
variable observer has also been designed in an analogous
manner.
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