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Abstract— Recently there have been significant developments
in re-casting experiment design problems in system identifica-
tion as convex optimization problems. The practical implemen-
tation of these methods is hampered by the fact that typically
the “data” in the optimization problem depend on the to be
identified system. In this contribution we propose an adaptive
certainty equivalence solution based on a recursively identified
model. The input design is adapted by taking one Newton step
using data from the last identified model.

I. INTRODUCTION

Experiment design in system identification has a long
history. The classical approach is to use the input spectrum
to shape the covariance matrix of the parameter estimates
such that the objectives are met [7], [15].

When the high-order variance expression for identified
frequency functions [27] appeared this allowed input design
in the frequency domain which lead to a new flurry of
activities [14], [18], [28], [8].

More recently the pendulum has swung back and several
new results based on the classical approach have appeared
[25], [6], [26], [16], [21], [3]. These recent contributions
explore advances in convex optimization.

This paper contributes to this development. We will con-
sider identification of time-discrete linear time-invariant sys-
tems within the prediction error framework, [28], [30]. Based
on N observed input-output data points this framework
delivers a frequency response estimate G(ejω , θ̂N ), where
θ̂N is the prediction error estimate of a vector θ ∈ R

n that
parametrizes a set of transfer functions, G(ejω , θ), together
with an uncertainty region. The estimated model G(e jω , θ̂N )
will typically deviate from the system being estimated. In this
contribution we will only consider the case where the true
system belongs to the model class and hence only variance
errors occurs. The variance errors are influenced by the
second order statistics of the input used for the identification.
No new input design problem will be considered. Instead we
will focus on how to implement these methods in practice
– the key problem being that the data required to solve
the convex optimization problem associated with the input
design problem in general requires the true system to be
known. Here we propose an adaptive certainty equivalence
solution based on a recursively identified model. In this
approach the input design is changed in each iteration by
taking one Newton step in a barrier method using data from
the last identified model.

An adaptive method for this type of input design problem
has previously been suggested in [26]. However, there the
optimization problem is solved in each iteration. A two-step
procedure has been proposed in [1] where in the first step
data are collected over a short time interval with a fix input

design. A model is identified from this data set and replaces
the true system in an optimal input design. In the second
step the input resulting from this design is used to generate
a second data set on which the final model is estimated.

II. MULTI-VARIABLE LINEAR STOCHASTIC CONTROL

SYSTEMS: TECHNICAL CONDITIONS

The set of real numbers will be denoted by R, the p-
dimensional Euclidean space will be denoted by R

p. The
Euclidean-norm of x ∈ R

p will be denoted by |x|. We
shall often use subscripts to indicate partial derivatives.
Let (yn), 0 ≤ n < ∞ be a vector-valued, wide-sense
stationary stochastic process defined by a finite-dimensional
linear stochastic control-system:

y = G(θ∗)u + H(θ∗)e. (1)

Condition 2.1: G(θ) and H(θ) are causal, rational trans-
fer functions of the backward shift operator q−1, moreover
H(θ) is square, and inverse stable for θ ∈ D where D ⊂ R

p

is an open domain.
Condition 2.2: There exists a minimal state-space realiza-

tion of H(θ), say

H(θ) = I + C(θ)(q−1I − A(θ))−1B(θ), (2)

such that the matrices A(θ), B(θ) and C(θ) are three-times
continuously differentiable functions of θ, and similarly for
G(θ).

To characterize the input and the noise process we need the
concept of L-mixing processes, elaborated in [9], which is
a generalization of what is called "exponentially stable pro-
cesses" in the system-identification literature, see Definition
3.1 in 8.3 of [5] or [29]. A slightly more restrictive class of
processes, called L+-mixing processes has been introduced
in [10], and will be used in formulating our conditions.
We will also need the following definition: a discrete-time
R

p-valued stochastic process (un) is M -bounded if for all
1 ≤ q < ∞

Mq(u) := sup
n≥0

E1/q [|un|q] < ∞. (3)

In this case we write un = OM (1). For a stochastic
process (zn), n ≥ 0 and a positive sequence (cn) we write
zn = OM (cn) if un = zn/cn = OM (1). Finally, we
say that (un) is M∗-bounded if for some ε > 0 we have
supn E exp ε|un|2 < ∞.

Condition 2.3: The input process (un), n ≥ 0 and the
noise process is (en), 0 ≤ n ≥ 0 are both second-order
stationary stochastic processes such that they are both in
class M∗, and they are both L+-mixing. In addition (en)
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is a martingale-difference process with respect to (Fn) with
constant conditional covariance:

E [en|Fn−1] = 0, E [eneT
n |Fn−1] = Λ∗

almost surely, with Λ∗ > 0.
Let θ ∈ Dθ where Dθ is an open set and let Λ be a

symmetric positive definite matrix. Define the second order
stationary process ε(θ) = H−1(θ)(y − G(θ)u). The over-
line indicates that we deal with frozen-parameter processes.
Define the asymptotic cost function by

W (θ, Λ) = lim
n→∞

1
2
E [εT

n (θ)Λ−1εn(θ)] +
1
2

log detΛ. (4)

The Hessian of W with respect to θ at (θ∗, Λ∗) is

R∗ = Wθθ(θ∗, Λ∗) = lim
n→∞E [εT

θ,n(θ∗)(Λ∗)−1εθ,n(θ∗)].
(5)

Condition 2.4: The equation

Wθ(θ, Λ) = lim
n→∞E [εT

θ,n(θ)(Λ)−1εn(θ)] = 0 (6)

has a unique solution θ = θ∗ in Dθ for any symmetric, pos-
itive definite Λ and the Hessian-matrix R∗ = Wθθ(θ∗, Λ∗)
is positive definite.

III. INPUT DESIGN

In this section we will outline the basic features of the
input design formulations used in, e.g., [21], [3]. For sim-
plicity of presentation we will consider single-input/single-
output systems only. However, the main results of the paper
will apply to multivariable systems.

Consider that we are interested in some scalar performance
criterion J which depends on the system, i.e. J = J(θ∗). J
may for example represent a weighted sum of the frequency
responses at some given frequencies or a pole or zero
location.

The accuracy of the corresponding estimate ĴN = J(θ̂n) is
asymptotically (in n) given by Gauss’ approximation formula

V ar(Ĵn) ≈ 1
n

[J ′(θ∗)]T P (θ∗)J ′(θ∗) (7)

where the asymptotic covariance matrix P is defined as

P (θ∗) = lim
n→∞ nE

[
(θ̂n − θ∗)(θ̂n − θ∗)T

]
(8)

From (7) it is clear that P (θ∗) plays a crucial role in
experiment design. It is through this quantity that we can
influence the accuracy of Ĵn.

The way the input influences P (θ∗) is through its spec-
trum. In fact the inverse of P depends affinely on the input
spectrum under the assumption that the data is collected in
open-loop [21], [28]. Hence, in open loop operation the input
power spectrum Φu(ω) is our design variable.

A typical input design problem could be to, for a given
experiment length N , find the minimal input power required
to guarantee a certain accuracy γ2 of ĴN , i.e.

minimize
Φu

γ1

subject to E[u2
n] ≤ γ1

V ar(ĴN ) ≤ γ2

Φu(ω) ≥ 0

(9)

As stated, the above problem is untractable from an opti-
mization point of view since the free variable Φu is infinite
dimensional and since V ar(ĴN ) is non-convex with respect
to Φu.

There are several ways to handle the first issue, see [21].
Here we will employ a finite dimensional parametrization of
Φu

Φu =
M−1∑

k=−(M−1)

c̃|k| Bk (10)

where M is a finite positive integer. Here the Bk-s are known
basis functions and c̃ = [c̃0, c̃1, . . . , c̃M ]T is the free variable.
For the particular choice Bk(ejω) = e−jωk, the coefficients
c̃k have the interpretation as auto-correlations.

The positiveness constraint on the input spectrum that
appear in (9) translates into a linear matrix inequality (LMI)
in c̃ and a new M × M matrix valued variable Q = QT by
way of the Kalman-Yakubovich-Popov (KYP) lemma, see
e.g. [31]. We express this constraint as

K(Q, c̃) ≥ 0 (11)

Notice also that the input power constraint that appear in (9)
is linear in c̃ since

E[u2
n] =

1
2π

∫ π

−π

Φu(ω)dω

We can thus write E[u2
n] = bT c̃ where b ∈ R

M is a vector
depending on the basis functions.

The convexification of V ar(ĴN ) can be carried out using
the Schur-complement which leads to that the two input
design problems discussed above are equivalent to the fol-
lowing program

minimize
γ1,c̃,Q

γ1

subject to bT c̃ ≤ γ1[
γ2 [J ′(θ∗)]T

J ′(θ∗) P−1(θ∗, c̃)

]
≥ 0

K(Q, c̃) ≥ 0

(12)

where the argument c̃ has been added to P to indicate the
dependence on the input spectrum. Notice that the first matrix
inequality is an LMI in c̃ since P −1(θ∗, c̃) depends affinely
on c̃. Thus (12) is a convex program. It is possible to extend
and modify this basic problem formulation in a number of
ways, see [21] for details. From an optimization point of
view, however, the resulting problems have structures similar
to (12) so for the considerations in this paper it is sufficient to
study the above problem. Also closed loop experiment design
formulations lead to the same type of convex optimization
problems [22].

Let η = [c̃T , Vec(Q)T , γi]T . The actual input is
computed by the state-space equation

zn+1 = Az(η)zn + Bz(η)wn

un = Cz(η̂)zn + Dz(η)wn
(13)

where the matrices Az , Bz , Cz and Dz are obtained by
spectral factorization of (10), and wn is white noise.
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For fixed θ∗ finding a solution to (12) amounts to solving
for a point which satisfies the Karush-Kuhn-Tucker condi-
tions, which can be written as

F (θ∗, η) = 0. (14)

for some function F (see [4] for details). The latter can be
solved by Newton’s iteration. We assume that F includes the
weight matrix that is needed for a Newton’s iteration, so that
we can use the recursion:

η̂n =η̂n−1 + λnF (θ∗, η̂n−1). (15)

The optimal η will be denoted by η∗.

IV. ADAPTIVE INPUT DESIGN

The key problem with (12) is that θ∗ is in fact unknown.
However, if a parameter estimate is available it is natural
to use the certainty equivalence solution to (12). For a fixed
input, given, say by η, a Newton-type recursive prediction
error estimate of θ∗ is defined as follows:

Rn = Rn−1 +
1
n

(εθ,nΛ−1
n εT

θ,n − R−1
n )

Λn = Λn−1 +
1
n

(εnεT
n − Λn−1)

θ̂n = θ̂n−1 − 1
n

R−1
n εθ,nΛ−1

n εn,

(16)

Here εn and εθ,n are on-line estimates of εn(θ̂n−1) and
εθ,n(θ̂n−1), respectively. They can be generated by a finite
dimensional linear system with state matrices depending on
the time-varying parameters θ̂k. Setting

ψ = (θ, VecΛ, VecR)

a shorthand notation for algorithm (16) will be

ψ̂n = ψ̂n−1 − 1
n

H(ψ̂n−1, η; εθ,n, εn). (17)

A simple adaptive algorithm would be to solve in each
time-step n the equation F (θ̂n, η) = 0 for η. However,
for short sampling rates, this may be computationally pro-
hibitive. Instead, one may take a single Newton-step towards
the solution to (14) for each time-step. Thus we get the
following adaptive input design algorithm, in which the
frozen parameters η in (17) and θ in the recursion for η
are replaced by their on-line estimates:

ψ̂n =ψ̂n−1 − 1
n

H(ψ̂n−1, ηn−1; εθ,n, εn), (18)

η̂n =η̂n−1 + λnF (ψ̂n, η̂n−1). (19)

Here λn is the step-size for the algorithm. Since no noise is
explicitly present in this recursion, it may seem reasonable to
use a fixed step size λn = λ. On the other hand the analysis
of the joint algorithm is much simpler using existing results
if we use the standard stepsize 1/n. It will be argued below,
that the asymptotic covariance matrix of θ̂n is the same for
both choices.

The actual input is computed by the time-varying version
of the filter (13). Equations (18), (19) together with the time-
varying state space systems generating εn, εθ,n and un can

be seen as a stochastic approximation procedure, which can
be analyzed via the methods of [10] and [11].

The search domains or truncation domains for the systems
parameters, the noise covariance and the input parameters
are denoted by Dθ0, DΛ0 and Dη0, respectively. They are
compact domains inside the respective feasible open sets, and
containing the optimal values in their interiors. In choosing
the truncation domain Dη0 it is critical for the algorithm that
c̃n corresponds to a spectrum.

Boundedness of the estimates will be enforced by a
resetting mechanism: if say θ̂n would leave Dθ0, then we
redefine θ̂n to be θ̂0, see (3.34) of [11]. Conditions for the
position of θ̂0 relative to Dθ0 are given in Condition 3.4 of
[11].

We need to strengthen the persistent excitation condition
R∗ > 0. To emphasize that the input, and thus the esti-
mated innovation depends on η write εn(θ) = εn(θ; η) =
εn(θ; η, θ∗) and define, assuming that the true system pa-
rameter is θ,

R∗(θ, η; Λ) = lim
n→∞ E [εT

θ,n(θ; η, θ)Λ−1εθn(θ; η, θ)].

Condition 4.1: The search domains Dθ0, DΛ0 and Dη0

are such that for some 0 < κ1 < κ2 we have for all set
of feasible parameters

κ1I ≤ R∗(θ, η; Λ) ≤ κ2I.
To ensure the stability of the time-varying filters gener-

ating the processes εn, εθ,n and un we need the following
condition, which can be often satisfied by an appropriate
state-space realization, see the discussion in [11]:

Condition 4.2: The family of matrices A(θ), θ ∈ Dθ0 is
jointly stable, in the sense that there exist a single symmetric
positive definite r× r matrix V and 0 < λ < 1 such that for
all θ ∈ Dθ,0

AT (θ)V A(θ) ≤ λV.

Similarly, the family of matrices Az(η), η ∈ Dη0 is jointly
stable.

V. THE ASYMPTOTIC COVARIANCE MATRIX

First we consider the problem of determining the asymp-
totic covariance matrix of recursive estimators, a problem
that has been discussed in a number of works in a partially
rigorous manner. A rigorous result has been derived in The-
orem 13, Chapter 4.5,Part II of [2] in a series model, where
the initial time tends to infinity, and thus the probability
of exiting the truncation domain tends to 0, assuming a
Markovian state dynamics. For results in the context of weak
convergence theory see [24]. A recent general result for
recursive estimation processes driven by a mixing random
field and equipped with a resetting mechanism has been
given in [11]. The main advance of this result relative to
the cited result of [2] is that the asymptotic covariance
matrix is obtained for a single process. We also get a rate
of convergence for the covariance-matrix sequence, which is
useful in applications such as the analysis of performance
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degradation to statistical parametric uncertainty. Set

R(θ, Λ) = lim
n→∞E [εT

θ,n(θ)Λ−1εθn(θ)]

Λ(θ) = lim
n→∞E [εn(θ)εT

n (θ)].

We will use the notation Λ∗ = Λ(θ∗) and R∗ = R(θ∗, Λ∗).
It is well known [28] that P (θ∗) = (R∗)−1. For the sake
of clarity we consider first the recursive estimation method
(16) or (17) with a fixed input design η, with the technical
conditions stated exactly. The following result follows from
[11]:

Theorem 5.1: Consider the full RPE estimator (16) mod-
ified with the resetting mechanism described above. Assume
that Conditions 2.1, 2.2, 2.3, 2.4, 4.2 are satisfied, and
the initial conditions are appropriately positioned relative
to truncation domains (cf. Condition 3.4 of [11]). Then the
asymptotic covariance-matrix of the error process ( θ̂t − θ∗),
defined by

S∗ = lim
n→∞nE[(θ̂n − θ∗)(θ̂n − θ∗)T ],

exists, and we have S∗ = (R∗)−1. More exactly we have
with some ε2 > 0

E[(θ̂n − θ∗)(θ̂n − θ∗)T ] =
1
n

(R∗)−1 + O(n−1−ε2).
An analogous result holds for the extended parameter vector
ψ = (θ, VecΛ, VecR).

The results of [11] are also applicable for the adaptive
input design method given by (18) and (19). First, fix η, and
write εn(θ) = εn(θ; η) = εn(θ; η, θ∗). Then the asymptotic
covariance matrix of θ̂n will be written as

S∗(η) = S∗(η; θ∗, Λ∗) = R∗(θ∗, η; Λ∗)−1.

It should be noted that the function S ∗(η; θ∗, Λ∗) is explicitly
computable. The associated ODE has the following structure:

ẏt =
1
t
G(yt, vt)

v̇t =
1
t
F (yt, vt), (20)

where y corresponds to ψ and v corresponds to η. Here G
stands for the expectation of the correction term on right
hand side of (16), while F has been introduced in (14).

Since for each fixed v we have G(ψ∗, v) = 0, the Jacobian
of the right hand side is a block-triangular 2×2 matrix with
stable diagonal blocks at the equilibrium point. Thus the local
asymptotic stability of the joint ODE follows. The asymptotic
covariance matrix of the sample means of the correction
terms in (18) and (19) evaluated at the optimal parameter
values, i.e. H(ψ∗, η∗; εθ,n(θ∗), en) and F (ψ∗, η∗) is a 2×2
block matrix with the only non-zero block at position (1, 1).
Applying the results of [11] we get that the asymptotic
covariance matrix of (θ̂n, η̂n) satisfies a Lyapunov-equation
the (1, 1) block of which is identical with the Lyapunov-
equation given for the asymptotic covariance matrix of ψ̂n

when η = η∗ is fixed. Thus we get the following result:
Proposition: The adaptive input design algorithm (18) and

(19) solves the optimal input design problem. In particular

we have

lim
n→∞nE[(θ̂n − θ∗)(θ̂n − θ∗)T ] = S(η∗), (21)

In addition we get that ψ̂n and η̂n are asymptotically uncor-
related.

Remark: A natural alternative would be to use a fixed
step-size in the deterministic recursion. Recursive estima-
tion methods which are a mixture of a stochastic and a
deterministic procedure have been discussed heuristically
back in [12]. Since then a number of techniques have been
developed, and a rigorous analysis have become feasible. The
advantage of using a mixed algorithm is that the asymptotic
covariance matrix of the first component ψ̂n would be gen-
erally smaller than for the standard stochastic approximation
method using stepsize 1/n for both components. However,
if the two components of the joint parameter estimator are
asymptotically uncorrelated, then it is easily seen that no
reduction is achieved.

VI. MISSPECIFIED MODELS

When the true system is not in the model class we face a
completely new situation. First, the optimal θ∗, defined as the
solution of an asymptotic ML equation, does depend on the
input. Let it be denoted by θ∗(η). An important aspect of the
input design problem is then to determine η such that θ ∗(η)
models the system properties of interest. In identification for
control [17] criteria of the type

J(θ) =
∫ 2π

0

||(G(eiω , θ) − G∗(eiω))U(eiω)||2W (eiω)dω,

(22)
where G∗(eiω) is the true system, and where W is a suitably
chosen frequency weighting filter which also may depend
on the true system, are important. In this situation, the
performance index J(θ) can not be expressed explicitly in
terms of the assumed system parameters and input spectrum,
rather we need to resort to experiments. After some algebra
and simplifications we arrive at the following non-standard
stochastic approximation problem: solve

F (η) = f(EQ(ε(η)) = 0, (23)

where f, Q are explicitly known smooth functions, and ε(η)
is a computable process. We call this problem a non-linear
stochastic approximation problem.

As a simple benchmark example consider the following
problem: let f be a scalar-valued function defined on R p,
and let a ∈ Rp be an unknown vector. Assume that for any
scalar η we can take measurements

yn(η) = aη + en, (24)

where en is a zero mean i.i.d. sequence. Solve for η the
equation

F (η) = f(aη) = 0 (25)

using the noisy measurements yn.
A possible solution to the above general problem can be

obtained by evaluating F (η) with increasing accuracy by
taking an increasing number of samples to approximate the
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expectation which is the argument of f . A mathematically
more attractive solution is obtained if we approximate the
required expectation by an on-line computable average called
zn. Then we get a recursive method given by the pair of
equations:

ηn+1 =ηn +
1
r
f(zn+1)

zn+1 =
1

n + 1

n+1∑
r=1

Qr(ε(ηr−1)). (26)

Using a recursive form for computing zn+1 a stochastic
approximation process the associated ODE of which is

η̇t = f(zt)
żt = g(ηt) − zt (27)

with g(η) = EQ(ε(η)).
Theorem 6.1: Assume that the differential equation

η̇t = F (ηt) = f(g(ηt)) (28)

is exponentially asymptotically stable at η∗ and the eigen-
values of (∂/∂η)F (η)|η=η∗ are real. Then the extended
ODE (27) is also exponentially asymptotically stable at
(η∗, g(η∗)).

Proof: The Jacobian of (27) is

(
0 fz(z∗)

gη(η∗) −I

)
,

where subscripts denote partial derivatives. Let

B = fz(z∗) and C = gη(η∗).

The the assumption is that BC is stable, i.e. it has all its
eigenvalues on the left half plane. The determinant of the
above matrix is detBC �= 0, thus 0 is not an eigenvalue.

Consider the Schur-component

det(−I − λI + Cλ−1B).

Put this equal to zero and multiply by −λ. Then we have to
solve

det(λ2I + λI − CB) = 0.

Now take a coordinate transformation that takes CB into
its Jordan-form. The the above determinant can be factored
according to the Jordan-blocks. Let J(µ) be a Jordan-block
of CB which has µ in its diagonal, and µ is an eigenvalue
of CB. Then its determinant is µk where k is the size of
the block. Thus the corresponding determinant will become
(λ2 + λ−µ)k. Since the set of non-zero eigenvalues of BC
and CB coincide, we have that µ is either 0 or negative by
assumption. The case µ = 0 would imply λ = 0, which has
already been excluded. Thus the roots of λ2 + λ − µ lie in
the left half plane, as stated.

VII. NUMERICAL ILLUSTRATION

In this section we present results when the algorithm (16),
(19) and (13) was applied to the problem of estimating the
static gain of the system

G =
2q−1 + q−2

1 − 1.0607q−1 + 0.5625q−2

The objective is to estimate the static gain to within an accu-
racy of 0.01 using minimum input power over an experiment
of length N = 50. The update mechanism (19) for the input
design problem corresponds to one iteration in SDPT3 [23]
(Version 3.0) which is a primal-dual interior point algorithm
which uses the path following paradigm.

First an initial experiment of length N = 25 using a
white noise input with unit variance was conducted. The
corresponding parameter estimate, together with the input
design corresponding to this parameter estimate were used
as initial values in the algorithm.

The algorithm (16), (19) and (13) generated static gain
estimates with a variance of 0.0173 using a mean input power
of 1.38 over 50 Monte-Carlo runs. This can be compared
with the optimal design for which the variance of static gain
estimates was 0.0231 using a mean input power of 1.18. The
reason why neither design reaches the desired performance
specification is due to finite sample effects not covered by
the asymptotic theory in Section IV. In Figure 1 the input
for one simulation is compared to the optimal input. Clearly
the adaptively generated input converges to the optimal one.

0 5 10 15 20 25 30 35 40 45 50
2

1.5

1

0.5

0

0.5

1

1.5

2

2.5

3
Adaptive design
Optimal design

Fig. 1. Adaptive input compared to the optimal input.

VIII. CONCLUSIONS

A certainty equivalence based adaptive input design
method has been presented and its asymptotical statistical
properties have been analyzed under the assumption that the
true system is in the model set. Performance degradation
due to statistical uncertainty, also called regret, is of great
interest in adaptive prediction, adaptive input design and
adaptive control of stochastic systems. These results can be
also applied in the context of identification for control, see
[13], [19], [20].

4992



We have also presented a novel approach to adaptive input
design when the true system is not in the model class.
The idea is to rely on experiments to compute necessary
quantities and results in a non-standard SA problem.
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