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Abstract— Receding-horizon state estimation is addressed for
a class of uncertain discrete-time linear systems with distur-
bances acting on the dynamic and measurement equations.
The estimates are obtained by minimizing a least-squares cost
function in the worst case, i.e., by solving a min-max problem.
With respect to previous results (see [1]), the proposed solution
is not conservative and, if the computation is too demanding,
the problem may be solved approximately with a reduced
computational burden. The stability of the estimation errors
is guaranteed under suitable conditions. Simulation results are
quite satisfying in performance if compared with other methods.

I. INTRODUCTION

Receding-horizon estimation and control has become a
hot topic in the last decade. A survey on receding-horizon
control il given in [2]. As to receding horizon estimation,
more recent results are those reported in [3], [4], [5]. Recent
researches on this subject have aimed at developing filter
and controllers with guaranteed robustness properties with
respect to system uncertainties. In the framework of robust
control, special attention has been paid to various receding-
horizon techniques (see, e.g., [6], [7], [8], [9]), where the
controller is synthesized by using a worst-case criterion. In
particular, a min-max approach is usually followed, which
means that the design is made by minimizing a control cost
function in the case corresponding to the most pessimistic
conditions given, for example, by the disturbances and/or
the uncertainties.

A similar approach has been proposed in [1] in the
framework of robust receding-horizon estimation, that con-
sists in the minimization of an upper bound on a worst-
case quadratic cost defined over a sliding window. Though
conservative, this method enables to find solutions with a
low computational effort. Such a goal has been pursued by
using recent results on the solution of min-max least-squares
problems (see [10]). In general, least-squares problems often
arise in different research areas and it may occur the need
of finding solution robust with respect to uncertain data.
The approach to robust least squares in [10] is based on
regularization. Such an approach has also been applied with
success to robust Kalman-filtering [11]. As to other min-max
filtering techniques for linear systems, the most important
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results in the past literature are summarized in [12] and in
the references therein.

In this paper, a new approach with some advance with
respect to [1] is proposed, in that the introduction of a
modified quadratic cost function allows one to solve exactly
the considered min-max receding-horizon estimation prob-
lem. This entails the on-line minimization of a unimodal
cost function. If the required effort of computation is too
high, an approximate solution can be found with a small
computational burden as in [1]. Simulation results show a
considerable improvement in the performance of the pro-
posed filters if compared with that of [1]. The proofs are
omitted for the sake of brevity.

We conclude this section by defining some notations used
throughout this paper. Given a generic, symmetric, positive
definite matrix P , let us denote by σ(P ) and σ̄(P ) the min-
imum and maximum eigenvalues of P , respectively; more-
over, P 1/2 is the unique positive definite square root of the
matrix P . Given a generic matrix M , M ′ and M† indicate
the matrix transpose and the pseudoinverse of M , respec-
tively. Furthermore, ‖M‖ = [σ̄(M ′M)]

1/2. Given a generic
vector v , ‖v‖ denotes the Euclidean norm of v and, given a
positive definite matrix P , ‖v‖P denotes the weighted norm

of v , ‖v‖P
�
= (v′Pv)1/2 . For a generic time-varying vec-

tor vt , let us define vt
t−N

�
= col (vt−N , vt−N+1, . . . , vt) ;

similarly, given a generic time-varying matrix Mt , let us

define M t
t−N

�
= col (Mt−N ,Mt−N+1, . . . , Mt) . Finally, let

us denote the ordered product of a sequence of matrices

{M1,M2, . . . Mn} as
n∏

i=1

Mi
�
= M1M2 · · ·Mn .

II. STATEMENT OF THE PROBLEM

Let us consider an uncertain linear dynamic system de-
scribed by the following discrete-time equations

xt+1 = (A + δAt) xt + (B + δBt) ut + wt (1a)

yt = (C + δCt) xt + vt (1b)

where t = 0, 1, . . . is the time instant, xt ∈ R
n is the

state vector (the initial state x0 is unknown), ut ∈ R
p is

the control vector, wt ∈ R
n is the system noise vector,

yt ∈ R
m is the vector of the measures, and vt ∈ R

m is
the measurement noise vector. The matrices δAt , δBt , and
δCt represent time-varying uncertainties in the knowledge
of the system, and are supposed to belong to the known
compact sets A , B , and C , respectively. More specifically,
we shall consider unknown but bounded uncertainties of the
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form

[δAt δBt] = D∆t [E F ] , (2a)

δCt = G∆̄tH , (2b)

for t = 0, 1, . . . , where D,E, F,G, and H are known
matrices, and ∆t and ∆̄t are arbitrary contractions, i.e.,

‖∆t‖ ≤ 1 ,
∥∥∆̄t

∥∥ ≤ 1 .

We assume the statistics of the random variables x0, wt,
and vt to be unknown, and consider them as deterministic
variables of an unknown kind. Moreover, we assume our
estimates to be based on data obtained in the recent past
according to a receding-horizon strategy [3], [13], [1]. Then
we define the information vector as

IN
t

�
= col (yt−N , . . . , yt, ut−N , . . . , ut−1) ,

for t = N,N +1, . . . . N +1 is the number of measurements
made at sliding-window stages from t − N to t .

At any time t = N,N + 1, . . ., the objective is to find
estimates of the state vectors xt−N , . . . , xt on the basis of
the information vector IN

t and of some “prediction” x̄t−N

of the state xt−N at the beginning of the sliding window.
Let us denote by x̂t−N,t, . . . , x̂t,t the estimates (to be made
at time t) of xt−N , . . . , xt , respectively.

As we have assumed the statistics of the disturbances
and of the initial state to be unknown, a natural criterion
to derive the estimator consists in resorting to a least-
squares approach. Towards this end, we shall address the
minimization of the following loss function

Jt = ‖ x̂t−N,t − x̄t−N ‖
2
M

+
t−1∑

j=t−N

‖ x̂j+1,t − (A + δAj)x̂j,t − (B + δBj)uj ‖
2
Q

+
t∑

j=t−N

‖ yj − (C + δCj)x̂j,t ‖
2
R (3)

where the matrices M , Q , and R are assumed to be
positive definite and can be regarded as design parameters.
The first term, weighted by the matrix M , penalizes the
distance of the state estimate at the beginning of the sliding
window from the prediction x̄t−N . The second contribution,
weighted by the matrix Q , takes into account the evolution
of the state in terms of the state equation (1a). Finally,
the third term, weighted by the matrix R , penalizes the
distances of the state estimates from the measures. As to
the prediction x̄t−N , different choices are possible. For
example, following [1], it can be determined via the state
equation of the nominal system by the estimate x̂t−N−1,t−1 ,
that is, x̄t−N = A x̂t−N−1,t−1 + But−N−1 . A second
possibility consists in assigning to x̄t−N the value of the
estimate of xt−N made at the previous time instant t − 1,
that is, x̄t−N = x̂t−N,t−1 . In both cases, the vector x̄0

denotes an a-priori prediction of x0. In the following, we
shall consider the former definition, since it will make easier
the derivation of the convergence results (see Section IV).

It is worth noting that cost (3) is a function, not only
of the estimates x̂t

t−N,t , but also of the uncertain matrices
δAt−1

t−N , δBt−1
t−N , and δCt

t−N , and consequently, in the light
of equations (2), of the arbitrary contraction matrices ∆t−1

t−N

and ∆̄t
t−N , that is,

Jt = Jt

(
x̂t

t−N,t,∆
t−1
t−N , ∆̄t

t−N

)
.

As to the uncertainties in the system matrices, we shall
follow a min-max approach; then, at any time t = N,N +
1, . . ., the following problem has to be solved.

Problem Et For a given pair (x̄t−N , IN
t ) , find the optimal es-

timates x̂◦
t−N,t, . . . , x̂

◦
t,t that minimize the maximum of cost

(3) over all the possible uncertainties, i.e., find the solutions
of the min-max optimization problem

min
x̂t

t−N,t

max
∆t−1

t−N
; ∆̄t

t−N

Jt

(
x̂t

t−N,t,∆
t−1
t−N , ∆̄t

t−N

)
(4)

with ‖∆i‖ ≤ 1 for i = t − N, . . . , t − 1 and ‖∆̄i‖ ≤ 1 for
i = t − N, . . . , t.

Obviously, concerning the propagation of the estimation
procedure from Problem Et to Problem Et+1, only the
estimate x̂◦

t−N,t has to be retained. This estimate becomes
the optimal prediction for Problem Et+1 via the nominal
state equation, i.e., x̄t−N+1,t+1 = Ax̂◦

t−N,t +But−N . Such
a recursion is initialized at stage N with some a-priori
prediction x̄0 of the initial state vector.

The following proposition ensures the well-posedness of
Problem Et.

Proposition 1: Suppose that M > 0 and Q > 0 , then

max
∆t−1

t−N
; ∆̄t

t−N

Jt

(
x̂t

t−N,t,∆
t−1
t−N , ∆̄t

t−N

)

is a strictly convex radially unbounded function1 of x̂t
t−N,t

and, consequently, Problem Et has a unique finite solution.

Before proceeding to the derivation of the unique solution
of Problem Et, it is important to remark the main differences
between the approach described above and the one proposed
in [1]. With this respect, it is worth noting that in [1] a similar
min-max approach for the receding-horizon estimation of
uncertain linear systems was proposed, in which a slightly
different quadratic cost was considered of the form

J ′
t = ‖ x̂t−N,t − x̄t−N ‖

2
M

+

t∑
j=t−N

‖ yj − (C + δCj)x̂j,t ‖
2
.

Furthermore, the estimates x̂t−N+1,t, . . . , x̂t,t were gener-
ated recursively by the estimate at the beginning of the
sliding window x̂t−N,t through the state equation (1a), that
is,

x̂i+1,t = (A + δAi) x̂i,t + (B + δBi)ui , (5)

1Recall that a function f(z) is said to be radially unbounded if f(z) →
+∞ as ‖z‖ → +∞ .
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for i = t−N, . . . , t− 1. By applying (5), the cost J ′
t turns

out to be a function of the estimate of the state x̂t−N,t and
of the uncertain matrices ∆t−1

t−N and ∆̄t
t−N .

Note that the summation in cost Jt weighted by the matrix
Q can be seen as a “soft” version of the hard constraints (5).
Hence Problem Et turns out to be a relaxation of the min-
max problem addressed in [1] (in the following, we shall call
it Problem Eh

t ).
While the introduction of the hard constraints (5) leads to

an apparent simplification in the estimation scheme (in that
only the estimate at the beginning of the sliding-window
has to be computed), it turns out that the dependence of
cost J ′

t on the contraction matrices ∆t−1
t−N and ∆̄t

t−N is
quite complex. More specifically, in [1] it was shown that
Problem Eh

t can be written as a linear-fractional Structured
Robust Least Squares (SRLS) problem (see [14]). As it is
well known, such a problem is in general very difficult to
solve. In [1], an alternative conservative reformulation of
Problem Eh

t was proposed that consisted in the minimization
of an upper bound on the worst-case cost and lead to a less
computationally demanding solution.

On the contrary, it is immediate to see that, for fixed
values of the estimates x̂t

t−N,t, cost Jt depends quadratically
on the contraction matrices ∆t−1

t−N and ∆̄t
t−N , thus making

it possible to derive a convenient form for the solution of
Problem Et.

III. FORM OF THE SOLUTION

In order to solve Problem Et, we shall refer to the
following technical lemma that summarizes some of the
results presented in [10].

Lemma 1: Let φ : R
q → R be a strictly positive and

convex function and consider the constrained maximization
problem over the vector η

max
‖η‖≤φ(ζ)

‖Ψζ − ω + Πη‖
2
Ω (6)

where Ψ, Π, and Ω > 0 are known matrices, and ω and
ζ are known vectors. Then problem (6) is equivalent to the
constrained minimization problem over the scalar Lagrange
multiplier λ

min
λ≥‖Π′ΩΠ‖

‖Ψζ − ω‖
2
Ω(λ) + λφ2(ζ) (7)

where
Ω(λ)

�
= Ω + ΩΠ′(λI − Π′ΩΠ)†Π′Ω .

Furthermore, the optimal Lagrange multiplier λ◦ that solve
problem (7) depends continuously on the vector ζ .

By equivalence of problems (6) and (7), we mean that
the maximum of the quadratic cost in (6) is equal to the
minimum of the cost in (7).

Let us now address the problem of maximizing cost Jt

over all the possible uncertain matrices ∆t−1
t−N and ∆̄t

t−N .
Towards this end, it is important to note that the generic term

‖ x̂j+1,t − (A + δAj)x̂j,t − (B + δBj)uj ‖
2
Q , (8)

for j = t − N, . . . t − 1 , depends only on the contraction
∆j . In a similar way, the generic term

‖ yj − (C + δCj)x̂j,t ‖
2
R , (9)

for j = t − N, . . . , t , depends only on the contraction ∆̄j .
As a consequence, since the contraction matrices ∆t−1

t−N and
∆̄t

t−N are supposed to be arbitrary and hence mutually inde-
pendent, one can consider each maximization independently.

Let us first consider the generic term (8). By applying
Lemma 1, one can replace the maximization of (8) over the
contraction ∆j with a minimization over a scalar parameter.
More specifically, we can state the following proposition.

Proposition 2: The maximum of (8) over ∆j under the
constraint ‖∆j‖ ≤ 1 is equal to

min
λj,t≥‖D′QD‖

{
‖x̂j+1,t − Ax̂j,t − Buj‖

2
Q(λj,t)

+λj,t ‖Ex̂j,t + Fui‖
2
}

(10)

where

Q(λj,t)
�
= Q + QD(λj,tI − D′QD)†D′Q . (11)

As to the generic term (9), in a similar way one can replace
the maximization of (9) over the contraction ∆̄j with a
minimization over a scalar parameter.

Proposition 3: The maximum of (9) over ∆̄j under the
constraint

∥∥∆̄j

∥∥ ≤ 1 is equal to

min
µj,t≥‖G′RG‖

{
‖yj − Cx̂j,t‖

2
R(µj,t)

+ µj,t ‖Hx̂j,t‖
2
}

(12)

where

R(µj,t)
�
= R + RG(µj,tI − G′RG)†G′R . (13)

For the sake of brevity, let us define the following cost:

Lt

(
x̂t

t−N,t , λt−1
t−N,t , µt

t−N,t

)
�
= ‖ x̂t−N,t − x̄t−N ‖

2
M

+
t−1∑

j=t−N

{
‖x̂j+1,t − Ax̂j,t − Buj‖

2
Q(λj,t)

+λj,t ‖Ex̂j,t + Fui‖
2
}

+
t∑

j=t−N

{
‖yj − Cx̂j,t‖

2
R(µj,t)

+ µj,t ‖Hx̂j,t‖
2
}

.

It is important to remark that cost Lt is similar to a standard
least-squares cost for the nominal system, in which the
weight matrices Q and R are suitably corrected, according
to (11) and (13), and some regularization terms are added.

In the light of Propositions 2 and 3, the original Problem
Et turns out to be equivalent to

min
x̂t

t−N,t

min
λt−1

t−N
; µt

t−N

Lt

(
x̂t

t−N,t, λ
t−1
t−N , µt

t−N

)
(14)

with λi ≥ ‖D′QD‖ for i = t − N, . . . , t − 1 and µi ≥
‖G′RG‖ for i = t − N, . . . , t. By inverting the positions
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of the two minimizations in (14), one can consider the
equivalent problem

min
λt−1

t−N
; µt

t−N

min
x̂t

t−N,t

Lt

(
x̂t

t−N,t, λ
t−1
t−N , µt

t−N

)
. (15)

Note that, for fixed values of the Lagrange multipliers
λt−1

t−N,t and µt
t−N,t , cost Lt is a quadratic function of

x̂t
t−N,t , hence it is possible to derive a closed-form ex-

pression for the solution of the innermost minimization in
(15). Let x̃t

t−N,t

(
λt−1

t−N,t, µ
t
t−N,t

)
be the estimate vectors

that yield such a minimum (for the reader’s convenience, the
exact expression of x̃t

t−N is derived in the appendix). Then
the following theorem holds.

Theorem 1: The optimal Lagrange multipliers λ̃t−1
t−N,t

and µ̃t
t−N,t can be obtained as solution of the minimization

problem

min
λt−1

t−N,t
; µt

t−N,t

L̃t

(
λt−1

t−N,t, µ
t
t−N,t

)
(16)

where

L̃t

(
λt−1

t−N,t, µ
t
t−N,t

)
�
= min

x̂t
t−N,t

Lt

(
x̂t

t−N,t, λ
t−1
t−N , µt

t−N

)

= Lt

[
x̃t

t−N,t

(
λt−1

t−N,t, µ
t
t−N,t

)
, λt−1

t−N,t, µ
t
t−N,t

]
.

If all the optimal Lagrange multipliers λ̃t−1
t−N,t and µ̃t

t−N,t

are finite, then the unique solution of Problem Et can be
obtained as

x̂◦
i,t = x̃i,t

(
λ̃t−1

t−N,t, µ̃
t
t−N,t

)

for i = t − N, . . . , t .

We would like to point out once more that the form of
the solution, i.e., the function x̃t

t−N

(
λt−1

t−N,t, µ
t
t−N,t

)
, is

known and can be easily computed (see the appendix).
Such a solution depends on 2N + 1 parameters, i.e., the
Lagrange multipliers λt−1

t−N,t and µt
t−N,t , that have to be

determined by means of the minimization (16) in order to
find the optimal estimates x̂◦

t−N,t, . . . , x̂
◦
t,t . Unfortunately, in

general it is not possible to derive an analytical expression
for the optimal Lagrange multipliers λ̃t−1

t−N,t and µ̃t
t−N,t .

As a consequence they have to be determined on line by
means of some nonlinear programming routine. Note that
the minimization problem (16) is always well posed, in that
one can search for the global minimum of L̃t without wor-
rying about local minima. More specifically, the following
proposition holds.

Proposition 4: Suppose that M > 0 and Q > 0 , then
the function L̃t is unimodal.

If the computation of the optimal Lagrange multipliers
via (16) is not feasible (e.g., lack of computation time
in the sampling period), by following [1], [11], one can
obtain a reasonable approximation of the optimal solution
by assigning to each of the 2N + 1 parameters λt−1

t−N,t

and µt
t−N,t a fixed value, which can be suitably tuned off

line by means of numerical simulations. As will be shown

in Section V, a suitable selection of such fixed values can
make the performance of the approximate filter very close
to those of the optimal one.

IV. STABILITY OF THE ESTIMATOR

For the sake of simplicity and without loss of generality,
suppose that the weight matrices M , Q , and R are
diagonal, i.e.,

M = mI, Q = qI, R = rI .

Furthermore, let us consider the matrices

F
(N)

t
�
=

⎡
⎢⎢⎢⎢⎢⎢⎣

(C + δCt−N )
(C + δCt−N+1) (A + δAt−N )
...

(C + δCt)
N∏

i=1

(A + δAt−i)

⎤
⎥⎥⎥⎥⎥⎥⎦

,

H
(N)
t

�
=⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . 0
(C + δCt−N+1) . . . 0

(C + δCt−N+2)(A + δAt−N+1) . . . 0
...

. . .
...

(C + δCt)

N−1∏
i=1

(A + δAt−i) . . . (C + δCt)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and define the quantities

f (N) �
= min

∆t−1

t−N
; ∆̄t

t−N

σ
{
F

(N)
t

′
F

(N)
t

}
,

h(N) �
= max

∆t−1

t−N
; ∆̄t

t−N

‖H
(N)
t ‖2 ,

with ‖∆i‖ ≤ 1 for i = t − N, . . . , t − 1 and ‖∆̄i‖ ≤ 1
for i = t − N, . . . , t. Note that, with the exception of
the contractions ∆t and ∆̄t , all the other matrices that
describe the uncertain system (1) are time invariant. This
ensures the time-invariance of the constants f (N) and h(N) .
Clearly, f (N) represents a measure of the worst-case degree
of observability of the system.

In order to show the convergence properties of the pro-
posed estimator, the following assumptions are needed.

A1. At any time stage t = 0, 1, . . . , the system noise vector
wt , the control vector ut , and the measurement noise
vector vt belong to the bounded sets W , U , and V ,
respectively.

A2. There exists a bounded set X such that, for any
admissible initial condition x0 , any system noise
sequence {wt} , and any uncertain sequence {∆t},
the control sequence {ut} ensures that xt ∈ X for
t = 0, 1, . . . .

A3. System (1) is uniformly completely observable in N
steps, i.e., for any t = N,N + 1, . . . , any ∆t

t−N and

any ∆̄t
t−N the observability matrix F

(N)
t is of full

rank.
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Note that Assumptions A1 and A2 are quite reasonable
from a practical point of view when considering the state
estimation problem for a physical system: it is very typical
that the state variables and the disturbances are bounded in
some way. Furthermore, if Assumption A1 is satisfied, then
Assumption A2 is automatically verified, provided that the
considered system is asymptotically stable. Again this is a
quite common assumption when addressing the stability of
some estimation scheme in an uncertain framework. As to
Assumption A3, it ensures that f (N) > 0 .

We are now in the position to state the following conver-
gence result.

Theorem 2: Suppose that Assumptions A1, A2, and A3
are satisfied. Then the norm of the quadratic estimation error

et−N
�
= ‖xt−N − x̂◦

t−N,t‖
2 is bounded from above as

et−N ≤ ζt−N , t = N,N + 1, . . . .

The sequence {ζt} is defined recursively as

ζ0 = β0 ,

ζt = α ζt−1 + β , t = 1, 2, . . . . (17)

where

α =
2ma

(
2 q + 3 rh(N)

)
q
(
rf (N) + m

) , a = ‖A‖2 ,

and β0, β are suitable positive constants.
Moreover, if m , q , and r have been selected such that

α < 1, the sequence {ζt} converges exponentially to the

asymptotic value e∞
�
= β/(1 − α) .

Note that, since under Assumption A3 f (N) > 0 , condi-
tion α < 1 can be easily verified for any value of a and
h(N) through suitable choices of m , q , and r . As to the
constant β , it depends on the system matrices and on the
sets W , U , V , X , A, B, and C and can be easily computed.
More specifically, it turns out that:

1) As expected, if system (2) is noise-free (i.e., W = 0
and V = 0) and without uncertainty (i.e., A = 0, B =
0, and C = 0), then β = 0 , i.e., the proposed filter is
an asymptotic observer.

2) The value of β depends continuously on the “ampli-
tudes” of the noises and of the uncertainties (i.e., on
the radii of the sets W , V , A, B, and C).

Clearly, such properties ensure that there always exist non-
null values of the radii of the sets W , V , A, B, and C such
that the upper bound given in Theorem 2 is significative.

V. A NUMERICAL EXAMPLE

In this section, a simulation example is given to illustrate
the proposed approach to receding-horizon estimation for un-
certain systems. Let us consider a test-bed uncertain system
described by means of equations (1) with

A =

[
0.68 −0.5
1 −0.7

]
, B =

[
0
0

]
, C =

[
10 1

]
.

TABLE I

ASYMPTOTIC VALUES OF THE RMSES FOR THE CONSIDERED FILTERS.

Filter RRHF ARRHF CRRHF NRHF NKF

RMSE 0.0169 0.0177 0.0206 0.0262 0.0261

Suppose that the uncertain matrices δAt , δBt , and δCt

can be described through equations (2) with

D =

[
0

0.4

]
, E =

[
0 0.04

]
, F = 0,

G = 1, H =
[

3.6 1.6
]

.

Furthermore, suppose that, at each time instant, the con-
tractions ∆t and ∆̄t are independent random variables
uniformly distributed in the interval [−1, 1] . In addition, let
us assume x0 , wt , and vt to be normally distributed in-
dependent random variables with zero-mean and covariance
matrices σ2

xI , σ2
wI , and σ2

v , respectively.
In the following, for the sake of compactness, we shall

refer to the proposed estimator as “robust receding-horizon
filter” (RRHF). Moreover, we shall refer to the filter obtained
by assigning a fixed value to each lagrange multiplier as
“approximate robust receding-horizon filter” (ARRHF).

For the sake of comparison, let us now consider the
performance index given by the Root Mean Square Error
(RMSE). In order to evaluate the improvement in perfor-
mance achieved with respect to previous works, the proposed
estimators will be compared with the “conservative robust
receding-horizon filter” (CRRHF) of [1]. Moreover, we shall
also consider the “nominal Kalman filter” (NKF) and the
“nominal receding-horizon filter” (NRHF), both obtained by
considering the nominal system (i.e., with δA = 0, δB = 0
and δC = 0).

Fig. 1 presents the plots of the RMSEs, computed over
100 randomly chosen simulations, for the considered filters
with σx = 50 , σw = 10−2 , and σv = 5 · 10−2 (note that
the plot for the NKF is omitted since it is almost coincident
to the one for the NRHF). For the reader’s convenience, the
asymptotic values of the RMSEs are reported in Table I. The
weight matrices M , Q and R have been chosen equal to
104I , 102I , and 4 , respectively. The size N of the sliding
window was taken equal to 2 . Finally, for the ARRHF,
the lagrange multipliers λj,t and µj,t have been assigned
the fixed values 40 and 10 , respectively. As can be seen
from Fig. 1 and Table I, the proposed robust filters offer
the best performance from the point of views of both the
transient and the asymptotic behavior. Furthermore, since
the behavior of the ARRHF is very close to that of the
RRHF, one may conclude that the approximation of the time-
varying parameters λj,t and µj,t with fixed values leads
to an acceptable decay of the performance of the proposed
estimation scheme.

APPENDIX

Let us now consider the problem of minimizing cost Lt

for given values of the Lagrange multipliers λt−1
t−N,t and
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Fig. 1. Plots of the RMSEs for the considered filters.

µt
t−N,t . For the sake of compactness, we shall use the

notations

Qi,t
�
= Q(λi,t), Ri,t

�
= R(µi,t) .

Furthermore, without risk of ambiguity, we shall drop the
dependency of all the considered quantities on the Lagrange
multipliers λt−1

t−N,t and µt
t−N,t .

The following theorem provides an efficient procedure to
compute the estimates x̃t

t−N .

Theorem 3: Suppose that M > 0 and Q > 0 . Then,
given the Lagrange multipliers λt−1

t−N,t and µt
t−N,t , the

estimates x̃t
t−N can be computed recursively as

x̃i,t = Ti,tQi−1,tAx̃i−1,t + zi,t, i = t − N + 1, . . . , t ,

x̃t−N,t = zt−N,t

where the matrices Ti,t and the vectors zi,t are computed
according to the backward recursions

Tt,t =
{

Qt−1,t + C ′Rt,tC + µt,tH
′H

}−1

,

Ti,t =
{

Qi−1,t + A′Qi,tA + λi,tE
′E + C ′Ri,tC

+µi,tH
′H − A′Qi,tTi+1,tQi,tA

}−1

,

i = t − 1, . . . , t − N + 1 ,

Tt−N,t =
{

M + A′Qt−N,tA + λt−N,tE
′E + C ′Rt−N,tC

+µt−N,tH
′H − A′Qt−N,tTt−N+1,tQt−N,tA

}−1

,

and

zt,t = Tt,t {Qt−1,tBut−1 + C ′Rt,tyt}

zi,t = Ti,t

{
A′Qi,t [zi+1,t − Bui] − λi,tE

′Fui

+Qi−1,tBui−1 + C ′Ri,tyi

}
, i = t − 1, . . . , t − N + 1 ,

zt−N,t = Tt−N,t

{
A′Qt−N,t [zt−N+1,t − But−N ]

−λt−N,tE
′Fut−N + C ′Rt−N,tyt−N + Mx̄t−N

}
.

The closed-form formula for the estimates x̃t
t−N given in

Theorem 3 can be obtained with some algebra (omitted for
the sake of brevity) by imposing the first-order optimality
condition ∇x̂t

t−N,t
Lt = 0 . Note that the computation of

such estimates consists in a quite standard backward-forward
algorithm: first the matrices Ti,t and the vectors zi,t are
computed by means of a suitable backward recursion; then
such quantities are used to compute the estimates x̃t

t−N,t

by means of a suitable forward recursion. It is important to
remark that, by construction, the matrices Ti,t are always
positive definite (provided that M > 0 and Q > 0 ).

As a final remark, if one considers the approximate estima-
tor obtained by assigning to each of the 2N +1 parameters
λt−1

t−N,t and µt
t−N,t a fixed value, then the matrices Ti,t

do not depend on the time index t , i.e., Tt−N+i,t = T̄i

for i = 0, 1, . . . , N . Then the N + 1 matrices T̄i can
be computed once for all off line. On the other hand, even
for the approximate estimator, the vectors zi,t depend on
the information vector IN

t and, consequently, have to be
computed on line at every time step.
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