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Abstract— In this paper, an approach for the computation
of bounds on parametric model uncertainty for robust control
design is proposed. The approach uses µ sensitivities to identify
which uncertain parameters in the model are most critical
in terms of closed-loop robustness objectives. Using skewed
µ analysis tools, the maximum possible uncertainty bounds
for model parameters which are most difficult or expensive
to identify exactly are then computed. The application of the
proposed approach is illustrated via a flight control law design
example.

I. INTRODUCTION

Mathematical models which are developed for control
design now generally come with associated uncertainty mod-
els. If the model is developed using system identification
approaches, control-oriented robust identification techniques
[16], [17] are available with which to obtain appropriate
nominal models with suitably defined uncertainty represen-
tations for robust control design. The standard approach
is to fit experimental data to obtain a nominal model and
perform error analyses to calculate tolerances on the para-
meters, i.e. uncertainty bounds. The associated robust model
validation problem is then based on an in-validation test
of the robust model using a different series of input/output
data measurements. In the case of models which have
been developed based on physical principles as opposed
to system identification, bounds on the maximum expected
uncertainty/variation in the values of various parameters are
also routinely supplied - see for example [8] for the state-
of-the-art in flight mechanics modelling.

A key issue in formulating suitable uncertainty models
for robust control design is to understand which uncer-
tain parameters are of most importance, i.e. which uncer-
tain parameters most compromise closed-loop stability and
performance properties. Such understanding is traditionally
gained via sensitivity analysis of the eigenvalues of the open-
loop system. However, as will be shown, the “important”
parameters identified by such analyses can be completely dif-
ferent from the parameters which actually limit stability and
performance properties once a controller has been designed.
One implication of the present study is that, for systems
which are to be eventually implemented in closed loop with a
controller, closed-loop µ sensitivity analysis using a sensible
(but perhaps quite preliminary) control design is likely to
provide more accurate and useful results.

Since certain model parameters are typically much more
difficult (i.e. expensive) to estimate accurately than others, it
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is also of significant interest to calculate relative uncertainty
bounds which allow the maximum possible uncertainty in
such parameters.

While the above issues are of interest in practically all
areas of control applications, they are of particular signif-
icance in aerospace control, where the problems of high
performance requirements and significant levels of model
uncertainty combine to make control law design and analysis
a highly challenging and expensive task. For aerospace sys-
tems, look-up tables of aircraft aerodynamic coefficients and
stability derivatives are obtained using least-square fitting
and mean values from large databases obtained from a mix
of tests and analyses such as:
* Simplified linear analysis techniques applied to dense grids

of the parameters [10].
* Wind tunnel and computer testing [15], [10].
* In-flight data acquisition and analysis.
The cost of performing these tests and reconciling the data
for this type of system can be enormous due to their scale, the
intrinsic safety problem associated with performing flight-
tests at critical points, and the difficulty of measuring some
variables at certain operating points [15], [18]. For all these
reasons there is currently a drive to change the modelling
process for aerospace systems, i.e. to rely less on very
accurate but costly empirical data acquisition (wind-tunnels
and in-flight) and more on advanced computational tools
[12] and techniques which allow larger tolerances on model
parameters [11]. This trend is even more pronounced in UAV
applications, where typically, the smaller, lighter airframes
are more difficult to model accurately via wind-tunnel tests,
and the time available for such tests is only a fraction of
what would traditionally be available for a manned aircraft
development programme. In this paper, a method is proposed
based on µ sensitivities and the skewed µ analysis tool
which can be used to maximize the allowable level of
uncertainty in certain “difficult” parameters, thus making the
complex trade-off between model fidelity and closed-loop
performance more transparent and easier to manage.

II. THEORETICAL PRELIMINARIES

In this section, the system theoretic tools which form
the basis of the proposed modelling approach, namely the
structured singular value µ, skewed-mu ν, and µ sensitivity
are briefly reviewed.

A concept widely used in modern robust control is the
structured singular value µ, which allows efficient evaluation
of the robustness of complex uncertain systems [14]:

Definition II.1
The structured singular value, µ∆(M), of a matrix M ∈ Cn×n
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with respect to the uncertain matrix ∆ is:

µ∆(M) =
1

min∆{σ̄(∆) : det(I − ∆M) = 0}
(1)

where µ∆(M) = 0 if there is no ∆ that satisfies the determi-
nant condition.

Note that this definition is given in terms of a ‘M − ∆’
model where the M component represents the nominal
system at a given frequency point and the ∆-block is a
diagonal or block-diagonal matrix containing the uncertainty
(or parametric variations) which is scaled to have unit norm,
see Fig. 1.
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Fig. 1. Upper linear fractional transformation.

From the figure it is seen by inspection that:

y = [M22 + M21(I − ∆M11)
−1∆M12]u (2)

The linear feedback formulation of an uncertain system given
by (2) is known as an upper linear fractional transformation
(LFT), and it represents the standard modelling paradigm
for robustness analysis. The exact calculation of µ is in
general NP-hard [3], and therefore in practice upper and
lower bounds are generally calculated for realistic problems:
the upper bound provides the maximum allowable size of
uncertainty that satisfies the robustness requirements while
the lower bound obtains a worst-case (i.e. smallest) uncer-
tainty which violates them [19]. Their combined use provides
an indication of the conservatism associated with the upper
bound calculation. Numerous algorithms exist for computing
bounds on µ for different types of uncertainty - see [1], [6]
for a comprehensive overview.

The skewed-mu ν concept [13] is a particular case of µ,
where the norm of a subset of the parameters in the uncertain
set ∆ is not allowed to vary freely:

Definition II.2
The skewed-mu, ν∆s

(M), of a matrix M ∈ Cn×n with
respect to the uncertain matrix ∆s = diag(∆v, ∆f ) is defined
as:

ν∆s
(M) =

1

min∆s
{σ̄(∆v) : det(I − ∆sM) = 0}

(3)

where |∆f | ≤ 1. If there is no ∆s that satisfies det(I −
∆sM) = 0 then ν∆s

(M) = 0.

The main task of sensitivity analysis is to provide a mea-
sure of the change in the system behaviour due to parameter
variations. If the system behaviour is characterized from
a frequency-domain perspective by the structured singular
value µ, the µ sensitivities allow the identification of the

uncertain system parameters most responsible for the level
of (or lack of) robustness of the system [2], [5]:

Senµ
pj

=
∂µ(M)

∂pj
≈
|µ(M) − µ(Mε)|

∆pj
(4)

The perturbed system Mε is defined by assuming each
uncertainty in the diagonal block ∆ is multiplied by a
real scalar αi nominally of value one except for the jth

perturbed scalar αj = 1 + ε. This yields a diagonal matrix
α = diag(α1 = 1, . . . , αj = 1 + ε, . . . , αn = 1) which
multiplies the original uncertain block ∆ and which can be
absorbed into M to form Mε:

Mε =

[
αM11 α1/2M12

α1/2M21 M22

]
=

[
αM11 αM12

M21 M22

]
(5)

The uncertain block ∆ can be constructed to include real
parametric variations p = [p1 p2 . . . pn]�, which can be
perturbed by ε = ∆pj . Hence, calculating µ(Mε) implies
calculating the robustness properties of the perturbed system
M(p + ∆pj). Note that the versatility of the ∆ construction
[14] allows the definition of diagonal blocks of repeated
parameters which can be perturbed simultaneously, i.e. ∆ =
diag(p1I1, p2I2, . . . pnIn) where Ii represents an identity
matrix of dimension equal to the number of repetitions of
the ith parameter. Note however, that µ sensitivities must
generally be computed using (upper) µ bounds rather than
the actual value of µ as the exact calculation of µ is NP-hard.

III. CONTROL ORIENTED UNCERTAINTY MODELLING

In this section, a method for control oriented uncertainty
modelling is proposed based on the use of the analytical
tools described in the previous section. The main idea of the
approach is to calculate the increase in uncertainty size for
a specific set of parameters based on the possible decrease
in size for the other parameters while keeping an established
level of robust stability or performance. Before describing the
method in detail, several observations regarding the skewed
µ approach are made.

Firstly, if the norm bounds for the uncertainty sets ∆f and
∆v are both left free to vary, the standard µ calculation from
Definition II.1 is recovered (i.e. skewed µ is a special case of
µ). Indeed, for robustness tests the µ value is an upper/lower
bound (depending on whether the test is satisfied or not) on
the skewed µ value. Therefore, an algebraic interpretation of
skewed µ can be given by a 2-norm distance problem:

min
s.t. |∆f |≤1

|µ∆(M) − ν∆s
(M)| (6)

This means that for a fixed subset of parameters in the
uncertain set ∆s and a given µ∆(M), the goal of the skewed
µ calculation is to find the minimum kν of ∆v which
minimizes (6) subject to the conditions from Definition II.2.

Secondly, an alternative interpretation in terms of sensi-
tivity analysis for the skewed-mu calculation is provided in
the following lemma:

Lemma III.1 (Skewed µ ≡ µ Sensitivity Analysis)
The skewed µ calculation of a matrix M ∈ Cn×n with respect
to the uncertain set ∆s = diag(∆v, ∆f ) is equivalent to a µ
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sensitivity analysis of the nominal system M with respect to
perturbations of the set ∆v .

Proof: First, if a skewed µ calculation on M is performed
with ∆s = diag(∆v, ∆f ), we get from Definition II.2 that
|∆v| = kν = 1

ν and |∆f | ≤ 1. Furthermore, the resulting
uncertain matrix ∆s can be transformed as:

∆s =

[
∆v 0
0 ∆f

]
=

[
kν∆̄v 0

0 ∆f

]

=

[
kν 0
0 I

] [
∆̄v 0
0 ∆f

]
=

[
1 + εν 0

0 I

] [
∆̄v 0
0 ∆f

] (7)

with |∆̄v| = 1.
Absorbing the matrix αν = diag(kν , I) into M following

equation (5), the matrix Mεν
is obtained:

Mεν
=

[
M ε

11 M ε
12

M ε
21 M ε

22

]
=

[
kνM11 kνM12

M21 M22

]
(8)

Note that both the µ and ν algorithms, look to satisfy
det(I − ∆M) = 0. Therefore, for the above skewed-mu
calculation on M and ∆s:

det(I − ∆sM) = det
(
I − ∆vM11 −∆vM12

−∆fM21 I − ∆fM22

)
(9)

Similarly for µ(Mεν
) with ∆̄s = diag(∆̄v, ∆f ):

det(I − ∆̄sMεν
) = det

(
I − ∆̄vM

ε
11 −∆̄vM

ε
12

−∆fM ε
21 I − ∆fM ε

22

)

=det
(I − (∆v

1

kν
)(kνM11) −(∆v

1

kν
)(kνM12)

−∆fM21 I − ∆fM22

) (10)

which is equal to the determinant in equation (9). Therefore,
both calculations are equivalent (in reality, ν∆s

(M) =
1

kν
µ∆̄s

(Mε)).
Now, note that performing a µ calculation of (Mεν

, ∆̄s)
is indeed the same as calculating µ for a nominal system
(M, ∆̄s) which is perturbed by εν = kν −1 along the input-
output uncertain channels of ∆̄v ∈ ∆̄s.

Finally, using the algebraic interpretation of skewed µ
from (6), together with the equivalence between µ∆̄s

(Mεν
)

and ν∆s
(M), and the definition of µ-sensitivity (4) yields:

|µ∆(M) − ν∆s
(M)| ≡ |µ∆(M) − µ∆̄s

(Mεν
)| ≈ εν Senµ

∆v

(11)
from which the equivalence of ν and µ-sensitivity can be
clearly seen.

Thirdly, it is noted that the quality of the skewed µ
bound calculation is due to both the number of uncertain
parameters that are fixed, i.e. contained in ∆f , and to the
choice of parameters whose norm is to be optimized, i.e.
contained in ∆v . Furthermore, the uncertain parameters that
when fixed maximize the allowable uncertainty for the rest
of the parameters are those with the largest µ sensitivities.
These observations provide guidelines for the placement of
the uncertainties in ∆f or ∆v , which can be summarised in
the following result:

Lemma III.2 (skewed µ Uncertainty Classification)
Given an uncertain set ∆ and a complex matrix M ∈ Cn×n,
the decomposition of ∆ into ∆s = diag(∆v, ∆f ) where

∆f = {δi ∈ ∆ : |δi| ≤ 1} and ∆v = {δi ∈ ∆/∆f : |δi| ≤
kv} such that the resulting skew µ value, ν = 1

kv
, maximizes

|µ∆(M) − ν∆s
(M)| requires:

1 The dimension of ∆f must be maximized with respect to
that ∆v .

2 The uncertain parameters with large µ sensitivities must be
placed in ∆f .

Proof: The first property is proven by considering the
geometric interpretation of ν [6], shown in Fig. 2, where
for simplicity of presentation a three dimensional parameter
space is assumed:

ν

1

δ 1

2δ

3δ

kµ

k

Fig. 2. Geometric interpretation of real ν(M) and µ(M).

Assuming the system satisfies the closed-loop robustness
objectives, i.e. µ ≤ 1, the calculation of µ finds a hypercube
in the parameter space of size kµ ≥ 1. The skewed µ
computation works by initially using a hypercube of size
one inside the µ hypercube (i.e. the shaded cube in Fig. 2
with |∆f | = 1 and |∆v| = 1). It then starts increasing the
norm kν for those parameters that are free to vary, δi ∈ ∆v,
until a solution to det(I − ∆sM) = 0 is obtained (iterating
until the minimum value of kν that satisfies the determinant
is calculated). For the case of three parameters with two δ’s
fixed, this search for the minimum kν yields a co-axial hyper-
rectangle along the axis of the free parameter, e.g. δ3 in Fig.
2, with a norm kν > kµ.

The above shows that when uncertain parameters are fixed,
the skewed µ yields a larger uncertainty size for the rest of
the parameters (i.e. those in ∆v). Furthermore, it is well-
known that as the uncertainty is reduced in a system, the
robustness measure µ decreases for a given controller (i.e.
the norm kµ increases). Equivalently, as more parameters
are fixed (i.e. their uncertainty size is assumed to be smaller
than kµ), the parameters in ∆v must compensate for the
more stringent restriction in size and a larger value of kν is
obtained for them. Note that this results in relative bounds on
the uncertain parameters, with those corresponding to “free”
parameters (i.e. in ∆v) being maximized.

The second condition requires the use of the equivalence
result from Lemma III.1. From the definition of µ sensitivity
(4), it is observed that parameters with large µ-sensitivities
result in large differences in |µ(M) − µ(Mε)| for small
ε variations in their corresponding input-output channels.
Therefore, assuming these parameters are perturbed toward
the inside of the hypercube by ε (i.e. their uncertainty is
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reduced or equivalently they are fixed to a lower stability
margin k < kµ), then by similar arguments to the above
discussion based on the geometric interpretation of Fig. 2,
the other parameters will achieve a larger uncertain norm
kνShigh

> kµ. Similarly, if the parameters with low sensi-
tivity are perturbed by the same ε in the same manner (i.e.
fixed within the hypercube kµ), the rest of the parameters
will achieve a norm kνSlow

> kµ but smaller than kνShigh
as

the net change is smaller.
Using (11) it is then concluded that the higher the µ

sensitivity of the parameters in ∆f , the larger the difference
|µ(M)−µ(Mε)| and hence, smaller the value of ν(M) = 1

kν

(larger size for uncertain parameters in ∆v).

In the above discussion, it has been assumed the calcu-
lation of µ was exact. Recall that in practice this is NP-
hard and upper and lower bounds are calculated. Since the
interest of this research is to find the worst-case combination
of the uncertain parameters, the µ calculation will be always
performed using lower bound algorithms.

Using these results, it can be concluded that by selecting
as components of the fixed uncertainty set ∆f : a) all those
parameters which are easy or inexpensive to estimate with a
high level of accuracy, and b) those parameters with largest
µ-sensitivities, a skewed µ lower bound calculation for the
resulting system will provide the largest possible allowable
uncertainty bounds for the remaining parameters contained
in the uncertain set ∆v .

Finally, in order to represent the relative change in un-
certainty size, the uncertain parameters are defined based
on a nominal value co, a specified percentage σc, and a
normalized uncertain parameter |δ| ≤ 1, i.e. c = co(1+σcδ).
Then, if the skewed µ computation finds that the normalized
δ can be allowed to achieve a larger norm δ̄ = σ̄cδ then the
actual percentage level of uncertainty that is allowable for
the parameter c is given by σcσ̄c.

IV. A FLIGHT CONTROL APPLICATION

A. Sensitivity Analysis of an Aircraft Model

In this section, a sensitivity analysis of the aircraft model
used to illustrate the proposed approach to uncertainty mod-
elling is presented. The equations of motion and aerody-
namic data are taken from reference [6] and represent the
lateral/directional motion of a conventional rigid transport
aircraft.

There are four states: sideslip angle β (rad), roll rate p
(rad/sec), yaw rate r (rad/sec), roll angle φ (rad), and four
output signals: lateral acceleration ny (g), roll and yaw rates,
and roll angle. Control is performed through the aileron δr

and rudder δp deflections (the same nomenclature as in [6]
is followed). The rigid aircraft equations of motion, with no
wind effects or flexible modes, obtained after linearizing the
nonlinear model at the equilibrium point given by the initial
angles of attack and pitch (αo, θo) are as follows:

β̇ =Yββ + (Yp + sinαo)p + (Yr − cosαo)r

+
g

V
φ + Yδp

δp + Yδr
δr

(12)

ṗ =Lββ + Lpp + Lrr + Lδp
δp + Lδr

δr (13)

ṙ =Nββ + Npp + Nrr + Nδr
δr (14)

φ̇ =p + tanθor (15)

ny = −
V

g
(Yββ + Ypp + Yrr + Yδp

δp + Yδr
δr) (16)

The stability derivatives are defined depending on the force
or moment being affected by angle/rate/control-surface: the
sideforce derivatives are Yβ , Yp, Yr, Yδp

, and Yδr
; the rolling

moment derivatives are Lβ , Lp, Lr, Lδp
, and Lδr

; and
the yawing moment derivatives are Nβ , Np, Nr, Nδr

. The
derivatives are normalized assuming a 10 percent uncertainty
with respect to their nominal values, e.g. Yβ = Y o

β (1 +
σcδ1) where σc = 0.1. Therefore, the model has fourteen
normalized uncertainties δi corresponding to the 14 stability
derivatives (numbered in the order mentioned above).

In classical flight mechanics, see reference [18], the sta-
bility derivatives which have the largest effect on the aircraft
dynamics for a conventional aircraft in this type of motion
are known to be Yβ , Lβ , Lp, Lr, Nβ , Np and Nr (i.e.
{δ1, δ6, δ7, δ8, δ11, δ12, δ13}).

This is confirmed, see Fig. 3, by applying a standard open-
loop eigenvalue sensitivity analysis [9]. Fig. 3 shows the
average of the maximum eigenvalues sensitivities Senλ

p =
1

4

∑4

i=1
max(Senλi

p ) for each parameter, where the sensi-
tivity of the ith eigenvalue λi (i = 1, 2, 3, 4) to variations
in the jth parameter pj (j = 1, 2, . . . , 14) is given by the
finite-difference equation:

Senλi
pj

=
∂λi(p)

∂pj
≈
|λi(p + ∆pj) − λi(p)|

∆pj
(17)

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.005

0.01

0.015

0.02

0.025

Average OPL Eig Sensitivity

Se
nλ p

Fig. 3. Eigenvalue Sensitivity Analysis (open-loop).

This agreement is expected since the physi-
cal/experimental insight used in flight mechanics is
typically obtained by estimating the effect of variations
with respect to flight condition of the stability derivatives
for conventional aircraft dynamics, which is basically an
open-loop sensitivity analysis.

In order to perform a closed-loop sensitivity analysis, a
simple static output feedback controller K1 (taken from [6])
designed using classical methods is connected to the aircraft
model:

K1 =

[
−629.8858 11.5254 3.3110 9.4278
285.9496 0.3693 −2.6301 −0.5489

]
(18)

The calculation of the closed-loop µ sensitivities is per-
formed by using a mixed upper-bound µ algorithm [7] and
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Fig. 4. µ Sensitivity Analysis (closed-loop K1).

perturbing each normalized parameter by 0.1 (i.e. corre-
sponding to a deviation of 0.1σc = 0.1·0.1 = 1 percent
with respect to the nominal value).

Note that the results of this analysis, see Fig. 4, are com-
pletely different to those of the standard open-loop eigen-
value sensitivity analysis. Specifically, two control deriva-
tives: the rudder effect on roll moment Lδp

(δ9) and the
aileron contribution to yaw moment Nδr

(δ14) now emerge
as by far the most sensitive parameters.

It has been mentioned before, that in as much as the
controller used for the closed-loop µ sensitivities is sensibly
designed, it is not important that it might represent only a
preliminary design. To illustrate this, a second controller K2

is designed which, compared to the previous K1 controller,
has reduced robust stability:

K2 =

[
−629.8858 5.1525 7.3110 5.4278
285.9496 0.03693 1.8301 −0.2489

]
(19)

The closed-loop µ sensitivity result for this second con-
troller is given in Figure 5. Although, it might seem that
it is quite different to that from Figure 4, taking the six
parameters with the highest Senµ

p –in descending order–
from both figures yields K = {δ14, δ9, δ7, δ6, δ5, δ1} and
K2 = {δ14, δ1, δ6, δ9, δ5, δ4}. Comparing the parameters, it
is observed that they differ only by one parameter, δ7 and δ4

respectively, and that the the ordering is also quite similar.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Max mixed mu upper bound Sensitivity: CLP K
2

Se
nµ p

Fig. 5. µ Sensitivity Analysis (closed-loop K2).

These results clearly reveal the limitations of standard
open-loop sensitivity analysis for systems which are to be im-
plemented in closed loop. In particular, decisions about what
level of uncertainty should be allowed for each parameter, or
which parameters to neglect based on such analysis are likely
to be completely erroneous. The results of the closed-loop µ
sensitivity analysis, on the other hand, can now be used to
simplify the uncertainty set and/or to systematically produce
maximum uncertainty bounds for any chosen combination of
parameters, as shown in the following section.

B. Application of Control Oriented Uncertainty Modelling

Among all the uncertain aircraft parameters considered
in the study, the damping cross-stability derivatives Lr and
Np are typically the most difficult to estimate accurately via
wind-tunnel testing - additionally these parameters often have
a large variation in magnitude with respect to changes in
Mach number [18]. In the following, we therefore investigate
the maximum allowable uncertainty which can be specified
for these parameters (δ8, δ12), and the resulting trade-off with
respect to the bounds on the other parameters in the model.

As mentioned before, initial uncertainty bounds of σc =
±10% are placed on all normalized uncertain parameters
in the model. Based on the closed-loop µ sensitivity, the
three parameters with the lowest µ sensitivities are discarded
(δ2, δ11, δ13). All real skewed µ lower bound calculations
were performed using the algorithm of [4] as implemented
in [7].

Table I shows six models obtained by placing several
different combinations of parameters in the two skewed
µ uncertain sets, ∆f and ∆v . The first model places the
nine uncertainties in ∆v and is equivalent to a standard
µLB calculation. The three subsequent models correspond
to placing different combinations of two parameters in ∆f :
model 2 is for medium-to-low µ sensitivity parameters,
model 3 to medium-to-high and model 4 to the two highest µ
sensitivity parameters. The comparison of these three models
enables us to check the influence of the choice of parameters
to be fixed on the quality of the skewed µ lower bound.
The last two models, 5 and 6, together with any of the
previous models, allow us to assess the effect of increasing
the number of parameters declared fixed: model 5 fixes five
parameters, while model 6 fixes seven. Note that model
6 is guaranteed to compute the largest possible allowable
uncertainty for the two parameters which are most difficult
to measure accurately, i.e. (δ8, δ12).

TABLE I

MODELS FOR SKEWED µ ANALYSIS.

∆f ∆v

1 {−} {δ1, δ3, δ5, δ6, δ7, δ8, δ9, δ12, δ14}
2 {δ8, δ12} {δ1, δ3, δ5, δ6, δ7, δ9, δ14}
3 {δ6, δ9} {δ1, δ3, δ5, δ7, δ8, δ12, δ14}
4 {δ9, δ14} {δ1, δ3, δ5, δ6, δ7, δ8, δ12}
5 {δ3, δ5, δ6, δ9, δ14} {δ1, δ7, δ8, δ12}
6 {δ1, δ3, δ5, δ7, δ9, δ12, δ14} {δ8, δ12}

Fig. 6 shows the real skewed µ calculations for the six
models. As expected, the lower-bound real µ of model 1
gives an upper bound for the other models. Looking at the
effect of the choice of parameters to be fixed (i.e. models 2,
3 and 4), it is observed that the higher the µ-sensitivity of the
fixed parameters the smaller the value of ν, which implies
the size of the worst-case perturbation increases, i.e. kν = 1

ν .
The bottom plots in the figure correspond to models 5 and 6,
and show that as the number of fixed parameters increases,
the skewed µ lower bound algorithm is forced to search
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TABLE II

WORST-CASE PARAMETER COMBINATIONS FOR SKEWED µ ANALYSIS MODELS.

Model δ1 δ3 δ5 δ6 δ7 δ8 δ9 δ12 δ14
1 4.9864 -2.9144 6.3477 -6.3477 -6.3477 -6.3477 6.3477 6.3477 -6.3477
2 -6.4910 1.0582 -7.3242 7.3242 -7.3242 -1.0000 -7.3242 1.0000 -7.3242
3 5.5291 7.5684 7.5684 -1.0000 -7.5684 -7.5684 1.0000 7.5684 -7.3389
4 10.0295 -10.7422 10.7422 -10.7422 -6.9167 -10.7422 1.0000 -10.7422 -1.0000
5 11.7752 -1.0000 -1.0000 -1.0000 -14.5878 -14.6484 -1.0000 14.6484 -1.0000
6 -0.5003 -0.7863 1.0000 -1.0000 -1.0000 -27.3438 1.0000 27.3438 -1.0000

10
−2

10
−1

10
0

10
1

10
2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

rad/s

µ LB

model 1: non−fixed
model 2: { 8, 12 } fixed
model 3: { 6, 9 } fixed
model 4: { 9, 14 } fixed
model 5: { 3, 5, 6, 9, 14 } fixed
model 6: { 1, 3, 5, 6, 7, 14 } fixed

Fig. 6. Lower-bound real skewed µ for six models

for larger norms for the remaining “free” parameters (and
therefore, smaller values of ν are obtained).

Table II provides the worst-case parameter combinations
calculated by the skewed µ lower bound algorithms for the
six models. This table can also be interpreted as providing the
relative uncertainty bounds between the uncertain parameters
for each different model considered.

It is observed that all the models yield a norm of one
for the system parameters in the uncertain set ∆f , thus
σ̄c = 1. This implies that the uncertainty bound associated
with these parameters is the initially chosen ten percent of
their nominal values, i.e. δ̄ = σ̄cσc = 1 × 0.1 = 10%.
Furthermore, the table provides a quantitative analysis of
the effects that maximizing the uncertainty bounds for some
of the parameters have on the bounds for the rest of the
parameters. For example, in model 6 the two most-difficult
parameters to identify (δ8, δ12) are allowed to have up to
δ̄ = σ̄cσc = 27 × 0.1 = ±270% uncertainty if the rest of
the parameters are kept within a ten percent bound - note,
however, that this represents a reduction in the allowable
uncertainty for parameters δ1 and δ3 (which might not be
acceptable). These results show how the proposed approach
can be used to systematically manage the trade-offs between
allowable uncertainty levels among different combinations
and numbers of parameters.

V. CONCLUSIONS

In this paper, an approach for the computation of bounds
on model parametric uncertainty for robust control design
was proposed. The approach uses µ sensitivities to identify
which uncertain parameters in the model are most critical,

and hence, need to be identified with the greatest accuracy.
Using skewed µ analysis tools and the uncertainty classi-
fication given by the µ sensitivity analysis, the maximum
possible uncertainty bounds for those parameters which are
most difficult or expensive to identify exactly can then be
computed. The application of the proposed approach was
illustrated via an aircraft example.
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