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Abstract— This paper considers a state estimation problem
for a discrete-time linear system driven by a Gaussian random
process. The second order statistics of the input process and
state initial condition are uncertain. However, the probability
that the state and input satisfy linear constraints during the
estimation interval is known. A minimax estimation problem
is formulated to determine an estimator that minimizes the
worst-case mean square error criterion, over the uncertain
second order statistics, subject to the probability constraints.
It is shown that a solution to this constrained state estimation
problem is given by a Kalman filter for appropriately chosen
input and initial condition models. These models are obtained
from a finite dimensional convex optimization problem. The
application of this estimator to an aircraft tracking problem
quantifies the improvement in estimation accuracy obtained
from the inclusion of probability constraints in the minimax
formulation.

I. INTRODUCTION

The Kalman filter has had an enormous technological
impact since it was first presented in the early 60’s [1][2].
The strengths of the Kalman filter, and other closely related
estimators, include the efficiency with which it can be imple-
mented and its optimality with respect to the mean square
estimation error. The underlying modeling assumptions in
the Kalman filter are a linear system generating the data and
known statistics for the initial condition, the process noise,
and the measurement noise.

In many practical problems the system or the exogenous
input statistics are not known exactly. Often, this uncer-
tainty is neglected and the estimator is designed using
nominal values. It is known that this approach may lead
to poor estimation performance [3][4][5][6]. This motivates
the search for estimators which are robust (less sensitive) to
parameter variations and uncertainties. One of the available
techniques for robust estimation is the well-known minimax
approach. Given a specific performance metric (e.g., mean
square error), the minimax approach yields an estimator that
minimizes the worst-case performance index over all possible
values of the uncertain parameters. An early account of this
approach is in [3], while [5] and [6] describe recent work in
this area. One of the critiques to the minimax approach is
that it may be too conservative in certain problems [7].

In many practical applications the state satisfies known
constraints. For example, in most problems one has an idea
of upper and lower bounds on state variables. In theory,
this prior knowledge should lead to improved estimation
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accuracy, which in turn may reduce the conservatism of
the minimax approach. Unfortunately, incorporating state
constraints requires a nonlinear framework for estimation for
which there are no known solutions with the simplicity of
the Kalman filter.

One approach to incorporate constraints is the use of a
receding horizon approximation [8][9]. In this strategy, an
optimization problem is solved over a fixed-size data window
each time a new measurement becomes available. This
optimization problem delivers a state estimate, or prediction,
that satisfies the known constraints. The approach has been
currently extended to problems with modeling uncertainty
[10][11]. Even though this technique is gaining terrain in a
number of applications, it requires an optimization problem
to be solved with the arrival of each new measurement. From
a theoretical point of view, the receding horizon approach
is only an approximation to the original optimal estimation
problem.

In this paper we show how to construct an estimator
that takes advantage of prior knowledge of state and input
constraints yet the estimator retains the simplicity of the
Kalman filter. The key is not to enforce hard constraints
in the state and input but to replace them with constraints
satisfied in probability. This constraint softening allows the
incorporation of prior knowledge into the estimation problem
without increasing the on-line computation relative to the one
of the conventional Kalman filter.

We consider a minimax state estimation problem for a
discrete-time linear system. The uncertainty in the problem
is in the covariance matrices of both the exogenous input
(e.g., process and measurement noise) and the state ini-
tial condition. We also assume that, during the estimation
interval, the state and the exogenous input satisfy linear
constraints with certain minimal probability. We show that
the causal linear estimator that minimizes the worst-case
mean square estimation error over all possible values of
the uncertainty, subject to the probability constraints, is a
conventional Kalman filter whose exogenous input and initial
condition covariance matrices can be obtained by solving
a convex optimization problem off line. A simple aircraft
tracking problem is given to quantify the merit of our
approach. In this example we show that the inclusion of
probability constraints into the minimax formulation leads
to a nontrivial improvement in estimation accuracy.

Recently, related ideas have been proposed to handle linear
constraints on the states in model predictive control [12]. We
are grateful to the reviewer that pointed out this reference.
Our ideas and results have been developed independently of
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the work in [12], which only gives a suboptimal solution to
MPC problems with probability constraints.

Due to space limitations the proofs of the technical results
are not included. The proofs may be obtained from the
corresponding author. The notation used in this paper is fairly
standard. Time-dependent quantities and their associated
discrete-time sequences are denoted with the same symbol,
with omission of the time index for the sequences. The
Kronecker delta sequence is denoted by δ. The operators
E{·} and tr{·} denote expected value and trace, respectively.
The operator di{·} denotes the i-th diagonal entry of a square
matrix. The identity matrix is denoted by I . Given Hermitian
matrices A and B, the inequality A ≥ B (A > B) means
that A − B is positive semidefinite (definite).

II. PROBLEM FORMULATION

Consider the time-varying discrete-time linear system de-
fined by the following equations

x(k + 1) = A(k)x(k) + B(k)w(k), x(0) = x0 (1a)

z(k) = C1(k)x(k) + D1(k)w(k) (1b)

y(k) = C2(k)x(k) + D2(k)w(k) (1c)

where x(k) is the state vector, w(k) an exogenous input
vector, and z(k) and y(k) the system outputs. Only y(k) is
measured for 0 ≤ k ≤ T , where T is given. The exogenous
input w is assumed to be a Gaussian random sequence with
the following statistics:

E{w(k)} = 0 (2a)

E{w(k)w∗(j)} = Q(k)δ(k − j) (2b)

for 0 ≤ k, j ≤ T . That is, we assume that w is Gaussian
white noise with covariance matrix sequence Q. The initial
condition x0 is a Gaussian random vector characterized by

E{x0} = x̄0 (3a)

E{(x0 − x̄0)(x0 − x̄0)
∗} = X0. (3b)

We also assume that w(k) and x0 are independent for all
k ∈ [0, T ], which implies

E{w(k)x∗

0} = 0. (4)

The remaining assumptions are the following:

A1) The system matrices in (1) are known for k ∈ [0, T ].
A2) The mean value x̄0 of the system initial condition is

known.
A3) Sets Q and X0 are known such that the covariance

matrix sequence Q and the covariance matrix X0

satisfy Q(k) ∈ Q, for k ∈ [0, T ], and X0 ∈ X0.
A4) For every k ∈ [0, T ] and Q(k) ∈ Q, we have

B(k)Q(k)D∗

2(k) = 0 (5a)

D∗

2(k)Q(k)D2(k) > 0. (5b)

From equations (1), (2), and (5), it follows that the effective
process noise Bw and the effective measurement noise Dw
are uncorrelated and that no part of the measured output y
is noise free.

Given any k ∈ [0, T ], our objective is to estimate the
unknown state vector x(k) from the measurements y(0),
y(1), . . ., y(k). More specifically, we seek a linear causal
operator F such that

x̂(k) = (F (x̄0; y)) (k) (6)

provides an estimate of x(k) for k ∈ [0, T ]. Notice that the
mean x̄0 is the unbiased estimate of x(0) prior to obtaining
any measurement.

The performance of the estimator x̂, or F , is evaluated
using the estimation error

ε(k) = x(k) − x̂(k). (7)

In this paper we restrict our attention to linear causal
operators F with the following properties:

F : Rnx × �
ny

2 [0, T ] �→ �nx

2 [0, T ] (8a)

F is a bounded operator (8b)

where nx and ny are the dimensions of the state vector x(k)
and the measured output y(k), respectively. We shall refer to
estimators x̂ satisfying (6) and (8) as admissible estimators.
We denote the set of admissible estimators by A.

Given any admissible estimator F of the form (6), its
performance can be quantified using the time-averaged mean
square error criterion (MSE) defined as

J(F ; Q, X0) =
1

T + 1

T∑
k=0

E{ε∗(k)W (k)ε(k)} (9)

where W is a given positive definite matrix sequence. Notice
that this performance measure is written as an explicit
function of the operator F , the matrix sequence Q, and the
matrix X0. In this paper, we are interested in the following
minimax estimation problem

Jopt = inf
F

sup
Q, X0

J(F ; Q, X0) (10a)

subject to

F ∈ A, Q(k) ∈ Q, X0 ∈ X0, and (10b)

Prob{z(k) ≤ h(k)} ≥ γ, ∀k ∈ [0, T ] (10c)

where the inequalities in (10c) are elementwise for given
vectors h(k) and γ.

The practical application of this minimax problem formu-
lation is as follows. If the probability constraints (10c) are
ignored, then (10) is a standard minimax estimation problem,
where one seeks an estimator that minimizes the worst-case
MSE over the set of covariance matrix sequences Q and
the set of covariance matrices X0, respectively. Assume now
that more is known about the behavior of the states and
the input in the form of linear constraints. For example,
we may have high confidence that the state and the input
satisfy certain constraints during the estimation interval. In
theory, this additional knowledge should lead to improved
estimation accuracy. The formulation in (10) achieves that
by adding probability constraints that limit the choices of
the covariance matrix sequence Q and the covariance matrix
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X0 in the calculation of the worst-case MSE. This is a very
natural way of incorporating prior knowledge of constraints
into an optimal estimation problem. As it is shown in this
paper, the minimax problem (10) is no more difficult than
a Kalman filter problem. In fact, a solution Fopt is exactly
a conventional Kalman filter for suitable chosen covariance
matrix X0 and covariance sequence Q.

III. PROBABILITY CONSTRAINTS

The next lemma gives precise conditions on the system
parameters that are necessary and sufficient for the satis-
faction of probability constraints of the form (10c). The
result can be used to precisely characterize the exogenous
input covariance matrix sequence Q and the initial condition
covariance matrix X0 that are consistent with the probability
constraints.

Lemma 1 (Representation of probability constraints):
Consider the system defined by equations (1) through (4).
Let X(k) and r(k) denote the unique solutions to

X(k + 1) = A(k)X(k)A∗(k) + B(k)Q(k)B∗(k) (11a)

r(k + 1) = A(k)r(k) (11b)

with initial conditions X(0) = X0 and r(0) = x̄0, respec-
tively. Let c > 1

2
be given and assume that θc is the unique

solution to

c =
1√
2π

∫ θc

−∞

e−
1

2
z2

dz. (12)

Then, given any scalar b and vectors a1 and a2, the proba-
bility constraint

Prob {a∗

1x(k) + a∗

2w(k) ≤ b} ≥ c (13)

is satisfied if and only if

a∗

1X(k)a1 + a∗

2Q(k)a2 ≤
(

b − a∗
1r(k)

θc

)2

(14a)

b − a∗

1r(k) ≥ 0. (14b)

IV. MAIN RESULTS

The results in this section show that a solution to the
minimax optimization problem (10) can be obtained in two
steps:

Step 1. Compute a covariance matrix sequence Qopt

and a covariance matrix X0,opt that maximize a suitably
constructed linear cost function over a convex set. The
precise formulation is given subsequently in Theorems 1
and 2.
Step 2. Compute a standard Kalman Filter for the system
in equation (1), under assumptions (2) through (5), with
exogenous input and initial condition models set to Q =
Qopt and X0 = X0,opt.

We shall make the following additional assumptions on
the data of the minimax problem (10):

A5) The entries γi of the probability bound vector γ intro-
duced in (10c) are strictly greater than 1/2.

A6) The mean state vector r(k) introduced in (11b) satisfies
the elementwise inequality constraints C1(k)r(k) ≤
h(k), for all k ∈ [0, T ].

A7) The sets Q and X0 are compact and convex.
Notice that no restriction is imposed on the system by
assuming that the mean state r(k) satisfies the constraints
C1(k)r(k) ≤ h(k). If any of these constraints is not met
then the associated probability constraint is not feasible and
the minimax problem makes no sense.

To state our results we shall make use of the matrix
sequence H , with elements defined by

H(k) = (h(k) − C1(k)r(k)) (h(k) − C1(k)r(k))∗. (15)

Theorem 1 (Optimal worst-case MSE): Consider the op-
timal minimax estimation problem (10), under assumptions
A1) through A7). Let θγi

denote the solution to the integral
equation (12) with c = γi. The optimal worst-case MSE
Jopt can be obtained by solving the following optimization
problem

Jopt = sup
Q,X0

1

T + 1

T∑
k=0

tr{Y (k)W (k)} (16a)

subject to the following constraints ∀k ∈ [0, T ]:

Q(k) ∈ Q, X0 ∈ X0 (16b)

Y (k) = Y −(k) − K(k)C2(k)Y −(k) (16c)

K(k) = Y −(k)C∗

2 (k)M−1(k) (16d)

M(k) = C2(k)Y −(k)C∗

2 (k) + D2(k)Q(k)D∗

2(k) (16e)

Y −(0) = X(0) = X0 (16f)

Y −(k + 1) = A(k)Y (k)A∗(k) + B(k)Q(k)B∗(k) (16g)

X(k + 1) = A(k)X(k)A∗(k) + B(k)Q(k)B∗(k) (16h)

di

{
C1(k)X(k)C∗

1 (k) + D1(k)Q(k)D∗

1(k) − θ−2

γi
H(k)

}
≤ 0,

∀i = 1, . . . , nz (16i)

where H is defined in (15) and nz is the number of
probability constraints in (10c).

The optimization problem in (16) has a linear cost func-
tion and constraints given by difference matrix equations.
Equations (16c) through (16g) are the well-known equations
corresponding to the Kalman filter for the system. The con-
straint imposed by these equations is, in general, nonlinear
in Q and X0. Theorem 2 below shows that this constraint
may be replaced with a linear matrix inequality, which, given
the convexity of Q and X0, leads to an equivalent convex
program for solving (16). Prior to stating this result, we give
a formula for an estimator that solves the minimax problem
(10).

Corollary 1 (Optimal minimax estimator Fopt): If Qopt

and X0,opt denote a solution to (16), then an admissible
estimator Fopt that solves the minimax problem (10) is of
the form

x̂(k) = x−(k) + Kopt(k)(y(k) − C2(k)x−(k)) (17a)

x−(k + 1) = A(k)x̂(k) (17b)

where x−(0) = x̄0 and the gain sequence Kopt is from (16)
with Q = Qopt and X0 = X0,opt.
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Notice that the estimator given in this corollary is a
Kalman filter with covariance matrices, for the exogenous
input and initial condition, set to the ones that yield the
worst-case performance Jopt. These matrices depend only on
the a priori information of the system and can be computed
from Theorem 2 before running the estimator. Therefore,
the on-line implementation of this estimator reduces to the
implementation of a standard Kalman filter.

Theorem 2 (Equivalent convex problem): Under the as-
sumptions of Theorem 1, the optimal worst-case MSE Jopt,
and a solution Qopt and X0,opt to (16), can be obtained by
solving the following convex problem:

Jopt = sup
Q,X0,Z

1

T + 1

T∑
k=0

tr{Z(k)W (k)} (18a)

subject to the following constraints ∀k ∈ [0, T ]:

Q(k) ∈ Q, X0 ∈ X0, Z(k) > 0 (18b)
[
Z(0) 0

0 −D2(0)Q(0)D∗

2(0)

]
≤

[
I

C2(0)

]
X0

[
I

C2(0)

]
∗

(18c)

[
Z(k + 1) 0

0 −D2(k + 1)Q(k + 1)D∗

2(k + 1)

]
≤

[
I

C2(k + 1)

][
A∗(k)
B∗(k)

]
∗
[
Z(k) 0

0 Q(k)

][
A∗(k)
B∗(k)

][
I

C2(k + 1)

]
∗

, (18d)

and equations (16h), (16i), and X(0) = X0, (18e)

where (18d) is evaluated from k = 0 to k = T − 1 only.
Moreover, if Qopt and X0,opt solve (18), then these matrices
also solve (16).

We conclude this section with an analysis result to cal-
culate the worst-case MSE criterion for a particular class of
estimators with observer-like structure. This result is used in
the subsequent example section to compare the performance
of the optimal minimax estimator Fopt given in Corollary 1
with the performance of a conventional minimax estimator
that does not take into account probability constraints on the
state and input sequences.

Let FL denote a state estimator of the form

x̂(k) = x−(k) + L(k)(y(k) − C2(k)x−(k)) (19a)

x−(k + 1) = A(k)x̂(k) (19b)

where x−(0) = x̄0 and L is a matrix sequence of appropriate
dimensions. It is easy to show that FL ∈ A. We are interested
in evaluating the worst-case MSE criterion of FL under the
probability constraints of the minimax problem (10). That is,
we want to calculate

Jworst(FL) = sup
Q,X0

J(FL; Q, X0) (20a)

subject to

Q(k) ∈ Q, X0 ∈ X0, and (20b)

Prob{z(k) ≤ h(k)} ≥ γ, ∀k ∈ [0, T ] (20c)

where the cost function J(FL; Q, X0) is the MSE criterion
defined in (9). The next lemma shows how to calculate the
worst-case MSE criterion Jworst(FL).

Lemma 2 (Worst-case MSE): Consider the system de-
fined in (1) and the estimator FL defined in (19). Suppose
that assumptions A1) through A7) hold. The worst-case
MSE criterion Jworst(FL) can be computed by solving the
following convex program

Jworst = sup
Q, X0

1

T + 1

T∑
k=0

tr{Y (k)W (k)} (21a)

subject to the following constraints ∀k ∈ [0, T ]:

Q(k) ∈ Q, X0 ∈ X0 (21b)

Y (k)=(I − L(k)C2(k))Y −(k) (I − L(k)C2(k))∗ +

L(k)D2(k)Q(k)(L(k)D2(k))∗ (21c)

Y −(0) = X(0) = X0 (21d)

Y −(k + 1) = A(k)Y (k)A∗(k) + B(k)Q(k)B∗(k), (21e)

and equations (16h) and (16i). (21f)

V. NUMERICAL EXAMPLE

Consider the aircraft tracking problem in the two di-
mensional space z1-z2 depicted in Figure 1. The aircraft
is assumed to move in a nearly constant velocity mode
with expected trajectory defined by the segment going from
waypoint A to waypoint B [13]. The goal is to estimate
the actual position and velocity of the aircraft from noisy
position measurements provided by a radar. The estimation
is carried out during a fix time window determined by the
expected travel time from A to B.

The aircraft state at time tk is represented by the vector
of positions and velocities

x(k) = [z1(tk) ż1(tk) z2(tk) ż2(tk)]∗ . (22)

The evolution of x(k) is modeled assuming decoupled
motion between the z1 and z2 coordinates, and constant
sampling time Ts = tk+1 − tk [13]. The resulting model
is

x(k + 1)=

⎡
⎢⎣

1 Ts 0 0
0 1 0 0
0 0 1 Ts

0 0 0 1

⎤
⎥⎦x(k)+

⎡
⎢⎣

1

2
T 2

s 0
Ts 0
0 1

2
T 2

s

0 Ts

⎤
⎥⎦u(k) (23a)

y(k)=

[
1 0 0 0
0 0 1 0

]
x(k) + v(k) (23b)

where the acceleration input u and the measurement noise v
are zero mean Gaussian white noises with covariances U(k)
and V (k), respectively.

The model (23) can be written in the form (1) by defining
the random sequence w and its covariance matrix sequence
Q as follows

w(k) =

[
u(k)
v(k)

]
Q(k) =

[
U(k) 0

0 V (k)

]
. (24)

The mean x̄0 of the system initial condition is a known
vector whose position components correspond to the way-
point A and whose velocity components define a vector with
direction A-B. The value of x̄0 is

x̄0 =
1√
2
[35000m −200m/s 35000m −200m/s]∗. (25)
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The actual values of the covariance matrices X0 and U(k)
are not available; however, they are known to satisfy

X0 ≥

⎡
⎢⎣
10m 0 0 0

0 0.6m/s 0 0
0 0 10m 0
0 0 0 0.6m/s

⎤
⎥⎦

2

(26a)

X0 ≤

⎡
⎢⎣
300m 0 0 0

0 6m/s 0 0
0 0 300m 0
0 0 0 6m/s

⎤
⎥⎦

2

(26b)

U(k) ≥ (0.02m/s2)2 I (26c)

U(k) ≤ (0.4m/s2)2 I (26d)

The measurement noise covariance matrix is known and
equal to

V (k) = σ2
v I (27)

where σv is a known parameter taking one of the following
values: 85m, 120m, or 147m. The expected arrival time to
waypoint B is 175 seconds. We take this time as the length of
the estimation window. Thus, with the sampling time Ts =
5 seconds, we get an estimation window length T = 36
samples.

The shaded regions in Figure 1 denote the regions where
the aircraft is most likely to be as it travels from waypoint
A to waypoint B. The first region, which is valid for all
time, is defined as a band centered in the expected trajectory.
The second region, valid only for the expected arrival time
k = T , is defined as a square centered at waypoint B.
In this example, we assume that the aircraft satisfies the
constraints corresponding to the boundaries of the shaded
regions in Figure 1 with 80% probability. That is, we assume
the following probability constraints, ∀k ∈ [0, T ],

Prob

{
−z1(k) + z2(k) ≤ 1340√

2
m

}
≥ 0.8 (28a)

Prob

{
z1(k) − z2(k) ≤ 1340√

2
m

}
≥ 0.8 (28b)

For k = T , we assume

Prob

{
z1(T ) + z2(T ) ≤ 1340√

2
m

}
≥ 0.8. (28c)

Notice that the constraints (28) can be written as shown in
(10c) by defining

z(k) =

⎡
⎣ −1 0 1 0

1 0 −1 0
δ(k − T ) 0 δ(k − T ) 0

⎤
⎦x(k) (29a)

h(k) =

[
1340√

2
m

1340√
2

m
1340√

2
m

]∗

(29b)

γ = [0.8 0.8 0.8]
∗ (29c)

The estimation objective is to estimate position and veloc-
ity from noisy position measurements. The weight sequence
W in the MSE criterion (9) is taken to be a fixed diagonal
matrix, whose main diagonal is given by the reciprocal
of the squares of the entries of the mean initial condition
x̄0 defined in (25). In this example, we computed two

Fig. 1. Schematic of aircraft tracking problem. Solid line: expected
aircraft trajectory; dashed line: constraints on aircraft trajectory; dotted line:
representative aircraft trajectories.

distinct estimators. In both cases, the covariance matrices
Q(k) and X0 are required to satisfy the constraints defined
by (24), (26), and (27). The first estimator is computed
enforcing the probability constraints (28). This estimator is
obtained from Corollary 1 with covariance sequence Qopt

and covariance matrix X0,opt calculated from Theorem 2.
The second estimator is a conventional minimax estimator
obtained without explicit use of the probability constraints
(28). This conventional minimax estimator is also obtained
from Corollary 1 and Theorem 2 but removing the constraints
(16h) and (16i), which are associated with the probability
constraints (28). Each estimator is computed for the follow-
ing three levels of measurement noise: σv = 85m, 120m,
and 147m. Thus, a total of six estimators are obtained.

Table I shows the worst-case MSE Jworst for all six
estimators. The value Jworst was obtained from Lemma 2.
Notice that for this analysis the constraints (28) are included
so that all six estimators are evaluated using the same prior
information; i.e., the probability constraints and the bounds
on the covariance matrices. For the minimax estimators
designed taking into account the probability constraints, the
worst-case MSE from Lemma 2 satisfies Jworst = Jopt,
where Jopt is the optimal minimax MSE from Theorem 2.
The last column in the table shows the increase in MSE
that results when the probability constraints are not used for
estimator design. In this example, the penalty in accuracy
for not using this prior information is greater than 20% in
all cases.

To complement the worst-case analysis, we now present a
statistical analysis of estimation accuracy. For each estimator,
we calculated the distribution of the MSE criterion (9) over
3000 randomly generated covariance matrix pairs (U, X0).
These matrix pairs were generated to satisfy the bounds (26)
and the probability constraints (28). For each estimator, and
randomly generated covariance matrices Q(k) and X0, the
MSE criterion was obtained from (21) without taking the
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supremum and instead evaluating the matrix sequence Y
for the given input and initial state covariances, which is a
well-known approach to calculating the MSE criterion [14].
Proceeding in this way, we generated 3000 MSE samples
for each estimator. This distribution is representative of
the estimators performance when evaluated with input and
initial condition statistics that are consistent with the prior
knowledge of the system. Table II shows the median of
the MSE criterion distributions for each estimator. Once
again, the loss of accuracy that results when the probability
constraints are ignored is apparent.

Lastly, Figure 2 shows the time evolution of the pointwise
mean square error E{ε∗(k)Wε(k)} for the two estimators
that correspond to the measurement noise level σv =120m.
This pointwise error is computed as E{ε∗(k)Wε(k)} =
tr{Yworst(k)W}, where Yworst is a matrix sequence that
solves (21). The performance of the optimal minimax es-
timator, designed with the probability constraints enforced,
is shown in the solid line, while the dashed line is used
for the conventional minimax design. In this problem, the
estimation accuracy improvements occur in the first half of
the estimation interval.

TABLE I

COMPARISON OF WORST-CASE MSE CRITERION Jworst .

Worst-case MSE
σv designs with designs without MSE

constraints (28) constraints (28) increase
85m 1.026e-3 1.246e-3 21%
120m 1.267e-3 1.552e-3 22%
147m 1.555e-3 1.919e-3 23%

TABLE II

COMPARISON OF MEDIAN VALUES OF MSE CRITERION.

Median MSE
σv designs with designs without MSE

constraints (28) constraints (28) increase
85m 0.803e-3 0.896e-3 12%
120m 0.993e-3 1.104e-3 11%
147m 1.216e-3 1.352e-3 11%

VI. CONCLUSIONS

This paper considered the problem of optimal minimax
state estimation in a linear time-varying system, driven by
a Gaussian random process, subject to pointwise probability
constraints on the driving process and the state. This problem
is motivated by the possibility of improving the accuracy of
minimax estimators by incorporating a priori information in
the form of probability constraints on the system variables.
The optimality criterion is the worst-case MSE criterion over
a given set of initial condition and driving process covariance
models, which are consistent with the probability constraints.
The optimal minimax state estimator is a Kalman filter with
suitably chosen driving input and initial condition covariance
matrices. It is shown that these covariances may be obtained
from the solution of a convex optimization problem. A
numerical aircraft tracking example quantifies the benefits of
adding probabilistic constraints in minimax state estimation.
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