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Robust Observer Design for a Class of Nonlinear Systems

Daniel F. Coutinho, Marcelo Curcio, Jiri Mladic and Alexandre Bazanella

Abstract— A Luenberger-based observer is proposed to the
state estimation of a class of nonlinear systems subject to
parameter uncertainty and bounded disturbance signals. A
nonlinear observer gain is designed in order to minimize the ef-
fects of the uncertainty, error estimation and exogenous signals
in an H., sense by means of a set of state- and parameter-
dependent linear matrix inequalities that are solved using

nonlinear systems such as the works of [6] and [7]. In
this setting, the proposed solutions vary from the class of
Lyapunov functions and also the way that the nonlinear terms
are transformed into convex conditions.

From the above discussion, a nonlinear state estimator
based on the ideas of the Luenberger’s observer for linear

standard software packages. A numerical example illustrates
the approach.

I. INTRODUCTION

Since the seminal works of Kalman in [1] and Luenberger
in [2], state estimation of dynamical systems is an active
topic of research in a wide diversity of areas varying from
control theory to fault detection and information fusion. We
can define the observer problem as the task of estimating
a function of the states of a dynamical system from its
output which may be corrupted by disturbance signals and
parameter uncertainty. The most recognized and well-studied
state estimators for linear system are probably the Kalman
Filter and the Luenberger observer [3], in which it is required
a certain level of accuracy on the system model. When the
model is uncertain the observer may have a poor performance
or even assume an erratic behavior. Moreover, in many
practical situations the signal to be observed results from a
nonlinear map yielding approximate solutions based on the
system linearization such as the extended Kalman filter or
EKF [4].

On the other hand, the problem of robustness and dis-
turbance rejection in the control theory has been addressed
by means of convex optimization techniques. To this end,
the control problem is recast as a set of linear matrix
inequalities (LMlIs) through the Lyapunov theory and then
a solution is obtained using very efficient interior-point
method algorithms [5]. In this framework, one can cite
several solutions to the stability analysis and performance,
and control synthesis [5]. However, the LMI framework
cannot be applied in a straightforward way to deal with
nonlinear dynamical systems. Nevertheless, some researchers
have recently proposed sufficient LMI conditions to handle
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systems is developed by considering the uncertainty and
the disturbance signal as an exogenous input, and then the
observer gain is designed such that an upper-bound on the
Lo-gain of the input-to-output operator from the error system
is minimized. To make this point clear, for the following class
of nonlinear systems

i(t) = (Ay(y) + Au(z,0))2(t) + Bo(z,0)v(t),
y(t) = Cya(t), 2(t) = C,x(t),

where 0 is the uncertainty, v(¢) the disturbance, y(¢) the
measurement, and z(¢) the signal to be estimated, we rewrite
the error system as follows

é(t) = (Ay(y) + L(y)Cy)e(t) + By(x, 6)p(t),
ze(t) = CLe(t).

with p(¢) being a fictitious exogenous signal that represents
both uncertainty and disturbance signal. Thus, a relaxed
version of the Bounded Real Lemma is applied to design
the nonlinear observer-gain L(y) such that the Lo-gain from
p(t) to z¢(t) is minimized.

To present the proposed methodology, the rest of this
paper is as follows. Section II introduces the problem to
be addressed, the general ideas of the proposed solution are
given in Section III, and a convex characterization of the
general solution is presented in Section IV. An illustrative
example is given in Section V, and Section VI ends the paper.

Notation. R" denotes the set of n-dimensional real vec-
tors, R™*™ is the set of n x m real matrices, I,, is the n xn
identity matrix, Oy, 1S the n X m matrix of zeros, 0, is
the n x n matrix of zeros and diag{...} represents a block-
diagonal matrix. For a real matrix S, S’ denotes its transpose
and S > 0 means that S is symmetric and positive-definite.
For a symmetric block matrix, the symbol x denotes the
transpose of the symmetric block outside the main diagonal
block. The time derivative of a function r(¢) will be denoted
by 7(t) and the argument (¢) is often omitted. For polytopes
X1 C R” and X5 C R™, the notation X; X Xo represents
that (X; x X5) € R("*™) is a meta-polytope obtained by the
cartesian product, and V(X;) refers to the set of all vertices
of X;. Matrix and vector dimensions are omitted whenever
they can be inferred from the context.
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II. PROBLEM STATEMENT

Consider the following class of systems

i) = a(e(®).6.u(®)0(0), 20) Ro
y(t) = Cyalt), 2(t) = C.a(t),

where z(t) € R™ is the state, 0 € R™ is a vector of bounded

time invariant parameters, u(t) € R™» is the control input,

v(t) € R™ is the disturbance signal, y(t) € R™ is the

measurement, z(t) € R™: represents the vector of signals

to be estimated, a(-) is a nonlinear vector function, and

Cy, C, are constant matrices having appropriate dimensions.

In addition, consider the following assumptions over the

above system:

A1 The right-hand side of the differential equation is con-
tinuous and bounded on its arguments.

A2 The vector of (constant) uncertain parameters J lies in
a polytope A, i.e. § € A.

A3 The state-space domain in which the observer design
will be performed is bounded by a known polytopic
region X C R™.

A4 The initial condition zy = x(0) is unknown but belong-
ing to the following level surface

Ro = {x(t) : z(t)'Rx(t) <1, R>0} C X.

A5 The disturbance signal v(t) belongs to the set of inte-
grable vector functions on [0, 77, i.e. v(t) € Lo 0,77

When the equilibrium point of system (1) is not GAS
(globally asymptotically stable), the input signals (u(¢) and
v(t)) may drive the system to instability. To simplify the
analysis, one shall consider the following additional assump-
tion
A6 System (1) is exponentially stable in X" for all g € Ro,

v(t) € Lg 0,7 and u(t), for the interval of time 7.

Also, for simplicity, we suppose whenever x € & the
output y is also contained in a given polytope, which is
guaranteed by the following assumption:

A7 The matrix C, satisfies C;C,, < I.

The problem to be addressed in this paper is to synthesize
an estimation of z(t¢) in (1) while requiring some perfor-
mance on the estimation error in a numerical and tractable
way. To this end, let us recast the differential equation in (1)
as follows

& = (Ay(y) + Az(w,0))x + b(y, u) + By(z,0)v (2)

where Ay (-), Az(-),b(-), By(+) are nonlinear bounded func-
tions on their arguments.
From Luenberger’s observer theory, the following estima-

tor is proposed
B = A@RO by LW -0
i) = CLa(t), §=Cya, #(0) =0,
where & € R™ is the observer state; £(¢), ¢ are the estimation
of z(t) and y(¢), respectively; and L(y) is a nonlinear matrix
function of y(t) to be determined.
In practical applications, the estimated signal 2(¢) has to
track z(t) as close as possible for all § € A regardless the

presence of disturbance signals, i.e., one has to guarantee
some performance on the estimation error z.(t) = z(t)—2(t)
for all possible circumstances.

Defining the error signal as e(t) £
following error dynamics is obtained

é=(Ay(y)+L(y)Cyle+ Ap(z,0)z+ By(z,6)v,e(0) = 0.

a(t) — &(t), the

From assumption A6, the state trajectory belongs to the
L 0,71 space. Thus, the term A, (x,d)z that appears on
the error dynamics can be viewed as a disturbance signal
to the error dynamics driven by the uncertain part of (1). As
a result, we can define a fictitious input signal namely p(t)

as follows /
pt)=[ 2/(t) v'(¢) |,
and rewrite the error dynamics as follows

) = Ac)elt) + By 0
ze(t) = Cze(t)a 6(0) = Zo,

where p(t) € R™ "™, n, = n+ ny, Ac(y) = Ay(y) +
L(y)Cy, and By(z,0) = [ Al(z,0) B,(x,96) ]

One can measure the effects of the signal p(¢) on z(¢) by
means of the (finite-horizon) L2-gain of the input-to-output
Gp~. operator, i.e.,

l|ze () ll2,10,7
1Gpze loo,jo, ;) = sup  T—=r———, (5)
peelloc 0] 0#£peLy o IPE) 2,10,
for all x € X and § € A. Now, we are ready to state the
problem of concern in this paper:

Problem 1: Design the observer gain in (3) such that an
upper bound v on ||Gp... || s, j0,7] is minimized for all (x, §) €
X x A. O

Remark 1: (Regional Stability of Disturbed Systems) The
assumption A6 is crucial to the correctness of the approach.
In practical applications, the regional stability of system (1)
should be checked in advance regarding the set of initial
conditions and the class of admissible disturbances. To the
same class of systems considered in this paper, the convex
technique proposed in [8] can be applied to this purpose. O

III. PRELIMINARIES

One can characterize the £2-gain of a system by means of
the Lyapunov theory [9]. The following result is a straight-
forward application of the input-to-output stability analysis
of nonlinear systems.

Lemma 1: (Lo-gain Analysis) Consider a nonlinear sys-
tem z(t) = f(x,u), y(t) = g(x,u), where f : X xU — R",
and g : X xU — R™ (with X € R*, U € 53"EO’T]) are
continuous and bounded on their arguments. Let V : X — R
be a continuously differentiable function and €y, €2, ¢,y be
positive scalars such that

e’z <V(z) < e’z 6)
V(z) + %yy —yu'u <0, @)
Re=Az:V(z)<c}C X (8)
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for all x € X, then the unforced system is exponentially
stable in R, and the Lo-gain from u to y satisfies

Guylloo,jo 1 < v, VX e X, uel.

|

In order to determine a Lyapunov function that proves

the stability and also provides an upper bound on the Lo-

gain, we normally constraint the problem to a given class of

functions and then compute some parameterized solution. In

this paper, we consider the following parameter-dependent
Lyapunov function candidate:

V(e,8) = ¢'P(8)e, P(§) >0,V 5 €A, )

where P(§) is a matrix function of § to be determined.
Taking into account the error system dynamics as defined
in (4), the time-derivative of V' (e) is as follows

V(e.d) = { ; }/[ B5,0) PO)B(,0) } [H (10)

where ® = ®(y, ) is given by
® = A (y)P(0)+P(0) Ay (y)+Cy L' (y) P(6)+P(6)L(y)Cy.

Notice for linear systems that Lemma 1 is the well-known
Bounded Real Lemma (BRL) [5]. Recently, several authors
have proposed improved stability conditions for systems of
the type £ = A(d)z to avoid the product term P(§)A(4) that
appears in V, and so making possible the use of parameter-
dependent Lyapunov functions [10], [11].

From the above analysis, one can propose the following
nonlinear version of the improved BRL initially proposed in
[12] applied to system (1).

Lemma 2: Consider the system (1), with assumptions Al-
A7, and the observer system as defined in (3). Let X
and A be given polytopes. Suppose there exist matrices
W(6),G,M(y), and a positive scalar + that solves the
following optimization problem for all (z,d) € X x A.

min subject to: E & >0, (11)
W (8),G,M(y) 7 ) LG W(9) ’
D, * * Cl
B/G' 29I, * 0
P P
o GB, -w@) o |<0 (2
C. 0 0 2
where B, = By(z,9), A= Aly) + L., A = A(y) — I,
o, = GA+ M(y)Cy, and

O, = W(8) + GA+ A'G+ M(y)Cy + Cy M’ (y)

Then, the unforced error system (4) with

Proof. For convenience, define the following notation:

(W) o (G 0
W= [ 0 Zwlﬁp ]’ Ca= [ 0 Wlﬁp }7
A — /H—L(y)C'y B,

a 0 Onp )
i [ A+ Ly)C, B,
Aa—[ o | (13)

PG) 0 }

Y,
0o -

From the above notation, the expression in (12) can be
rewritten as follows
Wa+ Godo + A,G),  * o
G, A, -W, 0
In
Ca 0 -
where M (y) = GL(y).

Applying the Schur complement to the above matrix
inequality yields:

( AL GLW GaAg+ )

< 0.

Wo + Go A, + ALG! <0 (14
C 2y
a 2
From the fact that!
Wa+ GoAy + ALGl > —A G W, G A,
the matrix inequality in (14) implies the following
AlP,A, — Al P,A
a* a aC a* a“‘ta _@ < 0 (]5)
a 2

for all (z,6) € X x A, } }
Noticing that A/ P, A, — A/ P, A, = 2(ALP, + P As),
we get for (15) the following

/
A;Pa+PaAa+%<0, VY (2,6) € X x A

Pre- and post-multiplying the above by [ ¢ p’ | and its
transpose, respectively, leads to

!y
Zele

—p'p <0. (16)

V(e,d)+

The LMI in (11) implies the following from Schur com-
plement

R—-G'W(5)™'G >0, W() - GR™'G’ > 0.

L(y) = G~ M(y),

is exponentially stable in Ry for all § € A. Moreover, the
finite horizon L2-gain satisfies

19z lloo,0,11 < 7> ¥ (2,0) € (X x A).
O

As R > 0 by assumption, one can infer that W (4) > 0 and
so P(§) = G'W(6)~'G > 0 and R — P(§) > 0. Thus,

V(e,d) = e P(d)e > 0, and
{e:e’Re <1} C {e:V(e,6) <1}

ISee [13] for instance.
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As the elements of P(J) are bounded for all § € A, there
exists scalars €1, €a such that

ere’e < V(e d) < exdle,

and the proof is completed from Lemma 1. |

Remark 2: To guarantee the feasibility of Lemma 2, we
have to check a priori if the pair (4,(y), Cy) is observable
for all y € X. 0

IV. CONVEX CHARACTERIZATION

The contribution of Lemma 2 is mainly one of existence
of solutions, since the conditions are characterized by a set
of Nonlinear Matrix Inequalities (NLMIs) [14] and so they
are hard to solve [15]. However, using some previous results
from the nonlinear control literature we can obtain a convex
characterization of Lemma 2.

In fact, there exist two basic approaches to deal with
this problem. The first one considers a different model
representation for the system under analysis such as the
linear fractional representation (LFR) of El Ghaoui and
co-authors in [6], [16] and the differential-algebraic one
(DAR) of Trofino and collaborators in [7], [17]. The second
one is the sums of squares (SOS) initially proposed in
[18] where multivariable polynomial conditions resulting
from Lyapunov-like inequalities are rewritten as a sum of
squares in a computational and tractable way. In spite of the
promising results of this approach, the method cannot handle
parameterizations like M = PL, where P represents the
Lyapunov matrix and L some control gain to be determined.
Hence, the SOS methodology is more indicated to stability
analysis rather than control design.

It should be noted that the design conditions on Lemma 2
are different from the ones usually found in stability analysis
and control design of nonlinear systems. More precisely, in
general the conditions are in the form:

dT(c)o >0,VoeY,

where o € R™ is a generic parameter, > C R™ is a given
polytopic region, and 7 (o) is a nonlinear function of o. It
turns out that there is coupling between the vector ¢ and the
arguments of 7 (). So, some algebraic manipulations can be
performed to obtain a convex characterization of the original
problem as shown, e.g., in [19]. However, in Lemma 2 one
get conditions like

PT(0)p>0,VpeR™, gy, (17

where there is no (a straightforward) coupling between p
and o. To overcome the above problem, one can apply
the technique proposed in [20] for nonlinear discrete-time
systems. Note that condition (17) may be tested by means
of T(o) >0, Vo € 3. If it is assumed that 7 (o) can be
written as follows

where T is a constant matrix and M (o) is a nonlinear
function of ¢ satisfying the following constraint?

E1(0) 4+ Z2(0)M(o) =0,

for some =4, =5 which are affine matrix functions of o with
Zo having column full-rank for all o € ¥. Then, condition
(17) is satisfied (at the cost of some conservativeness) if the
following holds for all o € V(%):

T + NZ(o) + E'(6)N' >0,

where Z(c) = [ E1(0) Ea(0) ] and N is a free multiplier
to be determined.

To allow the application of the above technique, we
suppose that the error dynamics matrices can be decomposed

as follows
Ay(y) = Ao+ A1l (y), Bp(x,0) = Bo+B1V1(x,0), (18)

where Ag, A1, By, By are constant matrices with appropriate
dimensions and II;(y) € R™=*", Uy(z,§) € R™»>*™
are nonlinear functions of (x,¢) satisfying the following
constraints

Qo(y) +Q ()i (y) =0, To(z,d)+T1(z,6)¥1(z,d) =0,

with Qo(y) € R¥*"™, Qq(y) € R*™~, Ty(x,d) € R™ ",
and Ti(x,6) € R"™ ™ being affine functions on their
arguments.
To guarantee that the matrix decomposition defined in (18)
is well-posed, we further assume
A8  The matrices Q;(y) and T1(z,d) are column full-
rank for all y,z and § of interest.

For simplicity of notation, we may represent the matrix
decomposition above defined as follows

A,(y) = AIL QI = 0, 0
By(z,6) = BU, TU = 0, (19)
where A = [A A1], B = [By B ],
Q = [ Q(y) )], T =1[To(x,0) Ti(z,9) |,
and
I, _ I,
“—{m(y)}’ ‘P‘[%(x,a) ]

Following the same steps of [20], we propose the follow-
ing convex characterization of Lemma 2.

Theorem 1: Consider system (1), with A1-A7, the rep-
resentation defined in (2), the observer in (3), the error
dynamics as defined in (4) and the matrix decomposition
defined in (19) with A8. Let X’ and A be given polytopes.
Further define the following notation:

Nrr:[-[n 0n><m7r ]7
A:

cooD
oo o
oo o

oo o

Nw = [ In,, On,,xm(/, ]7 0
Nz

2See Lemma 3 of [20] for further details.
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Suppose the matrices W (§) = W(d)',M(y),G, K and a
scalar «y are a solution to the following optimization problem
where the LMIs are constructed on V(X x A).

min ~ subject to: [ a W?(;) ] >0, 0)
Qa * * *
B'G'N;  —2y7N,Ny * 0 n
Qb N'GB —N.W (&) Ny 0
C.N, 0 0 — e
+KA+ANK' <0 Q21
where W(§) = Wy + >0, Wi, M(y) = My +

S yiMi, Qo = NLW(6)Nx + N,GA + A'G'N, +
M(y)C, Ny + NLCIM(y). Qp = NLGA + M(y)C, Ny,
A=[(Ao—1I,) A |J,andA=[ (Ao+1,) A ]
Then, the unforced error system (4) with
L(y) = G~'II'M(y)

is exponentially stable in Rq for all 6 € A. Moreover, the
finite horizon Lo-gain satisfies

||gPZa||OO,[O,T] < v v (JJ, 5) S (X X A)

|
Proof. Suppose that the LMIs in Theorem 1 hold for all
(z,0) € V(X x A), thus for convexity they are also satisfied
for all z € X and § € A. Notice from A7 and y = Cyx that
yeX.
Consider the LMI in (20). From the Schur complement,
we get the following

R—G'W(§)"'G >0and W(§) —GR™'G’' >0, V§ € A.

Taking into account that R > 0 by A4 and the above, it
follows that

W($) >0, P(0) =GW()"'G >0, R> P(V).
In view of Lemma 2, the following is satisfied for all 6 € A

erefe <V(e,d) = e P(d)e < exé’e,

{e:e’Re <1} C {e:e'P(d)e <1}.

Now, consider the LMI (21) and rename it as I' < 0 for
simplicity. Pre- and post-multiplying I' < 0 by

Ir o o0 0

(22)

0 ¥ 0 0
=10 o w o
0 0 0 I,

and its transpose, respectively, leads to (12) with M (y) =
II'M(y). Notice that the following holds
A =0,

by construction. So, the proof is completed from Lemma 2.
|

Remark 3: For the class of Bilinear Systems [21], The-
orem 1 is oversimplified. For instance, considering a sys-
tem & = Ay(y)r + A(z,d)z + b(y)u + By(z,6)v, where

Ay (), Az (+),b(+), By(+) are affine matrix functions on their
arguments, the LMI (21) can be replaced by (12) in straight-
forward way.

V. ILLUSTRATIVE EXAMPLE

In the following, we give an example to illustrate the
approach. The example is based on the following stable Van
der Pol’s equation:

T = Ta,
iy = —x1—(1-0.20)(1 — 222 +u+v,
y = mx, 2 = x9, 6 €[—1,1].

(23)

where v(t) is a disturbance signal satisfying A5, and the
initial conditions are unknown but bounded by R as defined
in A4 with R = 415. Accordingly to A3 and A4, we bound
the state space by the following polytope:

X ={z:|z;] <05, i=1,2}.

The objective in this example is to estimate the state xo by
means of Theorem 1. To this end, consider the representation
(2) with

0 1 L]0 0
—1 —(1—22) "7 0 025(1—2a2) |’

b = [0 1])u, and B, = [0 1]. Applying the
parametrization defined in (18) and (19) leads to

Ay =

0 1 0 0
A‘_—1 —101]’
B_'ooo 0 0 0
001020 -02)
. 05[21 —1 0
Q_[o 0 = —1}’

[0 6 0 -1 0 0
T=1000 2, -1 0 |,
(000 0 x -1

0 2 0 6 0
Hl:[o x;],\h: 0 éz1 O
! 0 623 0

In light of Theorem 1, we get the following

~1371977.1 1192.0414
M(y) = 4.6666328 317.20133 |
Y)= | _317.24137 —798.70494 | TV
728.82189 —0.2276901
o [ 0-0801244  3.3670086

© | —3.4385201 1.4599502 |°

Figure 1 shows the worst-case time response of ex(t) =
x2(t) — &2(t) for 6 = 1, an initial condition z(0) =
[ —=0.5 0 ], and the following input signals

0 0<t<15sec

u(t) = if ,
0.5 t > 1bsec
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0 0 <t < 30sec

v(t) = if
0.1 30 <t < 50sec

0.04

e(t)
0.03-
0.02+
0.01+
0.00

t(sec)
0.01 T T T T
[ 10 20 30 40 50
Fig. 1. Estimation error of z(t) for system (23).

VI. CONCLUDING REMARKS

This paper has proposed a convex approach to design
robust state observers for a class of nonlinear systems subject
to (constant) uncertainties and energy-bounded disturbance
signals, with possibly unknown initial conditions. The LMI
conditions give sufficient conditions that assure the local
stability of the error dynamics while providing a robust
domain of stability with guaranteed H, performance specifi-
cation on the estimation error. The approach can be extended
to handle time-varying uncertainties straightforwardly by
requiring that dd/dt is bounded by a convex set. Future
research is concentrated on devising a discrete-time version
of the proposed observer.
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