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Abstract— State estimation using Luenberger-like observers
is considered for a class of switching discrete-time linear
systems. The switching is assumed to be unknown among
the various system modes described by known matrices. The
convergence of the error dynamics is ensured, even in the
presence of bounded noises, by conditions that can be expressed
by means of Linear Matrix Inequalities (LMIs). The design of
such observer may be accomplished by minimizing an upper
bound on a quadratic cost function of the estimation error using
LMI-based optimization techniques. Moreover, an improvement
to the estimator is presented that is based on a projection
technique.

I. INTRODUCTION

In this paper, we address the problem of constructing
Luenberger observers for switching discrete-time linear sys-
tems in the presence of unknown switching in a given finite
set of admissible cases. Such a problem turns out to be
more difficult than classical observer design. A Luenberger
observer provides an estimation error convergent to zero
if and only if the gain is chosen such that the poles of
the error dynamics are in the strictly stable region [1]. In
this context, the problem was faced by suitably extending
the classical Luenberger observer [2], where the switching
times are assumed to be known. Later on, other results
were presented in [3], [4], [5], [6], where the hypothesis
on the knowledge of the switching times is relaxed. Other
investigations were focused on observability issues that arise
for various classes of hybrid systems [7], [8], [9].

In [2], [10], the problem of constructing observers for
switching systems has been solved by assuming the perfect
knowledge of the switching times and modes, where design
methods are proposed that consists in finding observer gains
that admit a common Lyapunov function for the error dy-
namics. Here we take advantage of such results and propose
an estimation scheme based on the combination of the
identification of the discrete state with the estimation of
the state variables by means of a Luenberger-like observer.
In addition, the problem of determining the observer gains
has been reduced to the fulfillment of LMIs. Thus, the
performance of the estimator can be tuned by minimizing
upper bound on a quadratic cost function of the estimation
error using LMI-based optimization routines [11]. Moreover,
the proposed observer may also be applied with success in
the presence of bounded process and measurement noises,
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provided that the procedure for identifying the discrete state
is suitably modified. Finally, along the lines of [2], [10], the
observer is provided with an additional estimation update
based on a simple projection technique. For the sake of
brevity, all the proofs are omitted.

Before concluding this section, let us introduce some
notations and basic definitions. Given a generic vector v ,
‖v‖ denotes the Euclidean norm of v and, given a positive
definite matrix P , ‖v‖P denotes the weighted norm of v ,

‖v‖P
�
= (v�Pv)1/2 . For a generic time-varying vector vt ,

let us define vt
t−N

�
= col (vt−N , vt−N+1, . . . , vt) . For a

symmetric positive or negative definite matrix D , σmin (D)
and σmax (D) are the minimum and maximum eigenvalues

of D , respectively. The norm of a matrix B is ‖B ‖
�
=√

σmax ( B� B). Given a generic matrix M , we denote as
span(M) the linear space generated as a linear combination
of the columns of M .

II. OBSERVERS FOR SWITCHING DISCRETE-TIME LINEAR

SYSTEMS

Let us consider a class of switching discrete-time linear
systems described by

xt+1 = A(λt)xt

yt = C(λt)xt
(1)

where t = 0, 1, . . . is the time instant, xt ∈ R
n is the

continuous state vector (the initial state x0 is unknown),
yt ∈ R

m is the measurement vector, and λt ∈ Λ
�
=

{1, 2, . . . ,M} is the discrete state. A(λ) and C(λ), λ ∈ Λ,
are n × n and m × n matrices, respectively.

If we assume to perfectly know λt, an asymptotic observer
for (1) is the following:

x̂t+1 = A(λt) x̂t + L(λt) [yt − C(λt) x̂t] (2)

where t = 0, 1, . . ., x̂t is the estimate of xt, x̂0 is chosen
“a priori”, and L(λt) is the observer gain at the time instant
t, i.e., we require that the gain L(λ) is associated with the
couple (A(λ), C(λ)), λ ∈ Λ.

Under the knowledge of λt, the dynamics of the es-

timation error et
�
= xt − x̂t behaves like a switching

system and a common Lyapunov function can be searched
in order to ensure the stability of the estimation error [2],
[10]. Unfortunately, if the switching mode λt is unknown,
the design of a Luenberger observer turns out to be much
more difficult. With this respect, at any time stage t one
can try to identify the discrete state λt on the basis of the
observation of the output of the system over a certain interval
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“around” the current time t . Then the prediction x̂t+1 of
the continuous state xt+1 can be obtained as

x̂t+1 = A(λ̂t) x̂t + L(λ̂t)
[
yt − C(λ̂t) x̂t

]
(3)

where λ̂t is some estimate of the discrete state λt . In the
following, a possible approach for the choice of the estimate
λ̂t will be proposed, that ensures the convergence of the
estimation error under suitable assumptions.

Towards this end, let us consider a generic sequence

π ∈ ΛN of N discrete states, i.e., π
�
=

(
λ(1), . . . , λ(N)

)
,

and define the observability matrix associated with such a
sequence as

F (π)
�
=

⎡
⎢⎢⎢⎢⎢⎣

C(λ(1))
C(λ(2))A(λ(1))

...
C(λ(N−1))A(λ(N−2)) · · ·A(λ(1))
C(λ(N))A(λ(N−1)) · · ·A(λ(1))

⎤
⎥⎥⎥⎥⎥⎦

.

Furthermore, let Φ(π)
�
= A(λ(N)) · · ·A(λ(1)) be the transi-

tion matrix associated to π . Note that the time-invariance of
system (1) with respect to the extended state (xt, λt) ensures
also the time-invariance of the matrices F (π) and Φ(π) .
This will be true also for the other quantities defined in the
following.

Given a switching pattern π ∈ ΛN , let us denote by S(π)
the set of all the possible vectors of observations associated
with the switching pattern π , i.e.,

S(π)
�
=

{
y ∈ R

mN : y = F (π)x , x ∈ R
n
}

.

Of course S(π) is the linear space generated by the columns
of F (π) .

In order to identify the discrete state λt , a first very simple
idea would consist in considering as possible estimates of
λt only the discrete states λ̂t such that λ̂t ∈ S(λ) .
Unfortunately – as shown in [12], [8] – in general this would
not lead to a reliable estimate λ̂t , in that, unless the number
of measures available at each time step is at least equal to
the number of state variables (i.e., m ≥ n ), it may not be
possible to detect switches that occur in the last or in the
first instants of an observation window . With this respect
and along the lines of [13], [12], one could try to identify
the discrete state λt on the basis of the observations vector
over an extended interval of the form [t − α, t + ω] . Of
course, this causes a delay equal to ω in the computation
of λ̂t and so of x̂t+1. It is important to remark that such a
delay is unavoidable in order to obtain a reliable information
on the discrete state λt .

Suppose now that, at time instant t , the discrete state of
the system is λ . Furthermore, given two switching patterns
π ∈ ΛN and π′ ∈ ΛN ′

, let us denote as π ⊗ π′ ∈ ΛN+N ′

the switching pattern obtained from the concatenation of π
and π′ . Then it is immediate to verify that the observations

vector yt+ω
t−α belongs to the set

Sα,ω(λ)
�
=

{
y ∈ R

m(1+α+ω) : y = F (π ⊗ λ ⊗ π̄)x ,

x ∈ R
n, π ∈ Λα, π̄ ∈ Λω

}
.

=
⋃

π∈Λα,π̄∈Λω

S(π ⊗ λ ⊗ π̄) .

As a consequence, in the following we shall consider as pos-
sible estimates of λt only the discrete states λ̂t belonging
to the set of feasible discrete states Λα,ω

t (i.e., the set of
all the discrete states consistent with the observations vector
yt+ω

t−α ), defined as

Λα,ω
t

�
=

{
λ ∈ Λ : yt+ω

t−α ∈ Sα,ω(λ)
}

.

Remark 1: In order to define the sets Sα,ω(λ) and Λα,ω
t ,

no assumptions have been made on the evolution of the
discrete state. In many practical cases, the a-priori knowledge
of the system may include some constraints on the law
governing such an evolution. Think, for example, of the
case in which the discrete state is slowly varying, i.e., there
exists a minimum number τ of steps between one switch
and the following one (see [13]). Another possibility arises
when the switches between different configurations of the
matrix A are unpredictable and unknown but the switches
in the measurement equation, i.e., in the matrix C , are
supposed to be known (this happens, for example, when
not all measures are available at each sample time as the
operating frequencies of the sensors are different). Of course,
such a-priori knowledge may make the task of recovering the
discrete state from the measures yt+ω

t−α considerably simpler.
As a consequence, at every time step, instead of considering
all the possible switching patterns belonging to Λα+ω+1 ,
one could consider a restricted set Πα,ω

t ⊆ Λα+ω+1 of all
the admissible switching patterns, i.e., of all the switching
patterns consistent with the a-priori knowledge of the law
governing the evolution of the discrete state. With this
respect, it could be convenient to introduce a new time-
varying set Sα,ω

t (λ) , that is,

Sα,ω
t (λ)

�
=

⋃
π∈Λα,π̄∈Λω,π⊗λ⊗π̄∈Πα,ω

t

S(πλπ̄) ,

and to update the definition of the set Λα,ω
t accordingly.

This would add no theoretical difficulty but some notational
complication. Hence, not to complicate the presentation, in
the following we shall always suppose the law governing the
evolution of the discrete state completely unknown.

Of course, if no assumptions are made on system (1), it is
quite possible that, at the generic time instant t, the cardinal-
ity of the set Λα,ω

t is strictly greater than one. In this case, it
is impossible to determine uniquely the current discrete state
λt on the basis of the observations vector yt+ω

t−α . As shown
in [8], [12], the possibility of distinguishing between two
different discrete states depends on the current continuous
state. With this respect, let us define as Xα,ω(λ, λ′) the set
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of all the continuous states x such that, if xt = x and
λt = λ, then λ′ may belong to Λα,ω

t . Such a set can be
determined as the set of all the continuous states x of the
form

x = Φ(π)x̃

for all π ∈ Λα and x̃ ∈ R
n such that there exist π̄ ∈ Λω ,

x̃′ ∈ R
n , π′ ∈ Λα , and π̄′ ∈ Λω with

F (π ⊗ λ ⊗ π̄)x̃ = F (π′ ⊗ λ′ ⊗ π̄′)x̃′ .

Hence Xα,ω(λ, λ′) turns out to be the union of a finite
number of linear subspace of R

n . The following elementary
example should clarify the previous definition.

Example 1: Consider a simple linear switching system
described by equation (1) with

A(1)
�
=

[
1 0

−0.5 1

]
, A(2)

�
=

[
3 0
−2 1

]
,

C(1)
�
= [−1 − 2 ], C(2)

�
= [−1 − 2 ] . (4)

Suppose that, at every time step t = 0, 1, . . . , we would
like to determine the discrete state λt on the basis of the
observations vector yt+2

t (this corresponds to the choices
α = 0 and ω = 2 ). Since we have

F (1, 1, 1) = F (1, 1, 2) =

⎡
⎣ −1 −2

0 −2
1 −2

⎤
⎦ ,

F (1, 2, 1) = F (1, 2, 2) =

⎡
⎣ −1 −2

0 −2
2 −2

⎤
⎦ ,

F (2, 1, 1) = F (2, 1, 2) =

⎡
⎣ −1 −2

1 −2
4 −2

⎤
⎦ ,

F (2, 2, 1) = F (2, 2, 2) =

⎡
⎣ −1 −2

1 −2
7 −2

⎤
⎦ ,

it is immediate to verify that, if and only if xt = [0 k]′ for
every k ∈ R , then it is impossible to distinguish between
the two discrete states. Hence in this case X 0,2(1, 2) =
X 0,2(2, 1) = {x = [0 k]′, k ∈ R} .

By exploiting the definition of the sets Xα,ω(λ, λ′) , it is
possible to give sufficient condition that the gains of observer
(3) have to satisfy in order to ensure the convergence of the
estimation error. More specifically, the following theorem can
be stated.

Theorem 1: Suppose that the gains L(λ), λ ∈ Λ satisfy
the following conditions:

(i) [A(λ) − L(λ)C(λ)]
�

P [A(λ) − L(λ)C(λ)] − P <
0 , for λ ∈ Λ , where P = P� > 0;

(ii) {[A(λ) − A(λ′)] − L(λ′) [C(λ) − C(λ′)]}x = 0 , for
every x ∈ Xα,ω(λ, λ′) and for every λ �= λ′ .

Furthermore, suppose that at any time instant t = α, α +
1, . . . , the estimate λ̂t is chosen inside the set Λα,ω

t .

Then observer (3) involves an estimation error exponentially
convergent to zero, i.e., there exist h > 0 and 0 < β < 1
such that

‖et‖ ≤ hβt−α ‖eα‖ , t = α, α + 1, . . . . (5)

It is worth noting that Theorem 1 ensures the convergence
of the estimation error, regardless of the values of the esti-
mates λ̂t, t = α, α+1, . . . , as long as they are chosen inside
the sets Λα,ω

t . However, it should be clear that a sensible
choice of such estimates could improve the performance of
the proposed observer. With this respect, a reasonable choice
consists in the minimum residual evaluation test:

λ̂t = arg min
λ∈Λα,ω

t

‖yt − C(λ)x̂t‖
2 .

The basic idea behind Theorem 1 is quite simple: condition
(i) is quite classical and ensures the existence of a quadratic
Lyapunov function for the error dynamics; condition (ii)
is needed to decouple the error dynamics from that of
the system. At first glimpse, condition (ii) may look quite
restrictive, however it is important to remark that there are
some special non-trivial cases in which it automatically
holds, regardless of the choice of the gains L(λ) . More
specifically, condition (ii) holds if either

(a) Xα,ω(λ, λ′) = {0} for every λ �= λ′ or
(b) [A(λ) − A(λ′)]x = 0 and [C(λ) − C(λ′)] x = 0 for

every x ∈ Xα,ω(λ, λ′) and for every λ �= λ′ .

Clearly, case (a) is actually a subcase of (b). However, for
the sake of clarity, we prefer to consider such two cases
separately. First note that (a) corresponds to the complete
identifiability of the discrete state λt , in that, in this case,
unless xt = 0 , the set of feasible discrete states Λα,ω

t

has always cardinality 1 and therefore the current discrete
state λt can be determined uniquely on the basis of the
observations vector yt+ω

t−α . As shown in [8], [13], where
the results presented in [7] are extended, a necessary and
sufficient condition for (a) to hold is that the rank of the
joint observability matrix [F (π ⊗ λ ⊗ π̄) F (π′ ⊗ λ′ ⊗ π̄′)]
is equal to 2n for every λ �= λ′ and every π, π′ ∈ Λα and
π̄, π̄′ ∈ Λω . It is worth noting that the convergence results of
[13], [12] in the framework of receding-horizon estimation
have been derived under an assumption similar to (a), while,
in the light of Theorem 2, the proposed Luenberger-like
estimation scheme can be applied to a broader class of
switching systems. With this respect, it is immediate to verify
that the simple system considered in Example 1, for which
conditions (a) do not hold, falls within case (b), in that

[A(1) − A(2)]

[
0
k

]
=

[
0
0

]
,

[C(1) − C(2)]

[
0
k

]
= 0 .

Let us now consider condition (i) of Theorem 1. As
it is well known, necessary conditions for the Lyapunov
inequalities to hold is that the pairs (A(λ), C(λ)) are
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detectable. Note that, though each inequality in (i) separately
admits a solution if and only if the pairs (A(λ), C(λ))
are detectable, indeed, in order to ensure stability, a more
restrictive condition is required, i.e., the existence of a
matrix P satisfying all the inequalities. As it is difficult
to find a common Lyapunov function once the gains have
been selected, it is preferable to simultaneously choose the
matrices L(λ) and P . This problem may be reduced to a
simpler form that is well-suited to being solved by means
of an LMI method. Likewise in [2], using the Schur lemma,
each inequality in (i) turns out to be equivalent to
[

P (P A(λ) − Y (λ)C(λ))
�

P A(λ) − Y (λ)C(λ) P

]
> 0

(6)
where L(λ) = P−1 Y (λ) . As to (ii), recall that each set
Xα,ω(λ, λ′) is the union of a finite number, say Ns(λ, λ′) ,
of linear subspaces of R

n and, consequently, can be written
as

Xα,ω(λ, λ′) =

Ns(λ,λ′)⋃
i=1

span (Bi(λ, λ′)) .

where the matrix Bi(λ, λ′) represents a base of the i-th
linear space in Xα,ω(λ, λ′) . Thus each condition in (i) turns
out to be equivalent to the Ns(λ, λ′) conditions:

{P [A(λ) − A(λ′)] − Y (λ′)[C(λ) − C(λ′)]}Bi(λ, λ′) = 0
(7)

for i = 1, . . . , Ns(λ, λ′) .
By exploiting (6) and (7), observer (3) can be constructed

by solving the following LMI problem.

Problem 1: Find P = P� > 0 and Y (λ) , λ ∈ Λ, such
that conditions (6) and (7) are satisfied for any λ, λ′ ∈ Λ
and take the observer gains L(λ) = P−1 Y (λ) .

We would like once more to point out that conditions (7)
may be in general quite restrictive and may make Problem 1
unfeasible. However, if either (a) or (b) holds, then conditions
(7) are automatically verified, and only (6) have to be
satisfied.

The satisfaction of the Lyapunov inequalities (6) guaran-
tees to get a stable error dynamics. In addition, along the
lines of previous results (see, e.g., [10]), an upper bound on
a quadratic cost function of the estimation error can be found
and, consequently, the gains of observer (3) may be selected
so as to minimize it. More specifically, if one consider the
performance index

JN =

N∑
t=0

e�t Qet (8)

where the weight matrix Q > 0 can be chosen arbitrarily,
an upper bound on the asymptotic value of JN can be
minimized by solving the following problem (see [10]).

Problem 2: Given a symmetric positive definite matrix Q,
find ν > 0, δ > 0 , P = P� > 0, and Y (λ), λ ∈ Λ, that

minimize ν under the constraints

δI − P > 0

[
ν P − δ Q (νP A(λ) − νY (λ) C(λ))�

νP A(λ) − νY (λ) C(λ) νP

]
> 0

for λ ∈ Λ , and (7) for any λ, λ′ ∈ Λ . Then, take the
observer gains L(λ) = P−1 Y (λ).

Problem 2 can be solved by using LMI-based iterative
optimization methods as the conditions are LMIs if ν is
kept constant.

Example 1 (continued): Let us now consider once again
the simple system described in Example 1. Furthermore,
suppose that the weight matrix Q is chosen equal to I . By
using the routines of the Matlab LMI Toolbox, the following
solution of Problem 2 was obtained:

L(1) =

[
1.3596

−1.8597

]
, L(2) =

[
4.0815

−3.9012

]
.

It is immediate to verify that such gains satisfy condition (i)
of Theorem 2 with the Lyapunov matrix

P =

[
212.2196 242.1431
242.1431 281.5651

]
.

Since for the considered system condition (ii) is automati-
cally verified, such gains involve an estimation error expo-
nentially convergent to zero, provided that the estimates λ̂t

are chosen inside the sets Λ̂α,ω
t , t = α, α + 1, . . . .

III. DESIGN OF THE OBSERVER IN THE PRESENCE OF

BOUNDED NOISES

It is natural to ask whether the estimation scheme proposed
in the previous section can be applied with success even in
the presence of noises affecting the system and the measure-
ment equations. Towards this end, let us now suppose that
system (1) is affected by noises, i.e., let us consider the noisy
discrete-time linear systems

xt+1 = A(λt)xt + wt

yt = C(λt)xt + vt
(9)

where wt ∈ W ⊂ R
n is the system noise vector and vt ∈

V ⊂ R
m is the measurement noise vector. We assume the

statistics of wt, and vt to be unknown.
First, it is important to remark that the definition of Λα,ω

t

given in the previous section should be updated in order to
take into account the presence of noises. As a consequence,
a new set Λ̄α,ω

t of feasible discrete states in the presence of
noises should be defined.

In order to define formally the set Λ̄α,ω
t , some preliminary

definitions are needed. Given a generic sequence π ∈ ΛN of

N discrete states, i.e., π
�
=

(
λ(1), . . . , λ(N)

)
, let us define

H(π)
�
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0
C(λ(2)) · · · 0

C(λ(3))A(λ(2)) · · · 0
...

. . .
...

C(λ(N))

N−2∏
i=1

A(λ(N−i)) · · · C(λ(N))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Then the set S̄(π) of all the possible vectors of observations
associated with the switching pattern π ∈ ΛN in the
presence of noises can be defined as

S̄(π)
�
=

{
y ∈ R

mN : y = F (π)x + H(π)w + v ,

x ∈ R
n, w ∈ WN−1, ∈ VN

}
.

Remark 2: Generally speaking, if no “a priori” assump-
tion is made on the form of the sets W and V , determining
the set S̄(π) can be a difficult task. However, if the

sets W and V are polytopes, then also the set S̃(π)
�
={

y ∈ R
mN : y = H(π)w + v , w ∈ WN−1, v ∈ VN

}
is a

polytope. Hence the set S̄(π) , that is obtained as the
Minkowski sum of the linear space S(π) and the polytope
S̃(π), is a polyhedron. Therefore, it is possible to find a
suitable matrix Ψ(π) and a suitable vector ρ(π) such that

S̄(π) =
{
y ∈ R

mN : Ψ(π)y ≥ ρ(π)
}

.

Suppose now that, at time instant t , the discrete state of
the system is λ . Then, it is immediate to verify that the
observations vector yt+ω

t−α belongs to the set

S̄α,ω(λ)
�
=

⋃
π∈Λα,π̄∈Λω

S̄(π ⊗ λ ⊗ π̄) .

Accordingly, the set Λ̄α,ω
t of all the discrete states consistent

with the observations vector yt+ω
t−α in the presence of noises

is given by

Λ̄α,ω
t

�
=

{
λ ∈ Λ : yt+ω

t−α ∈ S̄α,ω(λ)
}

.

Note that, in the light of Remark 2, if the sets W and V are
polytopes, then in order to find the set Λ̄α,ω

t it is sufficient
to find the set of discrete states λ ∈ Λ such that Ψ(π⊗λ⊗
π̄)yt+ω

t−α ≥ ρ(π ⊗ λ ⊗ π̄) for some π ∈ Λα and π̄ ∈ Λω .
By exploiting the foregoing definitions, the prediction

x̂t+1 of the continuous state xt+1 in the noisy case can
be obtained as

x̂t+1 = A(λ̂t) x̂t + L(λ̂t)
[
yt − C(λ̂t) x̂t

]
λ̂t ∈ Λ̄α,ω

t (t)
(10)

for t = α, α + 1, . . . .
In order to proceed to the derivation of the convergence

properties of the proposed observer in the presence of
bounded noises, let us now define X̄α,ω(λ, λ′) as the sets of
all the vectors x such that, if xt = x and λt = λ , then λ′

may belong to Λ̄α,ω
t . The following technical lemma gives

a characterization of such a set.
Lemma 1: Suppose that the sets W and V are bounded.

Then, each vector x ∈ X̄α,ω(λ, λ′) can be written as

x = xh + xb (11)

where xh ∈ Xα,ω(λ, λ′) and xb is norm-bounded, i.e.,
there exists a suitable constant k(λ, λ′) such that ‖xb‖ ≤
k(λ, λ′) .

Lemma 1 ensures that, as long as the current state xt =
x is “far enough” from the set Xα,ω(λ, λ′) , then, even in
the presence of bounded noises, it is possible to distinguish
between the discrete states λ and λ′ on the basis of the
observations vector yt+ω

t−α . In the light of such result, the
following theorem can be stated.

Theorem 2: Suppose that the sets W and V are bounded.
Furthermore, suppose that the gains L(λ), λ ∈ Λ satisfy
conditions (i) and (ii) of Theorem 1, i.e.,

(i) [A(λ) − L(λ)C(λ)]
�

P [A(λ) − L(λ)C(λ)]−P < 0
for every λ ∈ Λ ;

(ii) {[A(λ) − A(λ′)] − L(λ′) [C(λ) − C(λ′)]}x = 0 , for
every x ∈ Xα,ω(λ, λ′) and for every λ �= λ′ .

Then observer (10) involves an estimation error that can be
upper bounded as

‖et‖ ≤ hβt−α ‖eα‖+
1 − βt−α

1 − β
γ , t = α, α+1, . . . (12)

for some 0 < β < 1 , h > 0 , and γ > 0.

Note that, since β < 1 , the upper bound on the estimation
error given in Theorem 2 converges exponentially to the
asymptotic value γ/(1 − β) .

IV. AN ENHANCED PROJECTION-BASED OBSERVER FOR

SWITCHING SYSTEMS

Observer (3) provides an estimate of the state at time t+1
using the measures available at time t by means of yt. As
a matter of fact, one could aim at determining the estimate
x̂t+1 using also yt+1. To this end, following the lines of
[2], [10], a method is proposed and consists in updating
the estimate given by observer (3) by means of a projection
technique, which allows one to take yt+1 into account. More
specifically, we regard x̂t+1 as an “a priori” estimate of xt+1

at time t + 1 and want to determine a new estimate x̂+
t+1

having estimation error e+
t+1

�
= xt+1 − x̂+

t+1.
Towards this end, the state space is decomposed into two

orthogonal subspaces, like, for example, the null space of

C(λt+1) (i.e., N (C(λt+1))
�
= {x ∈ R

n : C(λt+1)x = 0 })
and its orthogonal space N (C(λt+1))

⊥P using the scalar

product < x, z >P
�
= x� P z, x, z ∈ R

n (this scalar product
is well-defined as the matrix P is positive definite). If P is
taken equal to the identity matrix, it is easy to verify that
N (C(λt+1))

⊥ is span
(
C(λt+1)

�
)
.

The decomposition can be accomplished by means of
the subspaces given by span(P−1 C(λt+1)

�) and its
orthogonal complement, instead of N (C(λt+1))

⊥ and
N (C(λt+1)) . The reason for using this subspace decom-
position concerns the stability of the estimation error as will
be clarified in the following.

Let η be the components of the projection of
x on span(P−1 C(λt+1)

�), i.e., for definition, x −
P−1 C(λt+1)

� η is orthogonal to span(P−1 C(λt+1)
�)

with respect to the scalar product < ·, · >P . It turns out
that(

P−1 C(λt+1)
� z

)�
P

(
x − P−1 C(λt+1)

� η
)

= 0 ,
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for all z ∈ R
m and we obtain

η =
(
C(λt+1)P−1 C(λt+1)

�
)−1

C(λt+1)x .

Thus, the projection of xt+1 on span
(
P−1 C(λt+1)

�
)

using the scalar product < ·, · >P is given by
P−1C(λt+1)

�
(
C(λt+1)P

−1C(λt+1)
�

)−1
C(λt+1)xt+1

i.e., P−1C(λt+1)
�

(
C(λt+1)P

−1C(λt+1)
�

)−1
yt+1

Note that the projection matrix
P−1C(λt+1)

�
(
C(λt+1)P

−1C(λt+1)
�

)−1
is well-defined

as the matrix C(λt+1) is assumed to have full row
rank m. In practice, the estimate of xt+1 is obtained by
projecting x̂t+1 on the subspace corresponding to the new
measure yt+1 , which provides a new estimate x̂+

t+1 such
that e+

t+1 is smaller than that of the previous error, i.e.,∥∥e+
t+1

∥∥
P
≤ ‖et+1‖P .

Of course, the discrete state λt+1 is not available, there-
fore one must use some estimate λ̂t+1 chosen inside the set
Λα,ω

t+1 . With this respect, at every time step t = α, α+1, . . . ,
estimation may be performed as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x̂t+1 = A(λ̂t) x̂+
t + L(λ̂t)

(
yt − C(λ̂t) x̂+

t

)
λ̂t ∈ Λα,ω

t

x̂+
t+1 = x̂t+1 + P−1C(λ̂t+1)

�×

×
(
C(λ̂t+1)P

−1C(λ̂t+1)
�

)−1 (
yt+1 − C(λ̂t+1) x̂t+1

)
λ̂t+1 ∈ Λα,ω

t+1
(13)

where x̂+
α is chosen “a priori”.

Like for observer (3), the gains have to be chosen to
ensure a stable estimation error by looking for a common
Lyapunov function P . Furthermore, in order to decouple the
estimation error dynamics from the system dynamics, either
conditions (a) or (b) given in Section II have to be verified.
More specifically, the following theorem can be stated.

Theorem 3: Suppose that the gains L(λ), λ ∈ Λ satisfy
the following conditions:

P − [A − L(λ)C(λ)]�
{

P − C(λ′)�
[
C(λ′)P−1C(λ′)�

]−1

×C(λ′)
}

[A(λ) − L(λ)C(λ)] > 0 (14)

for every λ, λ′ ∈ Λ where P = P� > 0.
Furthermore, suppose that either

(a) Xα,ω(λ, λ′) = {0} for every λ �= λ′ or
(b) [A(λ) − A(λ′)]x = 0 and [C(λ) − C(λ′)] x = 0 for

every x ∈ Xα,ω(λ, λ′) and for every λ �= λ′ .
Then observer (13) involves an estimation error exponen-

tially convergent to zero.

The design of observer (13) may be accomplished by
means of LMIs, as the following lemma holds (see [10]).

Lemma 2: Given a symmetric positive definite matrix P ,
the inequalities (14) are implied by the conditions⎡

⎢⎢⎣
P ∗ ∗ ∗

P A(λ) − Y (λ)C(λ) P ∗ ∗
0 C(λ′) γI ∗
0 0 κC(λ′)� P

⎤
⎥⎥⎦ > 0 ,

λ, λ′ ∈ Λ (15)

where γ > 0 , κ �= 0 , L(λ) = P−1 Y (λ) and the
blocks replaced by ∗ can be readily inferred by imposing
the symmetry of the matrix.

As pointed out in [10], it is worth noting that (15) is
a sufficient but not necessary condition for (14) to hold.
However, the former is easier than the latter to handle for
the construction of observer (13). Therefore, a more feasible
approach to the design of such observer consists in solving
the following LMI problem.

Problem 3: Find γ > 0 , κ �= 0, P = P� > 0 , and
Y (λ) , λ ∈ Λ, such that conditions (15) are satisfied and
take the observer gains L(λ) = P−1 Y (λ) .

As a final remark, by exploiting the results of Section III, it
is straightforward to extend the modified estimation scheme
(13) in order to deal with unknown but bounded noises by
choosing the estimates λ̂t , t = α, α + 1, . . . , inside the
sets Λ̄α,ω

t . Even in this case, in the light of Lemma 1,
convergence results similar to those of Theorem 2 could be
easily derived.
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