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Abstract— Most observer-based methods applied in fault
detection and diagnosis (FDD) schemes use the classical two-
degrees of freedom observer structure in which a constant matrix
is used to stabilize the error dynamics while a post filter helps
to achieve some desired properties for the residual signal. In
this paper, we consider the use of a more general framework
which is the dynamic observer structure in which an observer
gain is seen as a filter designed so that the error dynamics has
some desirable frequency domain characteristics. This structure
offers extra degrees of freedom and we show how it can be used
for the sensor faults diagnosis problem achieving detection and
estimation at the same time. The use of weightings to transform
this problem into a standard H∞ problem is also demonstrated.

I. INTRODUCTION

Model-based approaches have been a useful tool to
solve the fault diagnosis problem specially for LTI sys-
tems. They are represented by the two-stage structure
which is now widely accepted by the fault diagno-
sis community [2] and that consists of the following:
(i) A residual generation module that generates a fault
indicating signal (residual) using the available input/output
information, (ii) A decision making phase where the residu-
als are examined to determine if a fault has occurred.

The observer-based approach, in which an observer plays
the role of the residual generation module, is one of
the most famous techniques used for residual generation.
Many standard observer-based techniques exist in the lit-
erature providing different solutions to both the theoret-
ical and practical aspects of the problem (see [5], [7]
for good surveys). The basic idea behind this approach is
to estimate the outputs of the system from the measure-
ments by using either Luenberger observers in a deter-
ministic framework [1] or Kalman filters in a stochastic
framework [13]. The weighted output estimation error is
then used as the residual in this case. Different aspects of
the fault diagnosis problem have been considered by using
this methodology. Beard used this idea to develop existence
conditions for directional residuals (residuals that achieve
fault isolation) [1]. Fault isolation has also been considered
by using the dedicated observer scheme [11], where a bank of
observers is used to differentiate between different faults. The
problem of robustness to disturbances and uncertainties has
also seen much attention and different successful techniques
have been applied such as the Unknown Input Observer
(UIO) [3] and the eigen structure assignment approach
[10]. Optimization techniques (specially H∞) have also been
widely used in fault detection to minimize the disturbance

effect and maximize the fault effect when complete decou-
pling is impossible [2], [7], [4], [8]. In all of these works,
the residual generator can be parameterized by the same two-
degrees of freedom structure, in which a constant observer
gain and a post filter achieve different specifications of the
fault diagnosis problem. In this paper, we consider a more
general framework, making use of the dynamic structure in
[9] where an observer gain is seen as a filter designed so
that the error dynamics has some desirable frequency domain
characteristics. We apply this structure for the sensor faults
estimation problem where the objective of estimating the
faults magnitudes is considered (in addition to detection and
isolation). We show that, unlike the classical structure, this
objective is achievable by minimizing the estimation error
in a narrow frequency band. Different frequency patterns
are also considered and the use of weightings to model
the problem as a standard H∞ problem is illustrated. The
introduced techniques are demonstrated on a model of the
PROCONTM level/temperature process training system.

II. PRELIMINARIES AND NOTATION

The linear fault detection and diagnosis (FDD) problem
considers the general class of LTI-MIMO systems affected
by faults that can be modeled as follows:

ẋ(t) = Ax(t) + Bu(t) + R1f(t) (1)

y(t) = Cx(t) + Du(t) + R2f(t) (2)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp and f(t) ∈ Rs,
and where the matrices A,B,C,D,R1 and R2 are known
matrices of appropriate dimensions. Here f(t) is the fault
vector, and can represent the different types of system faults
(i.e, sensor, actuator and component faults).

As mentioned in section I, the most famous technique used
for residual generation is the observer-based approach that
uses the following Luenberger observer structure:

˙̂x(t) = Ax̂(t) + Bu(t) + L (y(t) − ŷ(t)) (3)

ŷ(t) = Cx̂(t) + Du(t) (4)

in addition to a weighting Q(s) to generate the residual as:
r = Q(s)(y − ŷ); r(t) ∈ Rq (5)

The residual obtained from (5) is therefore the weighted
output estimation error of the observer, and the residual
generator (3)-(5) has two degrees of freedom, namely, the
constant observer gain L and the post filter Q(s). This
freedom can be used to achieve different specifications of the
FDD problem. The following definitions are widely accepted
by the FDD community and are related to the different tasks
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of a residual generator [2]: (note that in these definitions the
transient period of the residuals is not considered)

Definition 1: (Fault detection) The residual generator
achieves fault detection if the following condition is satisfied:

ri(t) = 0 ; for i = 1, · · · , q ; ∀t

⇐⇒ fi(t) = 0 ; for i = 1, · · · , s ; ∀t
Definition 2: (Fault isolation) The residual generator

achieves fault isolation if the residual has the same dimension
as f(t) (i.e, q = s) and if the following condition is satisfied:
(ri(t) = 0 ; ∀t ⇐⇒ fi(t) = 0 ; ∀t) ; for i = 1, · · · , s

Definition 3: (Fault identification) The residual generator
achieves fault identification if the residual has the same
dimension as f(t) and if the following condition is satisfied:

(ri(t) = fi(t) ; ∀t) ; for i = 1, · · · , s
According to the previous definitions, in fault detection a

binary decision could be made either that a fault occurred
or not, while in fault isolation the location of the fault is
determined and in fault identification the size of the fault
is estimated. The relative importance of the three tasks is
subjective and depends on the application, however it is im-
portant to note that fault identification implies isolation and
that fault isolation implies detection (but not the opposite).
Necessary and sufficient conditions for fault detection and
isolation have been developed in [6]. For the sensor faults
diagnosis problem (which is our focus in this paper), the
system (1)-(2) is the special case where R1 = 0, R2 =
Ip and f(t) = fs(t) ∈ Rp. Using the classical residual
generator in (3)-(5), the observer error dynamics is given
from (6)-(7) (where e = x − x̂, ỹ = y − ŷ).

ė(t) = (A − LC)e(t) − Lfs(t) (6)

ỹ(t) = Ce(t) + fs(t) (7)

The fault vector fs has direct effect on the output estima-
tion error ỹ, and hence on the residual. Therefore sensor fault
detection according to definition 1 is achievable by this struc-
ture [2]. Fault isolation can also be achieved by using the
dedicated observer scheme, where a bank of observers (3)-(4)
is used to differentiate between different faults. However, for
this approach, the number of sensor faults need to be known
a priori, and also restrictive observability conditions need
to be satisfied [11]. In this paper we consider the multiple
sensor faults identification problem using a novel approach.
Our methodolgy is based on the extension of the Luenberger
structure in (3)-(4) to a more general dynamic framework.
We tackle the case when fs are in a narrow frequency band
by showing that the sensor fault identification problem is
equivalent to an output zeroing problem which is solvable
only with a dynamic observer. We further consider the cases
of low and high frequency ranges showing that the problem
can be modeled as a weighted H∞ problem. The following
definitions and notation will be used throughout the paper:

Definition 4: (L2 space) The space L2 consists of all
Lebesque measurable functions u : R+ → Rq, having a

finite L2 norm ‖u‖L2 , where ‖u‖L2

∆=
√∫ ∞

0
‖ u(t) ‖2 dt,

with ‖u(t)‖ as the Euclidean norm of the vector u(t).
For a system H : L2 → L2, we will represent by γ(H)
the L2 gain of H defined by γ(H) = supu

‖Hu‖L2
‖u‖L2

.

It is well known that, for a linear system H : L2 →
L2 (with a transfer matrix Ĥ(s)), γ(H) is equivalent
to the H-infinity norm of Ĥ(s) defined as follows:
γ(H) ≡ ‖ Ĥ(s) ‖∞ ∆= supω∈R σmax(Ĥ(jω)), where
σmax represents the maximum singular value of Ĥ(jω). The
matrices In, 0n and 0nm represent the identity matrix of
order n, the zero square matrix of order n and the zero n
by m matrix respectively. Diagr(a) represents the diagonal
square matrix of order r with

[
a a · · · a

]
1×r

as its
diagonal vector, while diag(a1, a2, · · · , ar) represents the
diagonal square matrix of order r with

[
a1 a2 · · · ar

]
as its diagonal vector. The symbol T̂yu represents the
transfer matrix from input u to output y. The partitioned

matrix G =
[

A B
C D

]
(when used as an operator from

u to y, i.e, y = Gu) represents the state space repre-
sentation (ξ̇ = Aξ + Bu, y = Cξ + Du), and in that
case the transfer matrix is Ĝ(s) = C(sI − A)−1B + D.
We will also make use of the following property on the rank
of Ĝ(s) [12] (if s is not an eigenvalue of A and where n is
the dimension of the matrix A):

rank

[
A − sI B

C D

]
= n + rank

(
Ĝ(s)

)
(8)

III. NARROW FREQUENCY BAND SENSOR FAULTS

DIAGNOSIS

In almost all observer-based FDD designs, maximizing the
faults effect on the observer’s estimation error is considered
as an optimal objective. However, for the sensor faults case
(as shown in (6)-(7)) the opposite is true. By minimizing
e, the output estimation error ỹ converges to fs which
guarantees fault identification in this case. In this section,
we consider the solution of this design problem (when fs

is in a narrow frequency band around a nominal frequency
ωo) by using a dynamic observer structure, showing that the
problem is not tractable for the static gain structure in (3)-(4).

A. Dynamic generalization of the classical structure

Throughout this paper, following the approach in [9], we
will make use of dynamical observers of the form:

˙̂x(t) =Ax̂(t) + Bu(t) + η(t) (9)

ŷ(t) =Cx̂(t) + Du(t) (10)

where η(t) is obtained by applying a dynamical compensator
on the output estimation error (y− ŷ), i.e η(t) is given from

ξ̇ = ALξ + BL(y − ŷ) (11)

η = CLξ + DL(y − ŷ). (12)

We will also write

K =
[

AL BL

CL DL

]
(13)

to represent the compensator in (11)-(12). It is straight-
forward to see that this observer structure reduces to the
usual observer in (3)-(4) in the special case where the

gain K is the constant gain given by K =
[

0n 0np

0n L

]
.

The additional dynamics provided by this observer brings
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additional degrees of freedom in the design, something that
will be exploited in the minimization of the sensor faults
effect. First, note that the observer error dynamics in (6) is
now given by (ė = Ae − η) which can also be represented
by the following so-called standard form:

ż =
[
A

]
z +

[
0np −In

] [
ω
ν

]
(14)

[
ζ
ϕ

]
=

[
In

C

]
z +

[
0np 0n

Ip 0pn

] [
ω
ν

]
(15)

where
ω = fs , ν = η = K(y − ŷ)
ζ = e = x − x̂ , ϕ = y − ŷ (16)

which can also be represented by Fig. 1 where the plant G
has the state space representation in (17) with the matrices
in (14)-(15) and where the controller K is given in (13).

Ĝ(s) =

⎡
⎣ A B1 B2

C1 D11 D12

C2 D21 D22

⎤
⎦ (17)

G

K �

�
� �ω ζ

ν ϕ

Fig. 1. Standard setup.

All possible observer gains for the observer (9)-(13) (includ-
ing the static case (3)-(4)) can then be parameterized by the
set of all stabilizing controllers for the setup in Fig. 1. This is
a standard result (see [12]) and, for the problem considered
in this paper, it can be represented by the following theorem
(as special case of Theorem 11.4 in [12]):

Theorem 1: Let F and L be such that A+LC and A−F
are stable; then all possible observer gains K for the observer
(9)-(13) can be parameterized as the transfer matrix from ϕ
to ν in Fig. 2 with any Q̂(s) ∈ RH∞.

J

Q

�

�

� �ν ϕ

; Ĵ(s) =

⎡
⎣ A − F + LC −L −In

F 0np In

−C Ip 0pn

⎤
⎦

Fig. 2. Parametrization of all observer gains.

B. State and sensor faults estimation

As mentioned earlier, our objective is to minimize (in some
sense) the effect of sensor faults (in a narrow frequency band
around a nominal frequency ωo) on the state estimation error
in order to achieve sensor faults estimation. Towards that
goal, we will denote G as the set of all scalar continuous
functions g(ω) which are symmetric around ωo, and Fs(jω)
as the fourier transform of fs(t). We will then define an
optimal observer gain in L2 sense as follows:

Definition 5: (Optimal observer gain) An observer gain is
said to be optimal with respect to the nominal frequency ωo

if the following property is satisfied for the estimation error
e(t) resulting from the sensor faults vector fs(t):

“∀ ε > 0 and ∀ g(ω) ∈ G, ∃ ∆ω > 0 such that
Fs(jω) in (18) =⇒ ‖ e ‖L2 ≤ ε” .

|Fs(jω)| =
{

g(ω) ; |ω − ωo| < ∆ω
0 ; otherwise

(18)

Equation (18) means that the frequency pattern for fs(t)
is confined to the region [ωo − ∆ω, ωo + ∆ω]. It is then
clear that an optimal observer gain is one that satisfies
T̂efs

(jωo) = 0. The following lemma shows that a static
observer gain can never be an optimal observer gain.

Lemma 1: A static observer gain (such as the constant
matrix L in (3)-(4)) can never be an optimal observer gain
according to Definition 5.
Proof : The proof follows by noting that the
transfer matrix from fs to e (as seen in (6)) is

T̂efs
(s) =

[
A − LC −L

In 0np

]
. And since the gain L

is chosen to stabilize (A − LC), then (∀ωo) jωo is not an
eigenvalue of (A − LC). Therefore, by using (8), we have

rank
(
T̂efs

(jωo)
)

= rank

[
A − LC − jωoIn −L

In 0np

]
− n.

But rank

[
A − LC − jωoIn −L

In 0np

]
= rank

[
L 0n

0np In

]
=

n+rank(L). Therefore, rank
(
T̂efs

(jωo)
)

= 0 unless L = 0.

This implies that no gain L can satisfy T̂efs
(jωo) = 0, and

therefore a static observer gain can never be an optimal
gain according to Definition 5. �

We now consider the case of the dynamic observer (9)-
(13). As a result of the gain parametrization presented in
theorem 1, the transfer matrix from fs to e, achievable by an
internally stabilizing gain K, is equal to the Linear Fractional
Transformation (LFT) between T and Q as follows [12]:

T̂efs
(s) ≡ LFT (T,Q) = T̂11(s) + T̂12(s)Q̂(s)T̂21(s) (19)

where Q̂(s) ∈ RH∞ and where T is given from

[
T11 T12

T21 T22

]
=

⎡
⎢⎢⎣

A − F F
0n A + LC

0np −In

L 0n

In 0n

0pn C
0np 0n

Ip 0pn

⎤
⎥⎥⎦

(20)

We will denote T̂11(s), T̂12(s) and T̂21(s) by T̂1(s), T̂2(s)
and T̂3(s) respectively. The following lemma presents a
result on the invertibility of the transfer matrices T̂2(s) and
T̂3(s) at a frequency ωo (i.e, at s = jωo).

Lemma 2: The (n×n) and (p×p) matrices T̂2(jωo) and
T̂3(jωo) are invertible if jωo is not an eigenvalue of A.

Proof : By (20), T̂2(s) =

⎡
⎣ A − F F

0n A + LC
−In

0n

In 0n 0n

⎤
⎦

=
[

A − F −In

In 0n

]
. Similarly, T̂3(s) =

[
A + LC L

C Ip

]
.
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Therefore, using the rank property in (8):

i) rank
(
T̂2(jωo)

)
= rank

[
A − F − jωoIn −In

In 0n

]
− n

ii) rank
(
T̂3(jωo)

)
= rank

[
A + LC − jωoIn L

C Ip

]
− n

But rank

[
A − F − jωoIn −In

In 0n

]
= 2n, ∀ωo. Also,

rank

[
A + LC − jωoIn L

C Ip

]
= rank

[
A − jωoIn L

0pn Ip

]

= n + p ; if jωo is not an eigenvalue of A. Therefore,
rank

(
T̂2(jωo)

)
= n and rank

(
T̂3(jωo)

)
= p (full ranks) if

jωo is not eigenvalue of A, and the proof is completed. �
Based on the results in lemma 2, it can be proven that,

for T̂efs
(s) in (19), ∃ a transfer matrix Q̂(s) ∈ RH∞ that

satisfies T̂efs
(jωo) = 0 (see Appendix I for details about

computing Q̂(s)). Therefore, for the dynamic observer in
(9)-(13), an optimal gain (in the sense of Definition 5) can
be found (unlike the static case). This shows the advantage
of using the dynamic observer in this case. To summarize,
we will define an optimal residual generator as follows:

Definition 6: (Optim. residual for narrow frequency band)
The observer (9)-(13) along with r = y − ŷ is an optimal
residual generator for the sensor faults identification problem
(with faults in a narrow frequency band around ωo) if the
gain K is chosen as the Linear Fractional Transformation
LFT (J,Q) in Fig. 2 where Q̂(s) ∈ RH∞ solves the
problem T̂efs

(jωo) = 0 for T̂efs
(s) in (19).

Remarks

- According to this definition, an optimal residual gen-
erator guarantees sensor faults estimation and at the
same time state estimation. An advantage of having
state estimation is the possibility to use the observer
in fault tolerant output feedback control.

- From the special cases of interest is the case of sensor
bias, where this approach can be used to get an exact
estimation of all biases at the same time. A sufficient
condition is that A has no eigenvalues at the origin.

IV. H∞ SENSOR FAULTS DIAGNOSIS

We here consider two different cases: the low frequency
range and the high frequency range. For the first case, we
assume the system to be affected by sensor faults of low
frequencies determined by a cutoff frequency ωl, i.e the
frequency pattern for fs(t) is confined to the region [0, ωl].
In the high frequency case, we assume these frequencies to
be confined to the region [ωh,∞) . Since, the error dynamics
can be represented by Fig. 1 with the plant G in (17) having
the matrices defined in (14)-(15) and with the controller K in
(13), then these two cases can be solved by adding weight-
ings to the setup in Fig. 1 that emphasize the frequency
range under consideration, and by solving these problems
as weighted H∞ problems. However, before introducing
weightings, it is important to note that the standard form in
(14)-(15) does not satisfy all of the regularity assumptions
in the H∞ framework, and hence observer synthesis can

not be carried out directly using the standard H∞ solution.
Fortunately, regularization can be done by extending the
external output ζ in Fig. 1 to include the “scaled” vector
βν; with β > 0. It can be seen that the standard form in
(14)-(15) has now the following form:

ż =
[
A

]
z +

[
0np −In

] [
ω
ν

]
(21)

⎡
⎣

[
e

βν

]

ϕ

⎤
⎦ =

⎡
⎣

[
In

0n

]

C

⎤
⎦ z +

⎡
⎣

[
0np

0np

] [
0n

βIn

]

Ip 0pn

⎤
⎦

[
ω
ν

]
(22)

which can also be represented by the standard setup in Fig. 1
with the same variables in (16) , except for redefining the
matrices of Ĝ(s) in (17) and defining ζ as: ζ

∆=
[
e βν

]T
.

All the regularity assumptions below [12] are now satisfied
iff A has no eigenvalues on the imaginary axis:

1) (A,B2) stabilizable: satisfied for any matrix A.
(C2,A) detectable: satisfied, since (A, C) is detectable.

2) D21D
T
21 and DT

12D12 are nonsingular.

3) rank

[
A − jωI B2

C1 D12

]
= 2n = full column rank ∀ω.

rank

[
A − jωI B1

C2 D21

]
= n + p = full row rank; iff

jω is not an eigenvalue of A.
4) D22 = 0.

The following lemma demonstrates a certain equivalence
relationships between the standard form in (14)-(15) and the
regularized one in (21)-(22) (proof is omitted).

Lemma 3: Let R1 be the setup in Fig. 1 associated with
(14)-(15), R2 be the one associated with (21)-(22) and
consider a stabilizing controller K for both setups. Then
‖ R̂1 ‖∞< γ if and only if ∃ β > 0 such that ‖ R̂2 ‖∞< γ.

A. The low frequency range case

We now consider faults of low frequencies determined by
a cutoff frequency ωl. The weighting ŵl(s) = as+b

s , [12],
emphasizes this low frequency range with “b” selected as
ωl and “a” as an arbitrary small number for the magnitude
of ŵl(jω) as ω → ∞. Therefore, with a diagonal transfer
matrix Ŵ (s) that consists of these weightings, the problem
in Fig. 1 can be modified to the weighted version in Fig. 3.

�̄ω W G

K �

�
� �̄ζ

ν̄ ϕ̄
≡

Ḡ

K �

�
� �ω̄ ζ̄
ν̄ ϕ̄

Fig. 3. Weighted standard setup.

It can be seen that Ḡ is given by:

ˆ̄G(s) =

⎡
⎢⎢⎢⎢⎣

[
Aw 0pn

0np A

] [
Ip

0np

] [
0pn

−In

]
[

0np In

0np 0n

] [
0np

0np

] [
0n

βIn

]
[

Cw C
]

Dw 0pn

⎤
⎥⎥⎥⎥⎦ (23)

where Aw = 0p, Cw = diagp(b) and Dw = diagp(a).
However, this standard form violates assumptions 1 and 3
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of the regularity assumptions summarized earlier. Therefore,
we introduce the modified weighting ŵlmod(s) = as+b

s+c ;
with arbitrary small positive “c”. With this modification, the
augmented plant Ḡ is the same as (23) except for Aw which
is now given by the stable matrix diagp(−c) and Cw given
by diagp(b − ac). Similar to the non weighted case, all the
regularity assumptions are satisfied iff A has no eigenvalues
on the imaginary axis. We define the regular H∞ problem
associated with the low frequency range as follows:

Definition 7: (Low freq. H∞) Given β > 0, find S, the
set of admissible controllers K satisfying ‖ T̂ζ̄ω̄ ‖∞< γ for
the setup in Fig. 3 where Ḡ has the representation (23) with
Aw = diagp(−c), Cw = diagp(b−ac) and Dw = diagp(a).

Based on the previous results, we now present the main result
of this section in the form of the following definition for an
optimal residual generator in L2 sense:

Definition 8: (Optimal residual for low frequencies) An
observer (9)-(13) along with r = y− ŷ is an optimal residual
generator for the sensor faults identification problem (with
faults of low frequencies below ωl) if the dynamic gain K ∈
S∗ (the set of controllers solving the H∞ optimal control
problem in Definition 7 with the minimum possible γ).
Comments

- A residual generator that is optimal in the sense of Def-
inition 8 can be found using an iterative binary search
algorithm over β to achieve the minimum possible γ.

- The constants a and c should be selected as arbitrary
small positive numbers, while b must approximately be
equal to ωl (the cutoff frequency). Different weightings
could also be used for the different sensor channels.

B. The high frequency range case

The SISO weighting ŵhmod(s) = s+(a×b)
εs+b [12], could

be selected to emphasize the high frequency range [wh,∞)
with “b” selected as wh and, “a” and “ε” > 0 as arbitrary
small numbers. Similar to the low frequency range, a regular
H∞ problem related to this case can be defined. Also, an
optimal residual generator can be defined in a similar way
to Definition 8 (details are omitted due to similarity).

V. SIMULATION RESULTS

The PROCON Level/Flow/Temperature Process Control
System (Fig. 4) includes two rigs which can be connected
to achieve simultaneous level and temperature control.

Fig. 4. The Level/Flow/Temperature Process Control System.

In the simulations, we consider the configuration obtained
by connecting the two modules in cascade as shown in Fig. 5.
In this case, there are two water circuits, namely, the hot
water circuit and the cold water circuit. The water of both

circuits flows into a heat exchanger where the heat energy
can be transferred from the hot water flow into the cold
water flow. The hot water temperature is controlled manually
by the on-off switch of the heater, while the flow rates of
both circuits can be controlled through the two servo valves
connected to the computer. A level sensor is used to measure
the level of the cold water in the main upper tank, while
the temperature (at exactly one position) can be measured
through the transmitter. It is important to note that there
are 5 available positions for temperature measurement: T1

(T2) for the hot water input flow to (output flow from) the
heat exchanger, T3 (T4) for the cold water input (output)
flow, and T5 for the cold water output flow from the cooling
radiator. In this experiment, our objective is to control the
water level and the temperature of the hot water circuit by
controlling the flow rates of the valves. According to this
configuration, the process has two inputs (the cold water
and hot water servo valves) and two outputs (the level of
the water in the upper tank and the temperature T2). The
inputs will be denoted u1 and u2 respectively and they both
have the same operating range of 0 to 4 litres/min. The
operating ranges for the outputs y1 and y2 are (0, 14 cm) and
(0, 100 Celsius) respectively. The heater set point (i.e, T1) is
chosen as 80 Celsius, while the cold water in the reservoir
is at the room’s temperature (i.e, T3 � 23 Celsius).

Fig. 5. Structure of the connected rigs.

Identification experiments are conducted, and for the operat-
ing point (u1 = 2.8 , u2 = 0.8 , y1 = 6.35 and y2 = 35) a
5th order model of the form (ẋ = Ax+Bu; y = Cx+Du)
is identified (see Appendix II for the system matrices). This
model is used to demonstrate the proposed schemes. The
system is first controlled as seen in Fig. 6 .

0 5 10 15 20 25 30 35 40 45 50
−10

0

8

20

30

40

50

60

time (sec)

Level, y1 (cm)
Temperature, y2 (Celsius)

Fig. 6. Actual system outputs for the controlled process.

Case study 1: The system is assumed to be affected by
sensor biases. This is the special case where ωo = 0 for the
problem in section III-B, and since A has no eigenvalues on

3807



the origin, an optimal observer gain can be designed. This
gain K, in our case, is the LFT in Fig. 2 with Q̂(s) = Q̂(0)
(computed using Appendix I) as follows:

Q̂(0) =
[

104.96 −75.24 −6.86 −74.84 36.31
−116.58 −356.17 783.55 −694.06 112.44

]T

Using this gain with initial conditions as[
0 0 0.1 0 0.005

]
, two biases changing with time

are simultaneously estimated as seen in Fig. 7. The state
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Fig. 7. (a) Bias estimation for y1 (b) Bias estimation for y2 .

and output estimation errors also converge to 0 in this case.
Case study 2: We consider the case of low frequency sensor
faults (in the range [0, 5 rad/sec]). Using the design in
section IV-A (and with a = 0.01, b = 5 and c = 0.001), the
optimal observer gain is obtained by solving the H∞ problem
in Definition 7 using the command hinfsyn in MATLAB, with
minimum γ as 0.1 and with β = 1. Using this observer for
fault diagnosis, a correct estimation of the low frequency
sensor faults is shown in Fig. 8.
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Fig. 8. (a) Fault estimation for y1 (b) Fault estimation for y2 .

VI. CONCLUSION

We considered the use of a dynamic observer structure for
the sensor faults diagnosis problem. This structure offers ex-
tra degrees of freedom over the classical Luenberger structure
and we showed how it can be used for the sensor faults and
state estimations problems. For the narrow frequency band
case, the problem was shown to be equivalent to an output
zeroing problem for which a dynamic gain is necessary. The
use of appropriate weightings to transform this problem into
a standard H∞ control problem was also demonstrated.

APPENDIX I
ALGORITHM FOR Q̂(s) COMPUTATION

If jωo is not an eigenvalue of A, then (from Lemma 2) the
matrices T̂2(jωo) and T̂3(jωo) are invertible, and the matrix
equation T̂efs

(jωo) = 0 can be solved for Q̂(jωo) as follows:

Q̂(jωo) = −T̂−1
2 (jωo) T̂1(jωo) T̂−1

3 (jωo) = Q̂re + jQ̂im

where Q̂re and Q̂im are n × p matrices that represent the
real and imaginary parts respectively.

Let Q̂(s) =
[

Aq Bq

Cq Dq

]
; where Aq ∈ R�×�, Bq ∈ R�×p,

Cq ∈ Rn×� and Dq ∈ Rn×p and where � is the order of
Q̂(s). Then computing Q̂(s) ∈ RH∞ reduces to solving:

Cq (jωoI� − Aq)
−1

Bq + Dq = Q̂re + jQ̂im (24)

for a stable Aq with a suitable order �, and for Bq, Cq and
Dq. By choosing � = n, Cq = In and Aq = −I� , the
problem in (24) then reduces to solving the equations:

1
1 + ω2

o

B(ij)
q + D(ij)

q = Q̂(ij)
re ; i = 1, · · · , n; j = 1, · · · , p

−ωo

1 + ω2
o

B(ij)
q = Q̂

(ij)
im ; i = 1, · · · , n; j = 1, · · · , p

where B
(ij)
q and D

(ij)
q are the elements in row i and column

j of the n × p matrices Bq and Dq respectively.

APPENDIX II
SYSTEM MATRICES

A =

⎡
⎢⎢⎢⎢⎣

−0.0084 −0.0012 0.0155 0.0280 0.0017
−0.0046 −0.0352 −0.0227 0.0150 0.0082
−0.0825 −0.0122 −0.0773 0.0661 0.3209
−0.2105 0.0336 −0.0929 −0.3418 −0.1551
0.0388 −0.0754 −0.1532 0.0126 −0.1602

⎤
⎥⎥⎥⎥⎦

C =
[−6.7795 −0.7974 0.0766 0.1585 0.0444
−0.1862 19.2450 −0.4087 −0.0602 −0.3102

]

B =
[
0 0 −0.12 −0.28 0.06
0 0.01 0.28 −0.12 −0.24

]T

,D=

[
0 0.01
0 −0.04

]
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