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Abstract— This paper discusses some algebraic structures
and their geometric counterparts associated with a rational-
in-the-state representation (RSR) and a polynomial-in-the-state
representation (PSR) obtained via system immersion of a given
nonlinear system. First, all of RSRs and PSRs obtained by an
identical immersion are parameterized in terms of the relation
ideal of the immersion. Second, the notions of an invariant
ideal and an invariant variety of a nonlinear system over a
ring are introduced, which are closely related to a differential
algebraic equation. Then, it is shown that a RSR and a PSR
have invariant ideals and invariant varieties associated with an
immersion. In particular, an invariant variety of a RSR or a
PSR is the Zariski closure of the image of the immersion, i.e.,
the smallest variety containing the image of the immersion.

I. INTRODUCTION

An immersion [1–4] of a system is a mapping of the initial

state from the original state space to another state space, so

as to preserve the input-output map exatly, and it is usually a

mapping to a higher dimensional space. The model structure

of the given system may be simplifed while preserving the

input-output map with an immersion. Immersions into linear

[1], [5], [6], bilinear [7], rational or polynomial [4] systems

have been discussed in the literature.

Although only a restricted class of nonlinear systems are

immersible into linear or bilinear systems, most practical

systems are immersible into rational systems and polynomial

systems, as shown in [4]. More precisely, a nonlinear sys-

tem is immersible into a rational-in-the-state representation

(RSR), a polynomial-in-the-state representation (PSR), and

a quadratic-in-the-state representation (QSR) if and only if a

field generated by the observation space is finitely generated

over the real number field. Moreover, it is sufficient for

immersibility into those representations that all functions in

the given system are differentially algebraic functions, which

most practical systems are consist of. Therefore, a RSR, a

PSR or a QSR can be a general model structure for a wide

class of nonlinear systems.

Potential applications of immersion into a RSR or a PSR

include identification, observer design, system analysis and

control design, although each of them is still an open area

to research. For example, if a given system is known to be

immersible into a RSR or a PSR, a parameter estimation

technique can be used to identify parameters in that model

structure to realize the same input-output map as the given

system. The immersibility is the only assumption prior to

identification, and the model structure of the original system

Department of Mechanical Engineering, Graduate School of En-
gineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan.
ohtsuka@mech.eng.osaka-u.ac.jp

and its immersion may not be necessarily known to construct

a system of the same input-output map. The unknown model

structure of the original system is reflected in the set of the

initial state for the identified RSR or PSR.

Immersion was used in [1], [5], [6] to design an observer

for a nonlinear system that is immersible into a linear system.

Similarly, immersion into a polynomial system is potentially

applicable to observer design for a broad class of nonlinear

systems if the general methodology of observer design is

established for polynomial systems. It is also often the case

in system analysis and control design to assume polyno-

mial systems [8–11]. Those techniques may be applicable

to a wider class of nonlinear systems through the use of

immersion. In contrast to polynomial approximation of a

nonlinear system, immersion does not raise problems due

to approximation errors and can preserve the input-output

map over an unbounded region in the state space, which is

useful when applying theoretical results, at the expense of

an increase of the dimension.

This paper discusses some algebraic structures of a RSR

and a PSR obtained via immersion and their geometric

counterparts in detail. Since a RSR and a PSR have particular

structures of rational functions and polynomials, respectively,

some properties of the original system or the immersion

are reflected in additional algebraic structures in the RSR

and the PSR. Although observability of a RSR and a PSR

after immersion has already been discussed in [12], it is a

differential geometric characterization rather than algebraic

characterization in terms of a field or a ring. In this paper,

algebraic structures of a RSR and a PSR is characterized in

terms of rings, and their geometric counterparts are expressed

naturally in terms of affine algebraic varieties rather than a

manifold in differential geometry. It should be noted that

algebraic structures of a RSR and a PSR are also closely

related to differential algebraic equations, namely, a RSR

and a PSR with additional algebraic constraints in the form

of rational functions and polynomials, respectively.

II. SYSTEM IMMERSION

A. Immersion and Invariant Immersion

We treat an input-affine nonlinear system,

Σ

⎧⎪⎨
⎪⎩

ẋ = g0(x) +
m∑

i=1

gi(x)ui

y = h(x)
,

where x(t) ∈ U ⊂ Rn denotes the state vector, U an open

set, u(t) = [u1(t), . . . , um(t)]T ∈ Rm the input vector,
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and y(t) ∈ Rp the output vector. The system is denoted

by Σ(g0, g1, . . . , gm, h) or Σ for short hereafter. System Σ
is said to be analytic on U if gi : U → Rn (i ∈ I0,m)
and h : U → Rp are analytic functions on U . Sets of

indices are denoted as Ii1,i2 = {i ∈ Z : i1 ≤ i ≤ i2}
and Ii1,∞ = {i ∈ Z : i ≥ i1}. The admissible set Ω of

the input function u : [0,∞) → Rm is a set of bounded

piecewise continuous functions with a common upper bound.

We assume |ui(t)| ≤ 1 (t ≥ 0, i ∈ I1,m) without loss of

generality. The trajectory of the state equation of system Σ
starting from an initial state x0 at t = 0 and driven by an

input function u is denoted by ΦΣ,u
t : U → U . That is, for a

given initial state x0 ∈ U and an input function u ∈ Ω, the

solution of the state equation is given by x(t) = ΦΣ,u
t (x0).

The observation space OΣ is defined by

OΣ = R- span{Lgi1
. . . Lgik

hj : j ∈ I1,p,

(i1, . . . , ik) ∈ Ik
0,m, k ∈ I0,∞},

where h = [h1, . . . , hp]T and Lgihj = (∂hj/∂x)gi.

Definition 1 [1–3] An analytic system Σ(g0, . . . , gm, h)
defined on an open set U ⊂ Rn is said to be immersible
on an open set U ′ ⊂ U into another ñ-dimensional system

Σ̃(g̃0, . . . , g̃m, h̃), if there exists an analytic mapping α :
U ′ → Rñ such that Σ̃ is analytic on an open set containing

α(U ′), and for every x0 ∈ U ′ and for every u ∈ Ω,

h ◦ ΦΣ,u
t (x0) = h̃ ◦ ΦΣ̃,u

t (α(x0))

holds for every sufficiently small t > 0. Such a mapping α
is called an immersion of Σ on U ′ into Σ̃. We often omit U ′

when it is obvious in the context or U ′ = U .

It should be noted that an immersion preserves the input-

output map and, therefore, is different from a feedback

transformation such as feedback linearization. An immersion

is also different from a coordinate transformation because it

does not necessarily preserve the dimension of the state vec-

tor. Moreover, the immersibility is a coordinate-free property

because the composition of an immersion and a coordinate

transformation is again an immersion.

The following proposition is useful for checking whether

or not a given mapping α is an immersion.

Proposition 1 [4] Let U ⊂ Rn be an open set, let α :
U → Rñ be an analytic mapping, let Σ(g0, . . . , gm, h) be an
analytic system on U , and let Σ̃(g̃0, . . . , g̃m, h̃) be an analytic
system on an open set containing α(U). The mapping α :
U → Rñ is an immersion of Σ into Σ̃ if and only if the
following holds for all x0 ∈ U :

Lgi1
. . . Lgik

h(x0) = Lg̃i1
. . . Lg̃ik

h̃(α(x0)),

(i1, . . . , ik) ∈ Ik
0,m, k ∈ I0,∞. (1)

Next, we define a particular form of an immersion.

Definition 2 [4] An analytic system Σ(g0, . . . , gm, h)
defined on an open set U ⊂ Rn is said to be invariantly im-
mersible on an open set U ′ ⊂ U into another ñ-dimensional

system Σ̃(g̃0, . . . , g̃m, h̃), if there exists an analytic mapping

α : U ′ → Rñ such that Σ̃ is analytic on an open set

containing α(U ′), and, for all x ∈ U ′,

Lgi
α(x) = g̃i(α(x)), i ∈ I0,m,

h(x) = h̃(α(x))

hold. Such a mapping α is called an invariant immersion of

Σ on U ′ into Σ̃.

In other words, if α is an invariant immersion of

Σ(g0, . . . , gm, h) into Σ̃(g̃0, . . . , g̃m, h̃), each pair of cor-

responding vector fields gi and g̃i are α-related, and h is

the pull back of h̃ by α. Often, the invariant immersion

is simply called immersion in the literature. However, we

distinguish invariant immersion from immersion in this work

because the former not only preserves the input-output map

but also has additional geometric properties. That is, for

every state trajectory x(t) ∈ U ′ of the original system Σ,

α(x(t)) ∈ α(U ′) is a state trajectory of Σ̃.

B. Immersibility Conditions

Rational and polynomial structures with respect to the state

are discussed in this paper, for which notions of fields and

rings are suitable. Let Cω(U) be the ring of all real-valued

analytic functions on an open set U ⊂ Rn. For a subset

A ⊂ Cω(U), R[A] denotes the ring generated by A over R.

If U is a domain (connected open set), R[A] is an integral

domain and its fraction field R(A) is well defined and is

called the field generated by A over R. If A = {α1, . . . , αν}
and α = [α1, . . . , αν ]T, R[A] and R(A) are also denoted by

R[α] and R(α), respectively. For a state vector x̃ ∈ Rñ, its

elements x̃1, . . . , x̃ñ can be regarded as analytic functions

on Rñ, and R[x̃] and R(x̃) denote a polynomial ring and a

rational function field, respectively. We denote the subset of

R[x̃] with the total degree less than or equal to � as R[x̃]≤�.

Definition 3 [4] Consider a system Σ̃(g̃0, . . . , g̃m, h̃) with

a state vector x̃ ∈ Rñ. System Σ̃ is said to be a rational-in-
the-state representation (RSR) if g̃i(x̃) ∈ R(x̃)ñ (i ∈ I0,m)
and h̃(x̃) ∈ R(x̃)p. System Σ̃ is said to be a polynomial-in-
the-state representation (PSR) if g̃i(x̃) ∈ R[x̃]ñ (i ∈ I0,m)
and h̃(x̃) ∈ R[x̃]p. In particular, system Σ̃ is said to be

a quadratic-in-the-state representation (QSR) if g̃i(x̃) ∈
R[x̃]ñ≤2 (i ∈ I0,m) and h̃(x̃) ∈ R[x̃]p≤1.

It should be noted that the output equation in a QSR is at

most first-order in the state. It has already been known that

immersibilities are equivalent between a RSR, a PSR and a

QSR.

Proposition 2 [4] For an analytic system Σ defined on an
open set U , the following three claims are equivalent:

(i) System Σ is immersible (resp. invariantly immersible)
on U into a RSR.

(ii) System Σ is immersible (resp. invariantly immersible)
on U into a PSR.
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(iii) System Σ is immersible (resp. invariantly immersible)
on U into a QSR.

Since it suffices to consider a RSR consisting of rational

functions, immersibility and invariant immersibility are well

characterized in terms of fields.

Proposition 3 [4] For an analytic system Σ defined on a
domain U , the following four claims are equivalent:

(i) On an open and dense subset of U , system Σ is
invariantly immersible into a RSR with an analytic
mapping defined on U .

(ii) On an open and dense subset of U , system Σ is im-
mersible into a RSR with an analytic mapping defined
on U .

(iii) The observation space OΣ is a subset of a finitely
generated field over R.

(iv) The field R(OΣ) is finitely generated over R.
Moreover, if (iv) holds, every set of analytic generators of
R(OΣ) gives an invariant immersion in (i).

Many types of nonlinear systems satisfy conditions (iii)

and (iv) in Proposition 3 and (invariantly) immersible into

a RSR, a PSR and a QSR. Moreover, as shown in [4],

it is sufficient for invariant immersibility into a RSR that

all functions in a given system are differentially algebraic

functions, which most practical systems are consist of.

III. ALGEBRAIC STRUCTURES AFTER IMMERSION

A. Ideals Associated with an Immersion

Suppose, for a given system Σ(g0, . . . , gm, h) on a domain

U ⊂ Rn, we have R(OΣ) = R(α) with an analytic

mapping α : U → Rñ. Then, Proposition 3 implies that Σ is

invariantly immersible into a RSR Σ̃(g̃0, . . . , g̃m, h̃) with α
on an open and dense subset U ′ ⊂ U . Let the state vector of

Σ̃ be x̃ ∈ Rñ. Since all functions in Σ̃ are rational functions

of x̃, we have OΣ̃ ⊂ R(x̃). Moreover, since Σ̃ is defined on

an open set containing α(U ′), denominators of the rational

functions in Σ̃ do not vanish identically on α(U), which

implies a particular algebraic structure in Σ̃, as discussed

below.

Definition 4 [13], [14] Given a subset S ⊂ Rñ, denote by

I(S) = {f̃ ∈ R[x̃] : f̃(x̃) = 0 for all x̃ ∈ S}
the ideal of polynomials vanishing on S. When S is an image

of a mapping α : U → Rñ, I(α(U)) is called the relation
ideal of α.

Let P = I(α(U)) be the relation ideal of the immersion

of Σ into the RSR Σ̃, and let α∗ : R[x̃] → R[α] be a sub-
stitution mapping (or a pull back) defined by α∗(f) = f(α)
for f ∈ R[x̃]. Then, α∗ is a surjective ring homomorphism

such that Ker α∗ = P , which induces a ring isomorphism

R[α] ∼= R[x̃]/P . Since R[α] is an integral domain, P is a

prime ideal.

As discussed previously, every denominator of functions

in the RSR Σ̃ is not identically zero on α(U) or, equivalently,

does not belong to the prime ideal P . Therefore, every

element of g̃0, . . . , g̃m and h̃ belongs to not only the rational

function field R(x̃) but also the localization of R[x̃] at P ,

which is given by

R[x̃]P = {f/g ∈ R(x̃) : f, g ∈ R[x̃], and g /∈ P}.
Note that R[x̃]P is a local ring with the unique maximal

ideal

PR[x̃]P = {f/g ∈ R(x̃) : f, g ∈ R[x̃], g /∈ P, and f ∈ P}.
It should also be noted that an element of R[x̃]P does not

necessarily define a rational function on the whole of α(U)
because its denominator can vanish at some points. However,

there is an open and dense subset U ′ ⊂ U such that an

element of R[x̃]P is analytic on an open set containing

α(U ′).
We can naturally extend the substitution mapping α∗ :

R[x̃] → R[α] to a mapping α∗ : R[x̃]P → R(α),
whish is also a surjective ring homomorphism with

Ker α∗ = PR[x̃]P and induces a ring isomorphism R(α) ∼=
R[x̃]P /PR[x̃]P . We use the same symbol to denote the sub-

stitution mappings for R[x̃], R[x̃]P and their direct products,

because their domains are obvious from the context.

From the definition of an invariant immersion and the fact

Ker α∗ = PR[x̃]P and Ker α∗|R[x̃] = P , it is straightfor-

ward to show the following parameterization of all RSRs and

PSRs into which a given system is invariantly immersible

with the same immersion α.

Theorem 1 Let Σ be an analytic system defined on a domain
U ⊂ Rn, let α : U → Rñ be an invariant immersion of Σ on
an open and dense subset of U into a RSR Σ̃(g̃0, . . . , g̃m, h̃),
and let P be the relation ideal of α. Then all RSRs into which
Σ is invariantly immersible on an open and dense subset of
U with α are parameterized as Σ̃′(g̃0 +r0, . . . , g̃m +rm, h̃+
rm+1) with ri ∈ PR[x̃]ñP (i ∈ I0,m) and rm+1 ∈ PR[x̃]pP .
Moreover, if Σ̃ is a PSR, all PSRs into which Σ is invariantly
immersible with α are parameterized as Σ̃′(g̃0+r0, . . . , g̃m+
rm, h̃ + rm+1) with ri ∈ P ñ (i ∈ I0,m) and rm+1 ∈ P p.

Proof The proof is given only for the case of a RSR because

the case of a PSR can be proved similarly.

First, if Σ̃, ri ∈ PR[x̃]ñP (i ∈ I0,m) and rm+1 ∈ PR[x̃]pP
are analytic on the image of an open and dense subset U ′ ⊂
U by α, then it is obvious from the definition of an invariant

immersion and ri(α(x)) = 0 (∀x ∈ U ′) that α is an invariant

immersion of Σ on U ′ into a RSR Σ̃′(g̃0 + r0, . . . , g̃m +
rm, h̃ + rm+1).

Conversely, if α is an invariant immersion of Σ on an open

and dense subset U ′ ⊂ U into not only Σ̃ but also another

RSR Σ̃′(g̃′0, . . . , g̃
′
m, h̃′), then all elements of g̃′i (i ∈ I0,m)

and h̃′ also belong to R[x̃]P , and we have, for all x ∈ U ′,

Lgi
α(x) = g̃i(α(x)) = g̃′i(α(x)), i ∈ I0,m,

h(x) = h̃(α(x)) = h̃′(α(x)).
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Therefore, for all x ∈ U ′,

α∗(g̃i − g̃′i)(x) = g̃i(α(x)) − g̃′i(α(x)) = 0, i ∈ I0,m,

α∗(h̃ − h̃′)(x) = h̃(α(x)) − h̃′(α(x)) = 0,

which implies g̃i − g̃′i ∈ PR[x̃]ñP (i ∈ I0,m) and h̃ − h̃′ ∈
RR[x̃]pP .

It is obvious that, if Σ̃ is a QSR, the parameterization

of all QSRs are obtained with such additional constraints

to the case of PSRs as g̃i + ri ∈ R[x̃]ñ≤2 (i ∈ I0,m) and

h̃ + rm+1 ∈ R[x̃]p≤1.

B. System over a Ring

Now, we can characterize some algebraic structures and

their geometric counterparts of the RSR after immersion in

terms of such a subring of the rational function field R(x̃)
as R[x̃] and R[x̃]P rather than R(x̃) itself. To this end,

we prepare some ring theoretic notions of nonlinear system

theory in place of usual differential geometric settings.

Let R be a partial differential subring of R(x̃), such as

R[x̃] and R[x̃]P , satisfying (∂/∂x̃i)R ⊂ R for all i ∈ I1,ñ.

Then, a PSR or a RSR Σ̃(g̃0, . . . , g̃m, h̃) is regarded as a

system over a ring such that g̃0, . . . , g̃m ∈ Rñ and h̃ ∈ Rp

for an appropriate ring R. Note that the state x̃ belongs to

Euclidean space as usual in the present notion of a system

over a ring.

The vector fields g̃0, . . . , g̃m can be viewed as elements of

a free R-module Rñ rather than sections of a tangent bundle.

Moreover, the Lie derivative Lg̃i is regarded as a mapping

Lg̃i : R → R, which is not a ring endomorphism of R in

general but a derivation of R regarded as an R-module. An

important algebraic structure in a system over a ring is the

invariance of an ideal under the Lie derivative.

Definition 5 An ideal I ⊂ R is said to be an invariant ideal
of a system Σ̃(g̃0, . . . , g̃m, h̃), if

Lg̃i
I ⊂ I, i ∈ I0,m

holds.

If the ring R is Noetherian, every ideal is finitely gen-

erated. For example, R[x̃] is Noetherian by Hilbert’s Basis

Theorem, and its localization R[x̃]P is also Noetherian [15].

If an invariant ideal I is finitely generated and is represented

as I = (f̃1, . . . , f̃s), which is equivalent to Rf̃1 + · · ·+Rf̃s,

with f̃i ∈ R, it is meaningful to consider a differential

algebraic equation (DAE) over R:

Σ̃I

⎧⎪⎨
⎪⎩

˙̃x = g̃0(x) +
m∑

i=1

g̃i(x̃)ui

0 = f̃(x̃)
, (2)

where f̃(x̃) = [f̃1(x̃), . . . , f̃s(x̃)]T ∈ Rs. We call, in this

paper, x̃0 ∈ Rñ a regular point of DAE Σ̃I , if all denomi-

nators in g̃i and f̃i are nonzero at x0. Since I = (f̃1, . . . , f̃s)
is an invariant ideal, we have

Lgi f̃j ∈ (f̃1, . . . , f̃s), i ∈ I0,m, j ∈ I1,s,

which implies that, if a regular point x0 satisfies f̃(x0) = 0,

the trajectory starting from x0 satisfies f̃(ΦΣ,u
t (x0)) = 0

for every admissible input u ∈ Ω, as long as the trajectory

ΦΣ,u
t (x0) is a regular point. If Σ̃ is a PSR, R = R[x̃] and

every point in Rñ is a regular point of the DAE Σ̃I .

A geometric object related to an invariant ideal is an

invariant variety.

Definition 6 [14] Let I be an ideal of R[x̃]. An (affine
algebraic) variety (or an algebraic set) defined by I is a

subset of Rñ given by

V(I) = {x̃ ∈ Rñ : f̃(x̃) = 0 for all f̃ ∈ I}.
When I = (f̃1, . . . , f̃s), V(I) is also denoted by

V(f̃1, . . . , f̃s).

Definition 7 Let R be a partial differential ring such that

R[x̃] ⊂ R ⊂ R(x̃), and let P be an ideal of R[x̃]. V(P ) is

called an invariant variety of a system over R, if RP is an

invariant ideal of the system.

Note that if R = R[x̃] then RP = P , and if R = R[x̃]P
then RP = PR[x̃]P . Since R[x̃] is Noetherian, V(P ) can

always be expressed as a set of common zeros of a finite

number of polynomials. By the invariance of the ideal RP ,

those polynomials are identically zero along a trajectory

starting from a regular point x̃0 ∈ V(P ) of Σ̃. That is,

the trajectory stays in V(P ) as long as it is defined, which

motivates the notion of the invariant variety.

The notions of an invariant ideal and an invariant variety

can be regarded as a generalization of an algebraic particular
integral and invariant algebraic surface [16], [17] of a

polynomial vector field. It should be noted that an invariant

variety may have a singular point as a variety and is not

necessarily a manifold globally. In particular, the existence of

an invariant variety does not necessarily imply the existence

of a foliation of manifolds.

C. Invariance in a System after Immersion

Through the use of algebraic and geometric notions de-

fined above, we can characterize an invariance in a system

after immersion.

Theorem 2 Let α be an invariant immersion of system Σ
defined on a domain U ⊂ Rn into a RSR Σ̃ and let P be
the relation ideal of α. Then, PR[x̃]P is an invariant ideal
of Σ̃. Moreover, if Σ̃ is a PSR, P is also an invariant ideal.

Proof For any r ∈ PR[x̃]P , Lg̃ir ∈ R[x̃]P because

g̃i ∈ R[x̃]ñP . Moreover, there is an open and dense subset

U ′ ⊂ U such that r is analytic on an open set containing

α(U ′) and r(α(x)) = 0 for all x ∈ U ′. Therefore, we have

Lgi
r(α(x)) = 0 (i ∈ I0,m) on U ′. Meanwhile, from the

definition of an invariant immersion, we have

Lgir(α(x)) =
∂r(α(x))

∂x̃

∂α(x)
∂x

gi(x)

=
∂r(α(x))

∂x̃
g̃i(α(x)) = (Lg̃ir)(α(x)),
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for all x ∈ U ′. In summary, (Lg̃i
r)(x̃) = 0 for all x̃ ∈ α(U ′),

which means Lg̃ir ∈ PR[x̃]P . When Σ̃ is a PSR, Lg̃i maps

R[x̃] into R[x̃] and Lg̃iP ⊂ P can be shown similarly.

Definition 8 [14] The Zariski closure of a subset S ⊂ Rñ

is the smallest algebraic variety containing S.

Proposition 4 [14] The Zariski closure of S ⊂ Rñ is given
by V(I(S)).

Theorem 3 Let α, Σ̃ and P be the same as in Theorem 2.
Then, V(P ) is the Zariski closure of α(U) and, moreover,
an invariant variety of Σ̃.

Proof Since P is the relation ideal of α, i.e., P = I(α(U)),
Proposition 4 implies that V(P ) is the Zariski closure of

α(U). Moreover, since PR[x̃]P is an invariant ideal of Σ̃
by Theorem 2, V(P ) is also an invariant algebraic variety.

For an invariant immersion α : U → Rñ of a given

system Σ on an open and dense subset U ′ ⊂ U into a RSR

Σ̃(g̃0, . . . , g̃m, h̃), its relation ideal P = I(α(U)) ⊂ R[x̃]
is always finitely generated, and its generators are also

generators of the maximal ideal PR[x̃]P of the local ring

R[x̃]P . If P = (f̃1, . . . , f̃s), an image of any trajectory of the

original system by the immersion, α(ΦΣ,u
t (x0)) (x0 ∈ U ′),

is always a solution of the DAE given in (2). That is,

α(ΦΣ,u
t (x0)) (x0 ∈ U ′) belongs to V(f̃1, . . . , f̃s). Moreover,

Theorem 3 says that not only the image of a trajectory of

the original system but also any trajectory starting from a

point on V(f̃1, . . . , f̃s) stays on V(f̃1, . . . , f̃s), as long as it

is defined.

IV. EXAMPLE

A. Rational-in-the-State Representation

Consider a one-dimensional analytic system on R:

Σ

{
ẋ =

sin x

x
y = x

.

The observation space of this system is given by

OΣ = R- span
{

x,
sin x

x
,
cos x · x − sin x

x2
· sin x

x
, . . .

}
.

We have R(OΣ) = R(x, sin x, cos x) and Σ is immersible

into a RSR with α(x) = [x, sin x, cos x]T. In fact, a RSR

Σ̃(g̃0, h̃) can readily be constructed from (∂α/∂x)ẋ =
[sinx/x, sin x · cos x/x,− sin2 x/x]T as follows:

Σ̃

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎣ ˙̃x1

˙̃x2

˙̃x3

⎤
⎦ =

⎡
⎣ x̃2/x̃1

x̃2x̃3/x̃1

−x̃2
2/x̃1

⎤
⎦

y = x̃1

.

The RSR Σ̃ is analytic on an open set Ũ = {x̃ ∈ R3 : x̃1 
=
0} ⊃ α(R \ {0}). Therefore, Σ is immersible into the RSR

Σ̃ on R \ {0}. The immersion α itself is analytic on R and

its image is a helix along the x̃1 axis.

From the algebraic relation between the trigonometric

functions, (sin x)2 + (cos x)2 − 1 = 0, the relation ideal

of α is P = (x̃2
2 + x̃2

3 − 1). The maximal ideal of the local

ring R[x̃]P has the form

PR[x̃]P =
{

n(x̃)
d(x̃)

(x̃2
2 + x̃2

3 − 1) :

n, d ∈ R[x̃], and d /∈ P

}
.

Note that any element of PR[x̃]P vanishes when x̃ = α(x)
is substituted. Theorem 1 says that all RSRs into which Σ
is invariantly immersible with α are parameterized as

Σ̃′

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎣ ˙̃x1

˙̃x2

˙̃x3

⎤
⎦ =

⎡
⎣ x̃2/x̃1 + r01(x̃)

x̃2x̃3/x̃1 + r02(x̃)
−x̃2

2/x̃1 + r03(x̃)

⎤
⎦

y = x̃1 + r1(x̃)

, (3)

where r01, r02, r03 and r1 belong to PR[x̃]P .

Theorem 2 says that PR[x̃]P is an invariant ideal of Σ̃.

In fact, for any n(x̃)(x̃2
2 + x̃2

3−1)/d(x̃) ∈ PR[x̃]P , we have

Lg̃0

[
n(x̃)
d(x̃)

(x̃2
2 + x̃2

3 − 1)
]

=
[
Lg̃0

n(x̃)
d(x̃)

]
(x̃2

2 + x̃2
3 − 1) +

n(x̃)
d(x̃)

Lg̃0(x̃
2
2 + x̃2

3 − 1)

=
[
Lg̃0

n(x̃)
d(x̃)

]
(x̃2

2 + x̃2
3 − 1)

+
n(x̃)
d(x̃)

(
2x̃2 · x̃2x̃3

x̃1
+ 2x̃3 · − x̃2

2

x̃1

)

=
[
Lg̃0

n(x̃)
d(x̃)

]
(x̃2

2 + x̃2
3 − 1).

Note that the Lie derivative of n(x̃)(x̃2
2 + x̃2

3 − 1)/d(x̃) ∈
PR[x̃]P vanishes even when x̃ does not necessarily belong

to the image of α. It is also straightforward to check that

PR[x̃]P is an invariant ideal of every system Σ̃′ in the form

of (3).

Finally, Theorem 3 claims that a variety V(x̃2
2 + x̃2

3−1), a

cylinder along the x̃1 axis, is the Zariski closure of α(R), a

helix, and an invariant algebraic variety of Σ̃. Then, for any

solution x(t) of Σ, its image α(x(t)) satisfies the DAE:

Σ̃P

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎣ ˙̃x1

˙̃x2

˙̃x3

⎤
⎦ =

⎡
⎣ x̃2/x̃1

x̃2x̃3/x̃1

−x̃2
2/x̃1

⎤
⎦

0 = x̃2
2 + x̃2

3 − 1

.

Moreover, any solution of the state equation of Σ̃ starting

from a point on V(x̃2
2 + x̃2

3 − 1) always satisfy the DAE, as

long as it is defined (Fig. 1).

B. Polynomial-in-the-State Representation

According to Proposition 2, Σ is invariantly im-

mersible on R \ {0} into not only the RSR but also

a PSR. In fact, an invariant immersion into a PSR

is readily obtained by augmenting α(x) with 1/x (=
1/x̃1) as β(x) = [x, sin x, cos x, 1/x]T, and a PSR
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Fig. 1. Trajectories on the invariant algebraic variety.

Σ̄(ḡ0, h̄) is obtained from (∂β/∂x)ẋ = [sinx/x, sin x ·
cos x/x,− sin2 x/x,− sin x/x3]T as follows:

Σ̄

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎣

˙̄x1

˙̄x2

˙̄x3

˙̄x4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

x̄2x̄4

x̄2x̄3x̄4

−x̄2
2x̄4

−x̄2x̄
3
4

⎤
⎥⎥⎦

y = x̄1

.

The PSR Σ̄ is analytic on R4 ⊃ β(R \ {0}).
From an additional algebraic relation x · (1/x) − 1 = 0,

the relation ideal of β is Q = (x̄2
2 + x̄2

3−1, x̄1x̄4−1). Then,

Theorem 1 says that all PSRs into which Σ is invariantly

immersible with β are parameterized as

Σ̄′

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎣

˙̄x1

˙̄x2

˙̄x3

˙̄x4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

x̄2x̄4 + q01(x̄)
x̄2x̄3x̄4 + q02(x̄)
−x̄2

2x̄4 + q03(x̄)
−x̄2x̄

3
4 + q04(x̄)

⎤
⎥⎥⎦

y = x̄1 + q1(x̄)

,

where q01, q02, q03, q04 and q1 belong to Q.

Theorem 2 says that Q is an invariant ideal of Σ̄. In fact, it

is readily confirmed that Lḡ0Q ⊂ Q. For example, we have,

for any p ∈ R[x̄],

Lḡ0 [p(x̄)(x̄1x̄4 − 1)]
= [Lḡ0p(x̄)](x̄1x̄4 − 1)

+ p(x̄)[x̄4 · x̄2x̄4 + x̄1 · (−x̄2x̄4)]
= [Lḡ0p(x̄) − p(x̄)x̄2x̄

2
4](x̄1x̄4 − 1) ∈ Q.

Finally, Theorem 3 states that V(x̄2
2 + x̄2

3 −1, x̄1x̄4 −1) is

the Zariski closure of β(R \ {0}) and an invariant algebraic

variety of Σ̄. Then, for any solution x(t) of Σ, its image

β(x(t)) satisfies a DAE:

Σ̄Q

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎣

˙̄x1

˙̄x2

˙̄x3

˙̄x4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

x̄2x̄4

x̄2x̄3x̄4

−x̄2
2x̄4

−x̄2x̄
3
4

⎤
⎥⎥⎦

0 = x̄2
2 + x̄2

3 − 1
0 = x̄1x̄4 − 1

.

Moreover, any solution of Σ̄ starting from a point on V(x̄2
2+

x̄2
3 − 1, x̄1x̄4 − 1) satisfies the DAE, as long as it is defined.

V. CONCLUSION

Some algebraic and geometric structures associated with

a RSR and a PSR obtained via system immersion have been

discussed in this paper. First, it has been shown that all

of RSRs or PSRs into which a given system is invariantly

immersible with an identical immersion are parameterized

in terms of the relation ideal of the immersion. In particular,

the algebraic structures of a RSR after immersion are well

described in terms of the localization of a polynomial ring

at the relation ideal rather than the rational function field.

Second, the notions of an invariant ideal and an invariant

variety of a nonlinear system over a ring have been intro-

duced, which are closely related to a DAE. Then, it has been

shown that the maximal ideal of a local ring associated with

a RSR is an invariant ideal and, in particular, the relation

ideal of an immersion is an invariant ideal of a PSR. As

a geometric counterpart of the algebraic structures, it has

also been shown that a variety defined by the relation ideal

of an immersion is the Zariski closure of the image of

the immersion and also an invariant variety. Therefore, any

trajectory starting from a point on the variety stays in that

variety, as long as it is defined, even when it is not necessarily

the image of the trajectory of the original system.
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[17] L. Cairó, “Darboux integrability for 3D Lotka-Volterra systems,”
Journal of Physics A: Mathematical and General, vol. 33, no. 12,
pp. 2395–2406, 2000.

4236


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




