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Abstract—We describe how a virtual node abstraction layer
can be used to coordinate the motion of real mobile nodes on
a 2D plane. In particular, we consider how nodes in a mobile
ad hoc network can arrange themselves along a predetermined
curve in the plane, and can maintain themselves in such a
configuration in the presence of changes in the underlying
mobile ad hoc network, specifically, when nodes may join or
leave the system or may fail. Our strategy is to allow the
mobile nodes to implement a virtual layer consisting of mobile
client nodes, stationary Virtual Nodes (VNs) for predetermined
zones in the plane, and local broadcast communication. The
VNs coordinate among themselves to distribute the client nodes
between zones based on the length of the curve through those
zones, while each VN directs its zone’s local client nodes to move
themselves to equally spaced locations on the local portion of
the target curve.
Index Terms—Motion coordination, virtual nodes, hybrid

systems, hybrid I/O automata.

I. INTRODUCTION

Motion coordination is the general problem of achiev-

ing some global spatial pattern of movement in a set of

autonomous agents. An important motivation for studying

distributed motion coordination, that is, coordination among

agents with only local communication ability and therefore

limited knowledge about the state of the entire system,

stems from the developments in the field of mobile sensor

networks. Previous work in this area includes different co-

ordination goals, for example: flocking [8], rendezvous [1],

[9], [12], deployment [2], pattern formation [14], and ag-

gregation [7]. Owing to the intrinsic decentralized nature

of sensor network applications like surveillance, search and

rescue, monitoring, and exploration, centralized or leader

based approaches are ruled out. However, the lack of central

control makes the programming task quite difficult.

In prior work [3]–[6], we have developed a notion of

“virtual nodes” for mobile ad hoc networks. A virtual node

is an abstract, relatively well-behaved active node that is

implemented using less well-behaved real nodes. They can be

used to solve problems such as providing atomic memory [5],

geographic routing [3], and point-to-point routing [4].

Here we explore the use of virtual nodes to solve motion

coordination problems. Namely, we consider virtual nodes

associated with predetermined, well-distributed locations in
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Fig. 1. Virtual Node Layer: VN s and CN s communicate using V LBcast.

the plane, communicating among themselves and with mo-

bile “client nodes” using local broadcast. We describe a

framework for using virtual nodes to solve a simple mo-

tion coordination problem and briefly describe one way of

implementing virtual nodes using the real mobile nodes. We

use the Hybrid I/O Automata (HIOA) mathematical frame-

work [11] for describing the components in our systems.

II. THE VIRTUAL NODE LAYER

Here we describe the virtual node layer that we will use

in implementing motion coordination. The deployment space

consists of a bounded square B in R2, partitioned into a finite

set of zones Bh, h ∈ H. For simplicity we assume B is a
m × m square grid, with each grid square corresponding to
a zone and having sides of length b. Each boundary point of
a square is unambiguously assigned to one zone. The index

set H is the set of coordinates of the centers of all squares.
For each Bh, the set Nbrsh contains the zone identifiers of

the north, south, east, and west neighboring grid squares.

Our virtual layer (see Figure 1) consists of: (1) an un-

known finite number of client node automata CN i, with

unique identifiers i ∈ I, (2) one stationary virtual node
automaton VN h for each h ∈ H, located at the center
oh of the square Bh, (3) a virtual communication service,

VLBcast , for VN s and CN s, and (4) an automaton RW to

model the real time and each CN ’s location.
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A mobile client node automaton CN i, i ∈ I, is an HIOA
that continuously receives from RW the current time as

the input variable realtime and its position as the input
variable xi, and communicates its velocity to RW through

the output variable vi. The speed of CN i is bounded by

vc. The trajectories of the continuous variable vi and the

effects of the send and receive actions are unspecified.
At each point CN i is either in active or inactive mode;
we assume that, initially, finitely many nodes are active.
The faili input action sets the mode to inactive and the
recoveri input action sets it to active. In inactive mode,
all internal and output actions are disabled, no input action

except recoveri affects the internal or output variables, and
during trajectories, the locally-controlled variables remain

constant and the velocity vi remains zero. We model the

departure of a node from B as a failure. For convenience, we
assume transitions are instantaneous. CN i also has send and
receive actions for interacting with the V LBcast service.

A virtual node automaton VN h, h ∈ H, is an MMT
automaton [13]. An MMT automaton is a special type of

discrete I/O automata that has a “task” structure, which is an

equivalence relation on the set of locally-controlled actions,

and an upper bound parameter dMMT , such that from a point

in an execution where a task becomes enabled, some action in

that task occurs within dMMT time. VNh can fail, disabling

internal and output actions, preventing any inputs other than

recoverh from resulting in state changes, and setting the
automaton to an initial state. If a recoverh occurs, the VN

actions become enabled with all tasks restarted. If VN h is

failed and a CN later enters Bh and remains active in the

zone for dr time, then a recoverh occurs within that dr

time. VN h communicates with other VN s and CN s using

the VLBcast service through sendh and receiveh actions.

VLBcast is a local broadcast service, parameterized by

radius Rv and maximum message delay dv , where Rv ≥ b.
It allows VN h to communicate with each VN g such that

g ∈ Nbrsh, and with CN s that are located in Bh. It does

not allow CN automata to communicate with one another.

This service guarantees that when any (client or virtual) node

performs a send(m)i action at some time t, the message is
delivered within the interval [t, t + dv], by a receive(m)h

action, to all appropriate nodes h, that are active for the
entire interval.

The RW automaton reads the velocity output vi from each

CN i, i ∈ I, and produces the position xi and realtime for
CN i and VLBcast .

Virtual Node Layer implementation: One implementation of
this layer using mobile nodes closely follows the VMN layer

implementation in [4]; mobile nodes in a zone use a repli-

cated state machine algorithm to implement the zone’s virtual

node. Each mobile node runs a totally ordered broadcast

service, TOBcast , and a Virtual Node Emulation (VNE )

algorithm, for each virtual node. The TOBcast service

ensures that each VNE receives the same set of messages in

the same order. Assuming mobile nodes are equipped with a

real local broadcast service PLBcast , with communication

radius Rp ≥ √
5b and message delay dp, TOBcast is

implemented using a hold strategy for received messages,

where nodes don’t “receive” a message until enough (dp + ε,
ε small) time has passed that all other nodes in the zone
will have received the message as well. Each VNE then

independently maintains the state of the zone’s virtual node.

Whenever a VNE wishes to emulate a virtual node action, it

uses TOBcast to send the action suggestion to other VNE s.

Once action suggestions are received, and if they are still

applicable, each VNE simulates the effect of the action on

its local version of the virtual node state, possibly emitting

a virtual node broadcast.

The implementation provides the Virtual Node abstraction

with VN task upper time bound dMMT = 2dp + 2ε, VN -

startup time dr = 4dp + 5ε, and VLBcast message delay

dv = 2dp + ε. Additional details are in the full paper [10].

III. THE MOTION COORDINATION PROBLEM

A differentiable parameterized curve Γ is a differentiable
map P → B, where the domain set P of parameter values is
an interval in the real line. The curve Γ is regular if for every
p ∈ P , |Γ′(p)| �= 0. For a, b ∈ P , the arc length of a regular
curve Γ from a to b, is given by s(Γ, a, b) =

∫ b

a |Γ′(p)|dp.
Γ is said to be parameterized by arc length if for every
p ∈ P , |Γ′(p)| = 1. For a curve parameterized by arc length,
s(Γ, a, b) = b − a.
For a given point x ∈ B, if there exists p ∈ P such that

Γ(p) = x, then we say that the point x is on the curve Γ;
abusing the notation, we write this as x ∈ Γ. We say that Γ is
a simple curve provided for every x ∈ Γ, Γ−1(x) is unique.
A sequence x1, . . . ,xn of points in B are said to be evenly
spaced on a curve Γ if there exists a sequence of parameter
values p1 < p2 . . . < pn, such that for each i, 1 ≤ i ≤ n,
Γ(pi) = xi, and for each i, 1 < i < n, pi−pi−1 = pi+1−pi.

In this paper we fix Γ to be a simple, differentiable curve
that is parameterized by arc length. Let Ph = {p ∈ P :
Γ(p) ∈ Bh} be the domain of Γ in zone Bh ⊆ B. The local
part of the curve Γ in zone Bh is the restriction Γh : Ph →
Bh. We assume that Ph is convex for every zone Bh ⊆ B; it
may be empty for some Bh. We write |Ph| for the length of
the curve Γh. We define the quantization of a real number
x with quantization constant σ > 0 as qσ(x) = � x

σ 	σ. For
the remainder of the paper we fix σ and write qh as an

abbreviation for qσ(|Ph|). We write qmin for the minimum

nonzero qh, and qmax for the maximum qh.

Our goal is to design an algorithm that runs on the physical

mobile nodes such that, if there are no failures or recoveries

of physical nodes after a certain point, then: (1) within finite

time the set of nodes in each zone Bh, h ∈ H, becomes
fixed, and the size of the set is “approximately” proportional

to the quantized length qh, (2) within finite time all physical

nodes in Bh for which qh �= 0 are located on Γh, and (3) in

the limit all the nodes in each Bh are evenly spaced on Γh.

IV. MOTION COORDINATION USING VIRTUAL NODES

The Virtual Node abstraction is used as a means to

coordinate the movement of client nodes in a zone. A VN

2824



controls the motion of the CN s in its zone by setting and

broadcasting target waypoints for the CN s: VN h, h ∈ H,
periodically receives information from clients in its zone,

exchanges information with its neighbors, and sends out a

message containing a calculated target point for each client

node “assigned” to zone Bh. Informally, VN h performs two

tasks when setting the target points: (1) it re-assigns some of

the CN s that are assigned to itself to neighboring VN s, and

(2) it sends a target position on Γ to each CN that is assigned

to itself. The objective of (1) is to prevent neighboring VN s

from getting depleted of CN s and to achieve a distribution of

CN s over the zones that is proportional to the length of Γ in
each zone. The objective of (2) is to space the nodes evenly

on Γ within each zone. A CN , in turn, receives its current

position information from RW and its target location from a

VN , and continuously computes a velocity vector that will

take it to its latest received target point.

Each virtual node VN h uses only information about the

portions of the target curve Γ in zone Bh and neighboring

zones. We assume that all client nodes know the complete

curve Γ; however, we could model the client nodes in Bh as

receiving inputs from another automaton about the nature of

the curve in zone Bh and neighboring zones only.

A. Client Node Algorithm

The algorithm for the client node CN (δ)i, i ∈ I, appears
in Figure 2. The client follows a round structure, where

rounds begin at times that are multiples of δ. Recall that
VN s do not have access to realtime whereas CN automata

do. To help VN s follow the round structure, the CN s send

“trigger” messages to prompt VN s to perform transitions.

At the beginning of each round, a CN sends a cn-update
message to its local VN (that is, the VN in whose zone

the CN currently resides). The cn-update message tells the
local VN the CN ’s id, its current location in B, and current
round number.

The CN then sends an exchange-trigger message dv + ε
later to its local VN . An additional dMMT + 2dv + ε time
later, the CN sends a target-trigger message to its local
VN . Both these messages are trigger messages that include

the CN ’s current location and the current round number,

used by the local VN to determine whether the CN is in its

zone and what the current round number is.

CN i processes only one kind of message, target-update
messages sent by its assigned VN . Each such message

describes the new target location x∗
i forCN i, and possibly an

assignment to a different VN . CN i continuously computes

its velocity vector vi, based on its current position xi and its

target position x
∗
i , as vi = vc(xi − x

∗
i )/||xi − x

∗
i ||, moving

it with maximum velocity towards the target.

B. Round structure

The VN h, h ∈ H, algorithm follows the CN s’ round

structure. However, VN s do not have access to the realtime
variable and must instead rely on trigger messages from

CN s to determine when enough time has elapsed to perform

Signature:
2Input

receive(m)i, m ∈ ({target-update} × B)
4Output

send(m)i, m ∈ ({cn-update} × I × B × N)
6∪ ({exchange-trigger, target-trigger} × B × N)

Internal
8initi

10Variables:
Input

12xi ∈ B
realtime ∈ R≥0

14Output
vi ∈ R2, velocity vector

16Internal
x
∗ ∈ B ∪ {⊥}, target point, initially ⊥

18round, next-exch, next-target ∈ N ∪ {⊥}, initially ⊥

20Transitions:
Internal initi

22Precondition
round = ⊥

24Effect
round, next-exch, next-target ← �realtime/δ�

26x
∗ ← xi

28Input receive(〈target-update, target〉)i

Effect
30if target(i) �= null then

x
∗ ← target(i)

32
Output send(〈cn-update, i, xi, round〉)i

34Precondition
realtime = round · δ

36Effect
round ← round + 1

38
Output send(〈exchange-trigger, xi, next-exch〉)i

40Precondition
realtime = next-exch · δ + dv + ε

42Effect
next-exch ← next-exch + 1

44
Output send(〈target-trigger, xi, next-target〉)i

46Precondition
realtime = next-target · δ + dMMT + 3dv + 2ε

48Effect
next-target ← next-target + 1

50
Trajectories:

52Evolve
if (xi = x

∗ or x∗ = ⊥) then vi = 0

54else vi = vc · (x∗ − xi)/||x∗ − x||
Stop when

56round = ⊥ or realtime = round · δ
or next-exch·δ + dv + ε or next-target·δ + dMMT + 3dv + 2ε

Fig. 2. Client node CN (δ)i automaton.

required actions. Here we explain how we implement the

round structure for a VN .

Recall that at the beginning of a round, each CN sends

a cn-update message to its local VN . The CN s then send

exchange-trigger messages dv + ε after the beginning of
the round, enough time that the cn-update messages have
already been delivered, signaling to the VN that it has

received all cn-update messages that were transmitted at
the beginning of the round in its zone. The VN waits before

using information from the cn-update messages until it
receives one of the CN s’ exchange-trigger messages. The
VN then sends vn-update messages to its neighbors.
Each CN sends a target-trigger message to its local

VN an additional dMMT + 2dv + ε time after it sends an
exchange-trigger message. This additional time is enough

2825



for all the following to have happened: (1) each neighboring

VN has received an exchange-trigger message from a
CN in its zone (dv time), (2) each neighboring VN has

performed a vn-update transmission to its neighboringVN s,

including this one (dMMT time), and (3) the neighboring

VN vn-update messages have arrived (dv time). When a

VN first receives a target-trigger message for a particular
round from any CN in its region, it knows it has received any

vn-update messages from neighboring VN s for the round.

The VN then performs some computation and transmits a

target-update message to CN s local to it.

A target-update message might not be received by a CN

until dMMT +2dv time after the CN sent the target-trigger
message. This accounts for: (1) the time it can take for the

target-trigger message to be received by the VN (dv), (2)

the time it can take for the VN to perform the target-update
broadcast (dMMT ), and (3) the time for the broadcast to

be delivered at the CN (dv). Given the maximum distance

between a point in one zone and the center of a neighboring

zone,
√

2.5b =
√

(3b/2)2 + (b/2)2, and a constant speed of

vc for each client node, it can take up to
√

2.5b
vc
time for the

CN to reach its target. Also, after the CN arrives in the

zone it was assigned to, up to
√

10b/3 =
√

2.5b · 2
3 distance

from where it started, it could find the local VN is failed,

and then take up to the dr VN -startup time for it to recover.

To ensure a round is long enough for a client node to

send the cn-update, exchange-trigger, and target-trigger
messages, receive a target-update message, arrive at its new
assigned target location, and be sure a virtual node is alive in

its zone before a new round begins, we require that δ satisfy
δ > 2dMMT + 5dv + 2ε + max(

√
2.5b/vc,

√
10b/3vc + dr).

C. VN algorithm

The algorithm for virtual node VN (e, ρ1, ρ2)h, h ∈ H,
appears in Figure 3, where e ∈ Z+ and ρ1, ρ2 ∈ (0, 1)
are parameters of the automaton. VN h collects cn-update
messages sent at the beginning of the round from CN s

located in its zone, aggregating the location and round

information from the message in a table, M . When VN h

first receives an exchange-trigger message for a particular
round from any CN in its zone, VN h tallies and computes

from its table M the number of client nodes assigned to it

that it has heard from in the round, and sends this information

in a vn-update message to all of its neighbors.
When VH h receives a vn-update message from a neigh-
boring VN , it stores the CN population and round number

information from the message in a table, V . When VN h

first receives a target-trigger message for a particular round
from any CN in its region, VN h uses the information in its

tables M and V about the number of CN s in its zone and

its neighbors’ zones to calculate how many CN s assigned to

itself should be reassigned and to which neighboring VN s.

This is done through the assign function (see Figure 4)
which calculates a partial function assign mapping CN

identifiers to zones that they are assigned to. If the number

of CN s y(h) assigned to VN h exceeds the minimum critical

number e, then assign reassigns some CN s to neighbors.

Let Inh denote the set of neighboring VN s of VN h that

are on the curve Γ and yh(g), g ∈ Nbrsh ∪ {h}, denote
the number num(Vh(g)) of CN s assigned to VN g . If qh �=
0, meaning VN h is on the curve (lines 7–11), then we let

lowerh denote the subset of Nbrsh that are on the curve and

have fewer assigned CN s than VN h has after normalizing

with
qg

qh
. For each g ∈ lowerh, VN h reassigns the smaller

of the following two quantities of CN s to VN g: (1) ra =
ρ2 · [ qg

qh
yh(h) − yh(g)]/2(|lowerh| + 1), where ρ2 < 1 is a

damping factor, and (2) the remaining number of CN s over

e still assigned to VN h.

Signature:
2Input

receive(m)h, m ∈ ({exchange-trigger, target-trigger} × B × N) ∪
4({cn-update} × I × B × N) ∪ ({vn-update} × H × N × N)

Output
6send(m)h

8Constants:
In = {g ∈ Nbrs: qg �= 0}

10
State variables:

12M : I → B × N, partial map from CN ids to current location and
round number, initially ∅. Accessors: loc, round.

14V : H → N × N, partial map from VN ids to the number of CN s, and
round number, initially {〈g, 〈0, 0〉〉} for each g ∈ Nbrs ∪ {h}.

16Accessors: num, round.
send-buffer, queue of messages, initially ∅.

18vn-done, target-done ∈ Z, initially 0.

20Derived variables:
locM = λ(i ∈ id(M)). loc(M(i))

22y = λ(g ∈ Nbrs ∪ {h}). num(V(g))

24Transitions:
Input receive(〈cn-update, id, loc, round〉)h

26Effect
if loc ∈ Bh then

28M ← M ∪ {〈id, 〈loc, round〉〉}

30Input receive(〈exchange-trigger, loc, round〉)h

Effect
32if (loc ∈ Bh ∧ vn-done �= round) then

for each i ∈ id(M)
34if round(M(i)) �= round then

M← M \ {〈i, M(i)〉}
36send-buffer ← send-buffer ∪ {〈vn-update, h, |M|, round〉}

vn-done ← round
38

Input receive(〈vn-update, id, n, round〉)h

40Effect
if id ∈ Nbrs then

42V(id) ← 〈n, round〉

44Input receive(〈target-trigger, loc, round〉)h

Effect
46if (loc ∈ Bh ∧ target-done �= round) then

V(h) ← 〈|M|, round〉
48for each g ∈ Nbrs

if round(V(g)) �= round then
50V(g) ← 〈0, 0〉

let target = calctarget(assign(id(M), y), locM)
52send-buffer ← send-buffer ∪ {〈target-update, target〉}

target-done ← round
54

Output send(m)h

56Precondition
send-buffer �= ∅ ∧m = head(send-buffer)

58Effect
send-buffer ← tail(send-buffer)

60
Tasks and bounds:

62{send(m)h}, bounds [0, dMMT ]

Fig. 3. VN (e, ρ1, ρ2)h IOA, implementing motion coordination with
parameters: safety e, damping ρ1, ρ2.
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If qh = 0, meaningVN h is not on the curve, and VN h has

no neighbors on the curve (lines 13–17), then we let lowerh

denote the subset of Nbrsh with fewer assigned CN s than

VN h. For each g ∈ lowerh, VN h reassigns the smaller of

the following two quantities of CN s: (1) ra = ρ2 · [yh(h)−
yh(g)]/2(|lowerh| + 1) and (2) the remaining number of
CN s over e still assigned to VN h.

VN h is on a boundary if qh = 0, but there is a g ∈ Nbrsh

with qg �= 0. In this case, yh(h) − e of VN h’s CN s are

assigned equally to neighbors in Inh (lines 19–22).

The client assignments are then used to calculate new

target points for local CN s through the calctarget function
(see Figure 4). This function assigns to every CN i assigned

to VN h a target point locMh(i) ∈ Bg, g ∈ Nbrsh ∪ {h}, to
move to. The target point locMh(i) is computed as follows:
If CN i is assigned to VN g , g �= h, then its target is set
to the center og of Bg (lines 30–31); if CN i is assigned to

VN h but is not located on the curve Γh then its target is

set to the nearest point on the curve, nondeterministically

choosing one if there are several (lines 32–33); if CN i is

either the first or last client node on Γh then its target is set

to the corresponding endpoint of Γh (lines 35–36); if CN i

is on the curve but is not the first or last client node then

its target is moved to the mid-point of the locations of the

preceding and succeeding CN s on the curve (line 38). For

the last two computations a sequence seq of nodes on the
curve sorted by curve location is used (line 27). VN h finally

broadcasts the new target waypoints for the round through a

target-update message to its CN s.

V. CORRECTNESS OF ALGORITHM

We say CN i, i ∈ I, is active in round t if its mode is
active for the duration of round t. A VN h, h ∈ H, is active
in round t if there is some active CN i with xi ∈ Bh for the

duration of rounds t − 1 and t. Thus, none of the VN s is

active in the starting round. We use the following notation:

In(t) is the set of ids h ∈ H of VN s that are active in round

t and for which qh �= 0. Out(t) is the set of ids h ∈ H of
VN s that are active in round t and for which qh = 0. C(t)
is the set of active CN s at round t, and Cin(t) and Cout(t)
are the sets of active CN s located in zones with ids in In(t)
and Out(t), respectively, at the beginning of round t.
For any pair of neighboring zones Bg and Bh, and for any

round t, we use yg(h)(t) to refer to the value of yg(h) at
the point in time in round t when VN g finishes processing

the first target-trigger message of round t it receives. For
any f, g ∈ Nbrsh ∪ {h}, in the absence of failures and
recoveries of CN s in round t, yf (h)(t) = yg(h)(t); we write
this simply as yh(t). We present a sequence of lemmas that
together establish the following theorem:

Theorem 1: If there are no failures or recoveries of client
nodes at or after some round t0, then within a finite number
of rounds after t0:
(1) the set of CN s assigned to each VN h, h ∈ H, becomes
fixed, and the size of the set is proportional to the quantized

length qh within a constant additive term
10(2m−1)

qminρ2
, and

Functions:
2function assign(assignedM: 2I , y: Nbrs ∪{h} → N): I → H =

assign: I → H, initially {〈i, h〉} for each i ∈ assignedM
4n: N, initially y(h)

ra: N, initially 0
6if y(h) > e then

if qh �= 0 then
8let lower = {g ∈ In: qg

qh
y(h) > y(g)}

for each g ∈ lower
10ra ← min(�ρ2 · [ qg

qh
y(h) − y(g)]/2(|lower|+1)�, n − e)

update assign by reassigning ra nodes from h to g
12n ← n − ra

else if In = ∅ then
14let lower = {g ∈ Nbrs : y(h) > y(g)}

for each g ∈ lower
16ra ← min(�ρ2 · [y(h) − y(g)]/2(|lower|+1)�, n − e)

update assign by reassigning ra nodes from h to g
18n ← n − ra

else
20ra ← �(y(h) − e)/|In|�

for each g ∈ In
22update assign by reassigning ra nodes from h to g

return assign
24

function calctarget(assign: I → H, locM: I → B): I → B =
26seq, indexed list of pairs in P × I, initially the list, for each i ∈ I :

assign(i)= h ∧ locM(i) ∈ Γh, of 〈p, i〉 where p= Γ−1

h
(locM(i)),

28sorted by p, then i
for each i ∈ I : assign(i) �= null

30if assign(i) = g �= h then
locM(i) ← og

32else if locM(i) /∈ Γh then
locM(i) ← choose {minx∈Γh

{dist(x, locM(i))}}
34else let p = Γ−1

h
(locM(i)), seq(k) = 〈p, i〉

if k = first(seq) then locM(i) ← Γh(inf(Ph))
36else if k = last(seq) then locM(i) ← Γh(sup(Ph))

else let seq(k − 1) = 〈pk−1, ik−1〉, seq(k + 1) = 〈pk+1, ik+1〉
38locM(i) ← Γh(p + ρ1 · ( pk−1+pk+1

2
− p))

return locM

Fig. 4. VN (e, ρ1, ρ2)h IOA functions.

(2) all client nodes in Bh for which qh �= 0 are located on
Γh and evenly spaced on Γh in the limit .

Owing to shortage of space we do not give proofs for all

the lemmas; they can be found in the complete version of

the paper [10]. For the rest of this section we fix a particular

round number t0 and assume that no failures or recoveries
of CN s occurs at or after round t0. The first lemma states
some basic facts about the assign function (see Figure 4):
Lemma 1: In every round t ≥ t0: (1) If yh(t) ≥ e for
some h ∈ H, then yh(t + 1) ≥ e, (2) In(t) ⊆ In(t + 1),
(3) Out(t) ⊆ Out(t + 1), (4) Cin(t) ⊆ Cin(t + 1), and (5)
Cout(t + 1) ⊆ Cout(t).

The next lemma states a key property of the assign func-
tion after round t0: VN g, g ∈ Out(t), is never assigned a
larger number of CN s in round t+1 than the largest number
of CN s that were assigned to any of VN g’s neighbors in

round t. Similarly, VN g , g ∈ In(t), never gets a density
yg(t+1)

qg
of CN s CN s in round t + 1 that is greater than the

highest density of its neighbors in round t.

Lemma 2: In every round t ≥ t0, for g, h ∈ H and h ∈
Nbrsg: (1) If g, h ∈ Out(t), yh(t) = maxf∈Nbrsg

yf (t),
and yg(t) < yh(t), then yg(t + 1) ≤ yh(t) − 1, and

(2) If g, h ∈ In(t), yh(t)
qh

= maxf∈Nbrsg

yf (t)
qf
, and

yg(t)
qg

<
yh(t)

qh
, then

yg(t+1)
qg

≤ yh(t)
qh

− σ
q2

max
.
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Proof: (1) Fix g, h and t, as in the lemma statement.
Since yh(t) > yg(t) and g, h ∈ Out(t), we see from
line 16 of Figure 4 that the number of CN s that VN g

is assigned from VN h in round t is at most ρ2(yh(t) −
yg(t))/2(|lowerh(t)| + 1). This is at most ρ2(yh(t) −
yg(t))/4, because yh(t) > yg(t) implies that lowerh(t) ≥ 1.
Then, the total number of CN s assigned to VN g in round

t by all four of its neighbors is at most ρ2(yh(t) − yg(t)).
Therefore, yg(t+1) ≤ yg(t)+ρ2(yh(t)−yg(t)) = ρ2yh(t)+
(1 − ρ2)yg(t). As ρ2 < 1, we have yg(t + 1) < yh(t). The
result follows from integrality of yg(t + 1) and yh(t).
(2) Similar to part (1).

The next lemma says there is a round Tout that is reached

within a finite number of rounds after t0, such that in every
round t ≥ Tout, the set of CN s assigned to VN h, h ∈
Out(t), does not change.

Lemma 3: There exists a round Tout ≥ t0 such that in
any round t ≥ Tout, the set of CN s assigned to VN h, h ∈
Out(t), is unchanged.

Proof sketch: First, we show the number of CN s assigned to

VN h, h ∈ Out(t), remains unchanged, that is yh(t + 1) =
yh(t). Let Nout be the total number of h ∈ H such that
qh = 0. For any k, 1 ≤ k ≤ Nout, we define maxk(t) to
be the kth largest number of CN s that are assigned to any

VN h, h ∈ Out(t), at the beginning of round t ≥ t0:

maxk(t)
∆

=

{
max{yh(t) : h ∈ Out(t)}, if k = 1
max{yh(t) : h ∈ Out(t) ∧

yh(t) < maxk−1(t)}, otherwise.

Let maxvnsk(t) be the set of VN ids that have maxk(t)
CN s assigned to them. If there exists an l, 1 ≤ l ≤ Nout,

such that ∀h ∈ Out(t) : maxl(t) ≥ yh(t), then for all k,
l < k ≤ Nout, maxk(t) = 0 and maxvnsk(t) = ∅.
Consider the function E(t) = (|Cout(t)|, max1(t),

|maxvns1(t)|, . . . , maxNout
(t), |maxvnxNout

(t)|). We

show that there is a finite lower bound on the value of

this function, and that for every round t ≥ t0, either
E(t + 1) = E(t), that is, t = Tout, or E(t + 1) is less
than E(t) by some constant amount, meaning there is a
k, 1 ≤ k ≤ Nout, such that for every l, 1 ≤ l < k, the lth

component of E(t + 1) is equal to the lth component of
E(t), and the kth component of E(t + 1) is less than the
kth component of E(t) by at least 1. This implies that there
exists Tout, such that the number of CN s assigned to each

VN h, h ∈ Out(t), t ≥ Tout, remains unchanged.

Now suppose the set of CN s assigned to VN h changes

in some round t ≥ Tout. Since yh(t + 1) = yh(t) for all
h ∈ Out(t), summing, |Cout(t + 1)| = |Cout(t)| and using
Lemma 1 we get Cout(t+1) = Cout(t). The only way the set
of CN s assigned to VN h could change, without changing

yh and the set Cout, is if there existed a cyclic sequence of

VN s with ids in Out(t) in which each VN gives up c > 0
CN s to its successor VN in the sequence, and receives c
CN s from its predecessor. However, such a cycle cannot

exist because the lower set imposes a strict partial ordering
on the VN s.

We fix Tout to be the first round after t0, at which the
property stated by Lemma 3 holds. Then, for every t ≥ Tout,

In(t) = In(Tout) and Cin(t) = Cin(Tout); we denote these
as In and Cin. The next lemma states a property similar to

that of Lemma 3 for VN h in h ∈ In, and its proof is similar
to the proofs of Lemma 3, and uses part (2) of Lemma 2.

Lemma 4: There exists a round Tstab ≥ Tout such that in

every round t ≥ Tstab, the set of CN s assigned to VN h,

h ∈ In, is unchanged.

We fix Tstab to be the first round after Tout, at which the

property stated by Lemma 4 holds. The next lemma states

that the number of CN s assigned to each VN h, h ∈ In, in
the stable assignment after Tstab is proportional to qh within

a constant additive term.

Lemma 5: In every round t ≥ Tstab, for g, h ∈ In(t):˛̨
˛̨yh(t)

qh

−
yg(t)

qg

˛̨
˛̨ ≤

»
10(2m − 1)

qminρ2

–
.

Finally, to prove the second part of Theorem 1, we observe

that by the beginning of round Tstab +2, all CN s in Cin are

located on Γ. The final piece comes form the next lemma
which states that the CN s in each zone Bh, h ∈ In, are
evenly spaced on Γh in the limit.

Lemma 6: Consider a sequence of rounds t1 =
Tstab, . . . , tn. As n → ∞, the locations of CN s in Bh,

h ∈ In, are evenly spaced on Γh.
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