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Abstract— In this paper we are investigating how the local
controllability properties of each agent interplays with the
motion feasibility of the complete multiagent system, studying
systems that are either small time locally controllable (STLC),
or locally controllable but in bounded time. We present an
approximation strategy, which allows us to plan the motion
of the system using fully actuated holonomic vehicles, and to
incorporate the constraints on the motion of the agents in
a latter step, satisfying the formation constraints arbitrarily
well.We apply this approximation strategy to tracking both
static trajectories or arbitrary moving references.

I. INTRODUCTION

During the past few years robotics, following the hu-
man social paradigm, has increasingly adopted cooperative
schemes of several robots engaged in complicated tasks.
Enhanced robustness and better adaptation to changing en-
vironments are two additional benefits of the multi-robotic
approach. The possibility of distributing a task to many
simple agents reduces cost, increases usefulness and in some
very interesting cases multi agent cooperation is the only
feasible solution to a number of problems.

In this context, multi agent robotic systems have been
studied extensively. The problem of N agents moving inde-
pendently on a plane has been studied both for decentralized
([2], [8]) and centralized ([7], [9]) setups. Flocking behavior
of multiagent systems, i.e. movement of all agents with
the same velocity, has been studied in ([15],[11]),while in
([12] the authors propose a method for creating a forma-
tion Lyapunov function, given independent agent Lyapunov
functions. A team of robots following simple rules and how
these rules lead to uniform spreading of the agents is the
problem studied in [14] and in [1] the authors study the
problem of controlling a group of robots and propose ways
to decompose the control of the position and configuration of
the group, while an information exchange algorithm which
leads to establishing a common shared trajectory is proposed
in [4] . In [13], the authors study the problem of establishing
the feasibility of a specified formation,and for the feasible
formations the problem of abstracting the formation onto a
lower dimensional control space.Their work is focused in
the interplay between kinematic and formation constraints.
In [16] the authors study the feasibility problem, focusing
on sensing and communication issues, and derive conditions
under which formation stabilization is possible.
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In this paper, we are studying a certain class of the multi
agent cooperation problem and in particular the formation
problem, and how we can solve it approximately. The
formation is defined as a number of constraints that have to
be satisfied during the motion of the system, plus a number
of output variables that have to be controlled to specific
values.Our approach lies on providing for this problem,
control strategies that approximate the formation constraints
arbitrary well. In most practical cases an approximation of
the constraints is adequate for the execution of the given task.
Moreover, our control strategy has a number of advantages.

• Relies on general controllability properties (local con-
trollability),and can thus be used for a very large class
of agents

• Satisfies the constraints with arbitrary precision, for
static control tasks, while for dynamic control tasks,
provides bounds on the velocity of the input

• Can be used with a heterogeneous multiagent system
• Decomposes the formation planning problem with the

low-level agent actuation, providing very small com-
putational load and can be thus used in systems with
limited capabilities,eg. micro-robots

II. PROBLEM FORMULATION

We are interested in checking the feasibility motion of for-
mation of agents.In particular,we are interested in checking
the formation capabilities of a set of n agents, each satisfying

q̇i = fi(qi, ui) (1)

where the state of each agent is denoted by qi ∈ Mi,where
Mi is a metric space, and let Ui denote the actuation space
for agent i. The formation directive is described by a number
of constraints that the states of the agents have to satisfy

Hj(q) = 0 jε{1, ..., k} (2)

where q = [qT
1 ...qT

n ]T is the state of the complete sys-
tem, and we stack all the constraint functions in H(q) =
[H1(q),H2(q), ...]T .We will use subscripts to refer to pro-
jection of q onto a subsystem, and we will use superscripts
to number specific points of q. We denote as M = M1 ×
M2 × ...Mn, the state space, and as U = U1 × ...Un the
actuation space for the composite system. We denote as

p = G(q) (3)

the set of output variables. The objective is to control p from
p(0) to pf . We can thus define a multiagent system as

Σ = (M,U , {fi},H,G) (4)

and we can define the problem as
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• Determine if Σ has any motion capabilities, i.e. if ∃u ∈
U s.t. q(t) satisfies eq. (2)

• Determine if there is a admissible control signal, steer-
ing p to pf

Our main attention will be given to a large class of
interesting locomotion systems described by driftless affine
control systems, where the dynamics take the form

q̇i = f(qi)ui (5)

III. BASIC DEFINITIONS

We denote as ui an actuation vector , i.e. ui ∈ Ui and as
ūT

i an actuation signal of length T i.e. ūT
i : [0, T ] → Ui,

while by ūT
i (t) ∈ Ui we denote the actuation vector at time

t ≤ T .
We will write as Φ(q0

i , ūT
i , T1) the solution of (1), at time

T1, starting from qi(0) = q0
i and having as input ūT

i .
B(qi, ε)denotes a ball of radius ε around qi. We denote as

R(qi(t1),Ui, t2) the (time) reachable set of (1) from qi(t1),
i.e.

R(qi(t1),Ui, t2) = {qi ∈ Mi|∃ūi, t ∈ [t1, t2]Φ(qi(t1), ūi, t) = qi}

. (Where obviously the actuation signal ūi is defined as ūi :
[t1, t2] → Ui)
We denote as

MH = {q ∈ M |H(q) = 0}
Definition 1: System Σ will be called consistent iff

∃qf ∈ MH s.t.G(qf ) = pf

and moreover qf , q0 belong in the same connected subset of
MH .

Definition 2: System Σ will be called motion feasible in
M if ∀q ∈ MH ∃ tI > 0 and a function ūtI : (0, tI) → U
s.t. H(Φ(q, ūtI , t)) = 0,∀t < tI

Definition 3: System Σ will be called exactly steerable in
time T iff

∀q1, q2 ∈ MH ,∃ūT → U
s.t.

Φi(q1
i , ūT

i , T ) = q2
i

and moreover

Φi(q1
i , ūT

i , t) ∈ MH ,∀t < T
Definition 4: System Σ will be called approximately εr

steerable iff

∀q1, q2 ∈ MH ,∃ūT : [0, T ] → U
s.t.

Φi(q1
i , ūT

i , T ) = q2
i

and moreover

||H(Φi(q1
i , ūT

i , t))|| ≤ εr,∀t < T
A exactly steerable system is obviously motion feasible,

while the converse is not true. Moreover, an approximately
steerable may fail to be motion feasible.

IV. ANALYSIS

A. Smooth Systems

We begin our analysis by deriving feasibility conditions
for formations of smooth agents, following a similar line of
thought as in [13]. When the state equation of each agent is
(5), and f is a smooth function (i.e. fi ∈ C∞) the problem
is relatively easy. Since Hj(q) = 0 we have that dHj

dt = 0,
and if we assume that the constraints are time-invariant we
have that

∑
i

∂Hj

∂qi
q̇i = 0 or, in matrix notation we have that

Aq̇ = 0 (6)

with Aij = ∂Hi

∂qj
.and q̇ in matrix form as

q̇ = F (q)u (7)

, with F = diag(fi(q)).If we substitute (7) into (6) we get
A(q)F (q)u = 0 or

P (q)u = 0 (8)

with P (q) = A(q)F (q). In other words, in this case, the
admissible controls must lie within the null space of P (q)
so that the system moves satisfying the constraints.

Assuming that the null space of P (q) is of constant
dimension d, then (8) is equivalent with

u = Λ(q)u∗ (9)

Λ(q) corresponds to a basis for the null space of P (q) and
the system satisfies the constraints for any u∗. System Σ is
motion feasible iff ∀q ∈ M : Λ(q) �= 0.

H(q) = 0 defines a surface at which q evolves. For
simplicity we assume that

H(q) = 0 ⇔ q = C(q∗) (10)

with q∗ defining coordinates on the zero H surface. We can
also assume, that

∀q ∈ MH , q∗ = D(q) (11)

i.e. that every state that complies with the constraints is
mapped to a single point at the zero constraint surface. We
may write the “objective” function as G(q) = G∗(q∗). If
the objective function cannot be written in q∗ coordinates,
this means that the nature of the objective function imposes
another constraint of the motion of the vehicle, not found
in H(q) = 0. In this case, the formation functions should
be augmented with the further constraint arising from the
objective function, so that the objective function can be
written as a function of q∗. We assume that Σ is consistent,
therefore, the specification limt→tfinal

p = pf is equivalent
with limt→tfinal

q∗ ∈ A where A = {q∗ : G∗(q∗) = pf} By
differentiating (11) we get

q̇∗ = ∇Dq̇ (12)

and by using (9,7) in (12) we obtain

q̇∗ = ∇D · F (q) · Λ(q) · u∗ = W (q∗)u∗ (13)

System Σ is exactly steerable if there is a control signal
u∗ that steers q∗ to set A, and this can be checked using
classical control techniques ([5],[10])
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Example 1: Consider two unicycles, that have to keep
constant relative distance. We have qi = [xi yi θi], i =
{1, 2},

fi(q) =
[

cos(θ) sin(θ) 0
0 0 1

]T

ui = [vi ωi], H = (x1 − x2)2 + (y1 − y2)2 − d2
12. H(q) = 0

corresponds to the formation constraint of keeping the two
uncicycles at constant (dij relative distance.

P (q) = [∂H/∂q] =

(x1 − x2) cos θ1 + (y1 − y2) sin θ1

0
−(x1 − x2) cos θ2 − (y1 − y2) sin θ2

0

T

(14)

The constraint H(q) gives rise to q∗ = (x1, y1, θd, θ1, θ2).
Functions C and D are respectively

C(q∗) = [x1, y1, θ1, x1 + d12 cos(θd), y1 + d12 sin(θd), θ2]T (15)

D(q) = [x1, y1, atan2(y2 − y1, x2 − x1), θ1, θ2]T ,∀q ∈ MH ] (16)

The Λ(q) is easily computed as

Λ(q) = [υ1 υ2 υ3]

with υ1 = [0 1 0 0]T , υ2 = [0 0 0 1]T and, by denoting
as ζ1 = (x1 − x2) cos(θ1) + (y1 − y2) sin(θ1), and as ζ2 =
−(x1 − x2) cos(θ2) − (y1 − y2) sin(θ2) we have that

υ3(q) = [−ζ2 0 ζ1 0]T

Set A is defined as A = {x, y, θd, θ1, θ2|x = x1f
, y =

y1f
} in q∗ coordinates. Steerability of the system is deter-

mined by checking function W (q∗), and its controllability
properties.

�
Remark 1: It is interesting here to note the complexity

of the resulting constrained free system, even for a simple
system of two smoothly moving unicycles, that have to hold a
constant distance. Systems with a large number of agents, or
systems that include agents with switched kinematics,exhibit
a rather large increase in the necessary computations.

B. Switched Systems

We are particulary interested in the feasibility of motion,
when the kinematics of each agents are not smooth. The
motivation comes from the field of micro-robotic systems.

Micro-Locomotion systems sometimes need independent
activation of rotation and translation, either because of struc-
tural(i.e. Locomotion structure is not “rich” enough to allow
simultaneous rotation and translation), power (activation of
both constraints results in high power consumption) or
navigational (simultaneous activation of 2 D.O.F. results in
increased navigational error) constraints.

We assume the following agent kinematics

q̇i =
j∑

σj
i f

j(qi)uj (17)

with σj
i ∈ {0, 1},∑j σj

i ≤ 1∀i We assume that each sub-
system can switch in arbitrary time, i.e. that we control the
switching timing.
A problem posed with such systems is if the overall system
has any motion capabilities, satisfying the constraints.

1) Feasibility Conditions for switched systems:
To resolve this problem, we consider the system
without the switching constraints, i.e. we set all σj

i = 1,
and we study the kinematics of the new system, which
corresponds to a smooth system.Using the procedure
presented above for smooth systems, we derive the
following equation describing the solution space of the
system without the switching constraints: u = Λ(q)u∗ We
define as

Ci(q) = ∪jc
i
j , c

i
j = {u∗ : σk

i = 0∀k, k �= j} (18)

ci
j is the subset of u∗ that nullify all except the jth input

of i agent, making Ci is the subset of u∗ that is valid for
agent i, i.e. the subset of the actuation space the respects
the switching nature of the kinematics of agent i. Thus, the
intersection of all Ci is the subset of the actuation space that
respects the real (switching) kinematics of all agents:

C(q) = ∩iCi(q) (19)

If C(q) �= ∅ then system Σ is motion feasible in MH .
Equation (13) under the constraint that u∗ ∈ C∗(q∗)

resolves the second question posed for Σ.

V. STEERABILITY OF STLC SYSTEMS

Given a system Σ, and using the procedure outlined,the
mobility and controllability questions of this system can be
answered with a systematic manner. But this direct approach
has a number of limitations

• The complex structure of the sets on which the motion
of the system evolves

• The non-smooth nature of the resulting expressions,
especially when dealing with switched agents

• Scalability issues
We will present another approach, showing that for a

large class of agents, we can decompose the planning of the
formation with the motion of individual agents, and impose
the kinematics of the agents on a latter step. For small time
locally controllable agents, we can follow the planned trajec-
tory, with arbitrary precision in finite time. The kinematics
of the agents are of not particular interest, in the higher level
planning phase, allowing thus use of heterogeneous system.
Fig. 1 depicts a diagram of this control paradigm. In the
higher level, the formation trajectory is planned assuming
fully actuated agents. The kinematics of the agents are
incorporated in the lower level, ensuring that the executed
trajectory keeps bounded deviation from the calculated. This
approach, is much easier to implement, scales extremely
well with the number of agents, and provides very simple
algorithms that can be used in real time environments. Finally
, this approach can be used for systems that are not exactly
steerable

A. Tracking a trajectory

We will try to decompose the problem of satisfying the
differential constraints (1), (5) with the problem of satisfying
the formation constraints (2) or the task. We will show that
if each fi corresponds to a small time local controllable

4960



Formation Path Planning

Task Input

Implementation of Formation
Trajectory

Formation
Position

Guaranteed
Bounded Error

between calculated
and executed

Trajectory

Fig. 1. Basic Block Diagram of control system

system, and if Σ is a consistent system, then Σ ∀εr, Σ is
approximately εr steerable in finite time for every r.If in
addition the reachable area in time t is O(t), then the system
is exactly steerable in bounded time.

System (1) will be called small time, locally controllable,
if

∀T > 0,∀qi ∈ Mi,∃ε > 0 : R(qi,Ui, T ) ∩ B(qi, ε) �= ∅

We will need the following Lemma.
Lemma 1: Let (1) be a small time, local controllable

system. We will show that ∀q0 the radius of a ball around q
belonging in R(q0,U , t0) is a strictly increasing function of
time t0.

Proof: Let

q̇ = f(q, u)

be a STLC system. We denote as εt
m the ’radius’ of the

maximum ball around qI that can fit inside R(qI ,U , t). If
t2 = t1 + δt, then we have that

R(qI ,U , t2) ⊃ (B(qI , ε
t1
m) ∪

qi∈B(qI ,ε
t1
m )

R(qi,U , δt))

⊃ B(qI , ε
t1
m) ∪

qi∈B(qI ,ε
t1
m )

B(qi, ε
δt
m)

Let εδt
min = minxi εδt

m which is not zero, since system is
STLC.
But then it is obvious that

R(qI ,U , t2) ⊃ B(qI , ε
t
m + εδt

min)

Therefore, sine for t = 0, ε0m = 0, there is a class K function
β(.) s.t. εt

m = β(t).
Assuming that R(qi,Ui, t) is bounded, then, with the

same argument, there exists a class K function B(t), s.t.
R(qi,Ui, t) ⊂ B(qi, B(t)).

Definition 5: A path or trajectory p on M is a continuous
function p : A → M ,where A is a closed interval beginning
from 0 i.e.A = [0, T ].

Definition 6: Let p1(t) : [0, T1] → M , p2(t) : [0, T2] →
M be two trajectories on M . We say that these two are in
essence the same iff there is a a : [0, T1] → [0, T2] class K
function s.t. p1(t) = p2(a(t)),∀t ∈ [0, T1].

Definition 7: We define the distance of two trajectories
p1,p2 on M as

D(p1, p2) = min
a(.)

max
t

||p1(t) − p2(a(t))||
Obviously, if D(p1, p2) = 0, trajectories p1 and p2 are in
essence the same.

Theorem 1: We assume that we are given a nominal
path on M , pn lasting Tn time units. This path satisfies
H(pn(t)) = 0,∀t ≤ Tn, and moreover G(pn(Tn)) = pf .

Let ε > 0. We will show that there is a pε, s.t. D(pn, pε) ≤
ε, that can be followed by the n agents.

Proof:
Let ti > 0 s.t. Bi(ti) < ε/2. Such ti exists, since B(.) is

a continuous class K function. Let tm = mini ti and εi =
βi(tm). Let εs = mini εi. The path pn corresponds to a path
pni

for each agent according to pni
(t) = πi(qn(t),∀t ≤ Tn.

we construct a partition of Tn ξj , j ∈ {0, ..., Ns}
s.t. ||pni(ξ

j) − pni(ξ
j+1)(Tn)||∞ ≤ εs and ||pni(ξ

j) −
pni

(t)||∞ ≤ ε/2,∀t ∈ (ξj , ξj+1]. Such a partition exists,
since pn is continuous, and therefore its projection on Mi is
also continuous. Therefore, we can construct such a partition
beginning from pn(0).For each i ti is selected as

max
ti

||pni
(0) − pni

(ti)||∞ ≤ εs ∧ (20)

||pni
(0) − pni

(t)||∞ ≤ ε/2∀t ∈ (0, ti] (21)

ξ0 = mini ti.We continue satisfying the same inequality,
from pni(ξ

0). The following algorithm steers the system of
n agents, satisfying D(pn, pε) ≤ ε:
Algorithm V.1: MOVETOPOINT(n,Ns, {ξj})

for j ← 0 to Ns − 1

do
{

for i ← 1 to n
do MOVEAGENT(i, qi, pni(ξ

j), pni(ξ
j+1))

where of course, the inner loop, is simultaneous for
all agents. We denote as pεs

the trajectory generated by
this algorithm. Obviously, at the end of each repetition of
the outer loop, the position of the system coincides with
pn(ξj+1). Moreover, by construction we have that

∀j,∀t ∈ (ξj , ξj+1]||pn − pεs ||∞ ≤ ε/2 + ε/2 = ε

and therefore D(pn, pε) ≤ ε
The time needed Tε for the completion of pε can be

estimated as
Tε = tm · Ns (22)

which is bounded for any ε. But, while tm is related almost
linearly with ε, the relation of Ns with ε depends on function
β(t). When βt is O(t), then the limt→0+ β(t)/t > 0 and
the Tε remains bounded as ε → 0. Such systems can
follow a trajectory with arbitrary precision. Unfortunately,
for every underactuated system, controlled locally,using Lie
brackets of the input vector fields,limt→0+ β(t)/t = 0. For
these systems, decomposition of the formation trajectory and
the kinematics, cannot give trajectories that can be exactly
executed in finite time.
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To accommodate this kind of behavior, we can allow a
relaxation of the formation constraints, and our goal will
be to control the multiagent system in such a way that
||H(q(t))||∞ < εH ,∀t Keeping the formation constraints in
a bounded ball around zero, is adequate for most practical
purposes, Moreover, if we take into account that even if we
apply exact control,the system will almost always deviate
from the exact position (due to noise,non-modeled phenom-
ena e.t.c.) we come to the conclusion that bounded error on
the formation constraints is the rule and not the exception.
If p a trajectory on M let ps = {q ∈ M |∃ts.t.q = p(t)}. We
restrict our attention to Op = cl(

⋃
q∈ps

B̄(q, εr)) , which
is, by construction, closed and bounded. The set Op is a
closed set, containing the sought system trajectory. Since H
is smooth enough on M , it is smooth enough on Op and
hence ∃Nps.t.||∇H(q)|| < Np∀q ∈ Op By using the ’Mean
Value Theorem’ it easy to see that ∀q ∈ Qp, ||H(q)||∞ ≤
Np · εr. Since the goal is ||H(q)|| ≤ εH , it suffices to take
Nq · εr ≤ εH , or εr ≤ εH/Nq .

Let us now assume that system (1) is not STLC, but
instead, ∀q ∈ M there is an admissible control signal s.t.
the system can reach a ball B(q, ε) in time β(ε) + γ, where
β(ε) is a strictly increasing function with β(0) = 0 and
γ > 0. This kind of timing could be be related either with
the structure of the system, or with timing delays caused by
the communication system. For example, consider a system
of the form q̇u = fu(qu, qd, uu), q̇d = fd(qd, ud) and
assume that qu represents the position and orientation of a
vehicle, while qd represents the internal state of the vehicle
(for example the state of a legged locomotion system). The
formation constraints would be typically imposed on qu, so
we would only be interested on checking the controllability
of fu. Suppose further on, that we can control qu locally, by
giving proper values to qd, i.e. that for a proper value of qd =
h(qu1 , qu2) , qu is STCL. Assuming qd to be controllable in
time Td, it is obvious that qu is (at least) controllable in the
sense described above, and that we can only look at the lower
dimensional switching system q̇u = fui(qu, u) knowing that
it is locally controllable in time Td + β(ε). Systems of this
kind are abundant and therefore it is significant to check
if it is possible to utilize them in formations. For such
systems it holds that ∀qi,∀t > γ, ∃εR(q,Ui, t) ⊃ B(qi, ε)
and ∀qi,∀t < γR(qi,Ui, t) = ∅ Obviously, the same
algorithm described for STLC systems can be used here,
since we assume that the reachability properties are similar.
The difference lies in the time necessary for executing a
given path. This difference will become more lucid, when
we discuss how these systems can track a reference.

B. Tracking a reference

We can pose a similar but more demanding problem.
Consider the system Σ, but defining the task as tracking,
with bounded error, a time signal, i.e. find u(t) ∈ U such
that ||G(q) − p(t)|| ≤ ε1 ∧ ||H(q)||∞ ≤ ε2 assuming
the ∀p,∃q∗s.t.p = G∗(q∗), i.e. that the evolution of p
lies on the consistent with the constraints subspace. The
increased difficulty, comes form the fact the the tracking

Intruder’s Trajectory

Formation

Fig. 2. Formation Tracking Enemy

must be ’real time’, i.e. at every time instant the distance
between system and reference must be bounded. We want
to be able to characterize how quickly the reference can
change values,since we are talking about a moving reference.
Assuming that MH is a metric space, we can define as mean
velocity of the reference Vr = ||q∗

r (t+Δt)−q∗
r t||

Δt
Example 2: Consider a formation of micro-agents that

have to remain in constant distances from each other, since
by this way

• Communication is preserved: small dij

• Maximum Sensor Coverage: large dij

The goal of the system is to follow an foreign, independently
moving object. Fig. 2 depicts this scenario. The red line
corresponds to the reference trajectory, which is not know
a priori, and is consider an input to the system. The mul-
tiagent system has to keep a coherent formation (depicted
in the picture by lines joining the centers of the agents).
The kinematics of these agents are complex and non-linear
([3],[6]) One possible optimized configuration would be for
the micro-agents to keep a constant distance (dig) from one-
another. If we set as formation directive ’Keep interagent
distances steady’, then we can describe all possible valid
configurations using the position of one agent, and an the
orientation of one inter-agent vector and the orientations of
all agents, i.e. q∗ = (x1, y1, θd, θi). The task specification
can be cast as p = G(q) = (x1, y1), and p(t) = rintr(t)+ s,
where rintr is the position of the intruder, and s is a safety
vector. The problem posed is under what constraints can we
design a set of control laws for all the vehicles, so that the
formation can follow the intruder?

It is obvious that we can easily solve this problem, if we
disregard the kinematics of the agents . Just choose q∗(t) =
(rx

intr + sx, ry
intr + sy, 0, 0, ..., 0)

�
We can use the same control paradigm used for steering

the system to a point, for the more demanding task of
tracking a referecne. Tracking the reference might result q
leaving MH , and since evaluation of the task function G
outside MH is of no use, our controller should always steer
q from qcurrent ∈ MH to qnew ∈ MH in such a way that
If u : [Tcurrent, Tnew] → U the control signal for steering q
then :

• ‖|H(Φ(q, u, t))|| ≤ ε2,∀t ∈ [Tcurrent, Tnew]
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• ||G(Φ(q, u, Tnew)) − p(Tnew)|| ≤ ε1

We assume that for t = 0 we have q(0) ∈ MH and
G(q(0)) = p(0), i.e. the system begins tracking while
being on the reference.We also assume that ||∇G∗|| ≤
NG,∀q ∈ MH . This assumption may seem restricting, but
if MH is compact it comes naturally. Moreover, in many
practical occasions G∗ is simply an identity function on
MH (in the aforementioned example, G∗ is a projection
of q∗ onto its two first coordinates). Since ||∇G∗|| ≤ NG,
||q∗1 −q∗2 || ≤ a → ||G∗(q∗1)−G∗(q∗2)|| ≤ NG ·a. When q∗r (t)
assumes a value such that ||q∗r (t) − q∗current|| = ε3, set as
qgoal = C(q∗r (t)), t = t1 and move the system from qcurrent

to qgoal using the algorithm described for a stationary system,
setting as ε = ε2. Since no path is given, we use the shortest
path, which is a straight line, when M is a linear space. The
time needed for this transition to qgoal is Ttr = tm · Ns. At
this time instant, the reference shall be at a point q∗r (t1+Ttr),
while q∗current = q∗r (t1).If the velocity of the reference is
at most Vr, then ||q∗r (t + Ttr) − q∗current|| ≤ Ttr · Vr. If
ε3 ≥ Ttr · Vr, then the error between reference, and system
shall remain constant. The value of ε3 is bounded by ε1/NG,
since the objective is to keep ||G(q) − p|| ≤ ε1

To obtain bounds on the velocity of the reference that we
can track with this method, we need explicit bounds on the
terms of eq. (22). We will assume that B(t) = Vmax · t i.e.
that the radius of the reachable ball grows linearly with time,
while we will assume that β(t) = Vmin · t2, i.e. the radius
of the largest reachable ball grows with t2. (Obviously this
crude estimation is valid only for small times t). Essentially
we assume a STLC system controllable locally using first
order Lie brackets. Therefore we have that tm = ε2/Vmax.
Ns is evaluated as Ns ≤ ε3/β(tm) = ε3

Vmin(ε2/Vmax)2 .

Therefore, Ttr ≤ ε3
Vmax

Vmin

1
ε2

. So

Vr · Ttr ≤ ε3 → Vr ≤ Vmin

Vmax
ε2 (23)

This equation essentially relates the speed of the reference
with ε2 and the ratio of the two quantities Vmax, and Vmin

corresponding respectively to how fast the error grows , and
how fast can we move towards the goal.Also note, that if
β(t) is of O(t), then we obtain Vr ≤ Vmin, which is of
course the expected result.

Eq. (23) essentially reveals that the system can track
any reference, moving with velocity ≤ Vr, always keeping
bounded deviation from the formation zero level. The pa-
rameter ε3 corresponds to the accuracy w.r.t the goal, and
does not affect the velocity of the references the system can
track with this control paradigm.

We now assume that {fi} do not correspond to STLC
systems, but to systems locally controllable, in bounded time,
i.e. that t(ε) = β(ε) + γ, where t(ε) is the time necessary
for the radius of the maximum reachable ball to become ε.In
this case the time for a ε3 step is γ · ε3

ε2
, and hence in this

case the reference velocity bound becomes Vr ≤ ε2/γ

VI. CONCLUSION

In this work we have presented a control paradigm for
use in multi-agent formation problems. Our control strategy
utilizes the local controllability properties of the agents
to decompose the formation planning problem from the
movement of each agent, providing provable error bounds
between the actually and the planned formation trajectory.
Our approach can easily accommodate strange agent kine-
matics and heterogeneous formations as it relies on general
agent properties , while it scales very well with the size
of the formation, making easy to adopt it for use in en-
vironments with hundreds of micro-robots. Moreover, the
implementation simplicity of this control strategy allows use
in environments where computational power is scarce (i.e.
micro-robots).
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