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Abstract— Nondegenerate second-order necessary conditions
of optimality for general nonlinear optimization problems are
presented and discussed in this article. Besides functional
equality and inequality constraints, we also consider constraints
in the form of an inclusion into a given closed set. Without
assuming a priori normality, our conditions remain informative
for abnormal points, and, under very general assumptions also
take into account the second order effect of the curvature of
the set in the inclusion constraints.

I. INTRODUCTION

The main goal of this article is to present and discuss first-
and second-order necessary conditions of optimality, firstly
proved in [5], for the following general nonlinear constrained
optimization problem:

(P1) Minimize f(x)

subject to

⎧⎨
⎩

F1(x) ≤ 0
F2(x) = 0

x ∈ C

where X is a vector space, C ⊆ X is a given closed set, f :
X → R, F1 : X → R

k1 and F2 : X → R
k2 are given smooth

mappings, and k1 and k2 are also given positive integers.
Remark that the inequality above is naturally understood in
a componentwise sense.

An important example of an instance of the above class of
problems is the following optimal control problem discussed
in detail in [3]

(OPC) Minimize J(x0, u, µ)
subject to dx(t) = f(x(t), u(t), t)dt

+G(t)dµ(t), t ∈ [t0, t1],
W1(p) ≤ 0, W2(p) = 0,

µ ∈ K,

where p = (x(t0), x(t1)), x(t0) = x0, x(t1) = x1 for given
t0 and t1 with t0 < t1 and

J(x0, u, µ)=W0(p) +
∫ t1

t0

f0(x(t), u(t), t)dt +
∫

[t0,t1]

g0(t)dµ(t).
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The mappings f0, g0, f , G, Wi, i = 0, 1, 2, are endowed
with the required smoothness assumptions.

The cone K is defined by

K =
{
µ ∈ C∗([t0, t1]; Rk): ∀ continuous φ s.t. φ(t)∈K0 ∀t,

and
∫

B

φ(t)dµ ≥ 0, ∀ Borel B⊂ [t0, t1]
}

,

K being a given convex, closed, pointed cone from R
k, and

K0 being is its dual.
An admissible control is any pair (u, µ), where µ ∈ K

and u ∈ Lm
∞[t0, t1]. A trajectory x : [t0, t1] → R

n, associated
with a control policy (u, µ) is a function of bounded variation
such that

x(t)=x(t0) +
∫ t

t0

f(x(τ), u(τ), τ)dτ +
∫

[t0,t]

G(τ)dµ(τ)

for all t ∈ (t0, t1]. An admissible control process is a triple
(x0, u, µ), where (u, µ) is an admissible control and the cor-
responding trajectory satisfies the given endpoint constraints.
The process (x∗

0, u
∗, µ∗) is a local minimizer of the problem

(OPC) if it possesses an appropriate neighborhood such
that process (x∗

0, u
∗, µ∗) brings the minimum to the problem

(OPC).
Additional comments on this problem, the statement of

first- and second-order necessary conditions of optimality
are, and their proof are presented in [3].

It is not difficult to see that (P1) can be regarded as a
particular instance of the following closely related problem
that has been widely investigated in the literature (see, for
example, [9], [8], [7] and references therein):

(P2) Minimize f̄(x̄)
subject to F̄ (x̄) ∈ C̄.

On the other hand, note that if we define x := col(x̄, x̃),
x̃ := F̄ (x̄), F2(x) := F̄ (x̄) − x̃, f(x) := f̄(x̄), and C :=
C̄ × {0}, (P2) becomes a particular case of (P1). We will
show how the optimality conditions for this problem follow
from the ones derived for (P1).

Given the extremely wide range of classes of optimization
problems such as, for example, nonlinear programming, op-
timal control, calculus of variations, semi-definite and semi-
infinite programming, composite parameterized optimization
problems, and variational problems in mechanics, covered
by these problem paradigms, it is not surprising that a vast
amount of literature addressing a large number of research
issues such as optimality conditions (necessary, sufficient,

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

ThB10.2

0-7803-9568-9/05/$20.00 ©2005 IEEE 7302



first-order, second-order), existence conditions, sensitivity
analysis, optimization algorithms, etc., (see, among the ref-
erences more pertinent to this article, for example, [1], [6],
[7], [9], [10], [14], [16], [21], [22], [23]).

The result discussed here follows naturally from previous
work of the authors on optimization, [1], [2], and applications
optimal control, [3], [4], [5], where inclusion constraints
appear naturally.

We improve on the best existing results on necessary
conditions of optimality (see [16], [17], [12], [8]) in that our
conditions reflect the second order effect of the curvature of
the set inclusion constraint under assumptions weaker than
those usually considered in the literature. In fact, we require
the set C (or C̄) to be merely closed, and, hence, we dispense
with the usually assumed property of convexity.

Another important feature of our results concern the fact
that, in contrast with many results on necessary conditions of
optimality (see, for example [6], [16], [11]), our conditions
remain informative for abnormal problems and hold without
a priori normality assumptions on the data of the problem.
This feature is due to the fact that additional information
from second-order conditions is used in order to select an
appropriate subset of the set of multipliers satisfying the local
necessary conditions of optimality.

The proof of the necessary conditions of optimality dis-
cussed in this article is presented in detail in [5]. It is based
on the removal of the equality and inequality constraints by
using a penalty method. Our conditions are initially proved
for the case in which X is finite dimensional and, then, they
are extended to the ones stated in our result.

This article is organized as follows:
In section II, we present some preliminary definitions

required to state our results. The concepts and some pertinent
properties of normal cone, first- and second-order tangent
cones, as well as that of linear invariant subspace of a set
are discussed. In section III, some additional definitions are
given and the necessary optimality conditions for (P1) are
presented and discussed. Here, we also include a brief outline
of the proof. In the following section, section, problem (P2)
is addressed. Besides presenting the optimality conditions,
we also include a discussion on their relation with those of
(P1). Finally, we include in section V, an example illustrating
these conditions.

II. PRELIMINARY DEFINITIONS

In this section, we introduce some basic general concepts
and objects that will be used throughout the next sections.

Given a vector space X , let us consider the functions f :
X → R and F : X → Y . Let M be the collection of
all finite dimensional subspaces of X and denote its finite
topology by τ . We say that the set A ⊂ X is open in the
finite topology τ if, for any M ∈ M, A ∩ M is open in
the unique Hausdorff vector topology of M . Let f and F
be twice continuously differentiable in a neighborhood of a

given point x0 ∈ X with respect to the finite topology τ .
This implies that

f(x) = f(x0) + 〈a, x − x0〉 +
1
2
q[x − x0]2 + α0(x − x0)

F (x) = F (x0) + A(x − x0) +
1
2
Q[x − x0]2 + α(x − x0)

for some linear functional a ∈ X∗, linear operator A : X →
Y , bilinear form q : X × X → R, bilinear mapping Q :
X ×X → Y , and mappings α0 : X → R

1, and α : X → Y ,
such that, ∀x ∈ X and, for any M ∈ M, such that x ∈ M ,

α0(x − x0)
‖x − x0‖2

M

→ 0, and
|α(x − x0)|
‖x − x0‖2

M

→ 0,

as x → x0.
Here and in what follows, ‖ · ‖M is a finite-dimensional

norm in M and B[x, x] or B[x]2 denote a bilinear mapping
B. The mappings a and q are called, respectively, the first-
and second-order derivatives of f and, from now on, denoted

by
∂f

∂x
(x0) and

∂2f

∂x2
(x0). A similar notation is used for the

mapping F and other functions.

Next, we introduce the type of normal cone used in our
definition of generalized Lagrange multiplier. Assume that
the set C ⊂ X is closed in the finite topology τ of X .
The normal cone to C at x in the sense of Mordukhovich,
NC(x), firstly introduced in [18]) for infinite dimensional
spaces may also be defined as follows

NC(x) =
⋃

M∈M
NM

C (x)

where M is, as above, the set of all finite dimensional
subspaces of X , and

NM
C (x) = lim

x̄∈M

x̄→x

sup
⋃
r>0

{r[x − WM∩C(x)]}

with WM∩C(x) = inf
ξ∈C∩M

{‖ξ − x‖}.

It is worth to remind some important properties of the
Mordukhovich normal cone, (see, for example, [21], [19]).
The normal cone NC(x) is closed, possibly, nonconvex, and
NM

C (·) is upper semicontinuous in C ∩M (here, M ∈ M).

It is well known (see, for example, [19]) that
∂f

∂x
(x0) ∈

−NC(x0) is a necessary condition for x0 to be a minimizer
of f over C. These properties and the fact that it is the
smallest normal cone, makes it the most natural one to derive
necessary conditions of optimality.

We will also need the tangent cone

TC(x) =
⋃

M∈M
TC∩M (x)

where TC∩M (x) is the contingent (Bouligand) cone to the
set C ∩ M at the point x, given by

{d ∈ M : ∃ εn ↓ 0, distM (x + εnd,C ∩ M) = o(εn)}.

7303



The inner and the outer second order tangent cones to C
at x in a direction d are, respectively, given by

T 2
C(x, d)=

⋃
M∈M

T 2
C∩M (x, d), O2

C(x, d)=
⋃

M∈M
O2

C∩M (x, d),

where M ∈ M is an arbitrary finite-dimensional linear sub-
space containing x, and d, and T 2

C∩M (x, d) and O2
C∩M (x, d)

are, respectively, given by{
w ∈ X : distM (x + εd +

1
2
ε2w, C) = o(ε2), ε ≥ 0

}
,

and{
w∈X: ∃εn ↓ 0 s.t. distM (x + εnd +

1
2
ε2
nw,C)=o(ε2

n)
}

.

Obviously, T 2
C(x, d) ⊂ O2

C(x, d). Furthermore, from [7],
it is asserted that both T 2

C∩M (x, d) and O2
C∩M (x, d) and

that O2
C(x, d) �= ∅ only if d ∈ TC(x). Furthermore, while

O2
C(x, d) may fail to be convex, T 2

C(x, d) is always convex
whenever C is a convex set.

Now, following [5], we introduce the concept of invariant
linear subspace (ILS) relatively to a closed set C at x. A
linear subspace is ILS relatively to C at x, denoted by IC(x),
if x + IC(x) ⊆ C, ∀x ∈ C. If this property holds for all
x ∈ C, then it is said to be ILS with respect to C.

Since, for a given closed set C, any linear subspace of
an ILS also is an invariant linear subspace an ILS is not, in
general, unique. For any x ∈ C, put IC(x) = ∩r �=0r[C−x],
being the intersection taken over all r ∈ R, r �= 0.

It is proved in [5] that if the set C is convex, then, ∀x ∈ C,
IC(x) is the maximal ILS relatively C and, therefore, it does
not depend on x.

Note also that, if the C is a convex cone, then IC =
C ∩ (−C) is the maximal ILS.

III. OPTIMALITY CONDITIONS FOR (P1)

Let us consider the problem (P1).
Let λ = (λ0, λ1, λ2) with λ0 ∈ R, λ1 ∈ R

k1 , and λ2 ∈
R

k2 , and define the generalized Lagrangian by

L(x, λ) = λ0f(x) + 〈λ1, F1(x)〉 + 〈λ2, F2(x)〉.

Let Λ = Λ(x0) denote the set of the generalized Lagrange
multipliers λ that correspond to the point x0 according to the
Lagrange multiplier rule (see [19], [20], [7]), i.e., satisfying⎧⎨

⎩
∂L
∂x

(x0, λ) ∈ −NC(x0)

λ0 ≥ 0, λ1 ≥ 0, 〈λ1, F1(x0)〉 = 0, |λ| = 1.

(1)

In what follows, let F1,j denote the jth coordinate of the
function F1.

Let the critical cone of the problem (P ) at the point x0,
K(x0), to be defined by{

h∈TC(x0) : 〈∂f

∂x
(x0), h〉 ≤ 0,

∂F2

∂x
(x0)h=0, and

∂F1,j

∂x
(x0)h≤0 ∀j s.t. F1,j(x0)=0

}
.

Notice that K(x0) is convex if the set C is convex and that,
since it contains zero, is always nonempty.

From now on, we assume without loss of generality that
F1(x0) = 0. This can always be achieved by omitting the
nonactive components of the inequality constraints.

Take any linear subspace M ⊆ X and denote by Λ(x0,M)
the set of all Lagrange multipliers λ ∈ Λ for which there
exists a linear subspace Π ⊆ M (possibly depending on λ)
such that

codimMΠ ≤ k,

Π ⊆ Ker
∂F

∂x
(x0),

∂2L
∂x2

(x0, λ)[x, x] ≥ 0, ∀x ∈ Π,

where, and from now on, codimM and KerA denote, respec-
tively, the codimension relative to the subspace M and the
kernel of the linear operator A : X → Y . Each set Λ(x0,M)
is obviously compact (but it may be empty).

For a given set C ⊆ X , we denote by σ(·, C) its support
function, i.e., for x∗ ∈ X∗,

σ(x∗, C) = sup
x∈C

〈x∗, x〉.

Let us now state our necessary conditions of optimality
for problem (P1).

Theorem 1: Consider the problem (P1) with the function
f and mappings F1 and F2 are twice continuously differen-
tiable and the set C ⊂ X is closed.

Let x0 be a point of local minimum with respect to the
finite topology τ of X .

Then, for each ILS I with respect to C, the set Λ(x0, I)
is nonempty, and, moreover, for each h ∈ K(x0) and any
convex set T (h) ⊆ O2

C(x0, h),

max
λ∈Λa

{
∂2L
∂x2

(x0, λ)[h, h]

−σ

(
−∂L

∂x
(x0, λ), T (h)

)}
≥ 0.

(2)

Here, Λa = convΛ(x0, I) and conv denotes the convex
hull of a set.

Note that this theorem was derived in [1] for the case
C = X , and in [2], [3] for the case in which C is a convex
cone and h ∈ C + span{x0}. Also, if C is a convex cone,
then the tangent cone TC(x) coincides with closure of the
set C + span{x} for each x ∈ C.

Additionally, if h ∈ IC(x0), an ILS relatively to C, then

max
λ∈Λa

{∂2L
∂x2

(x0, λ)[h, h]
}
≥ 0. (3)

To see this, just note that 0 ∈ O2
C(x0, h) and the conclu-

sion is obtained by taking T (h) = {0} in (2).

Now, let us see that if C is a convex set, then

σ

(
−∂L

∂x
(x0, λ), T (h)

)
≤ 0 ∀λ ∈ Λ. (4)
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First, notice that it follows from h ∈ K(x0) that

〈∂L
∂x

(x0, λ), h〉 ≤ 0 holds.
Also, from the convexity of the set C, we have that

−N(x,C) = (TC(x))∗, ∀x ∈ C (K∗ denotes the positive
dual cone to a cone K ⊆ X), and hence, according to (1),
we obtain

∂L
∂x

(x0, λ) ∈ (TC(x0))∗.

Since, for each w ∈ O2
C(x0, h), we have

εnh +
1
2
ε2

nw + o(ε2
n) ∈ C − x0 ⊆ TC(x0)

(being the last inclusion due to the convexity of C) and, by
using the first inequality obtained in this proof, we obtain,

ε2
n〈

∂L
∂x

(x0, λ), w〉+ o(ε2
n) ≥ 0. This and the arbitrariness of

w proves (4).
We also proved that, if the set C is convex, then condition

(3) becomes stronger then (2).

In the case C is a convex cone, if either h ∈ C +
span{x0}, or the cone C has a finite number of faces, then
σ(x∗, T 2

C(x0, h)) = 0, ∀x∗ ∈ NC(x0).

In [8], [11], [17] many examples can be found for which
the additional term σ does not disappear. The following
simple example shows that, if the set C is not convex,

then the term σ

(
−∂L

∂x
(x0, λ), T (h)

)
may become strictly

positive.

Let C = {x = (x1, x2) ∈ R
2 : xl

1 ≥ xm
2 } where l and m

are given positive integers such that l ≤ 2m. If h = (1, 0),
then it is obvious that the outer second-order tangent set
O2

C(0, h) contains a ball δB, B = {w ∈ R
2 : ‖w‖ ≤ 1}, for

some δ > 0. Obviously, σ(ζ, δB) > 0, ∀ζ �= 0. Obviously,
for the set C and the vector h constructed above, condition

(2) is stronger than condition (3) if
∂L
∂x

(x0, λ) �= 0.

Let us outline the proof of theorem 1. We start by consid-
ering X to be finite dimensional and show, in a first stage,
that the set of multipliers Λa is nonempty. This involves the
formulation of sequence of optimization problems originated
from (P1) by removing the equality and the inequality
constraints by penalization, that is, only the set inclusion
constraint is present. Then, after the first- and second-order
necessary conditions of optimality are proved and expressed
in terms of the data of the original problem, the limit is taken
to reveal the desired conclusion.

The ensuing stage consists in proving, still in the finite
dimensional context, a second-order variational inequality.
This is achieved by constructing a sequence of auxiliary
optimization problems with reference to a sequence of points
converging to the solution of the original problem and
depending explicitly on two directions, one in the critical
cone and another in the second-order contingent cone. After
showing that the corresponding sequence of solutions con-
verges to the one of the original problem, the result proved
in stage one is applied, being the desired conclusion obtained
in the limit.

The conclusion of stage two is derived for infinite dimen-
sional X in the third stage. Here, a key role is played by the
finite topology τ introduced earlier, together with the fact
that the family of sets of appropriate multipliers obtained
by considering X ∩ M , indexed by the finite dimensional
subspace M , is a centered system of sets.

The proof is concluded by showing that the order of the
inf and max operations can be changed.

IV. OPTIMALITY CONDITIONS FOR (P2)

Given the fact that many important and interesting results
are stated for problems formulated as (P2), we consider here
the optimality conditions for this class of problems. Let x0 ∈
X be the solution to the problem:

(P2) Minimize f(x)
subject to F (x) ∈ C,

where C is a given closed set in Y = R
k, and f and F are

twice continuously differentiable with respect to the finite
topology τ in a neighborhood of x0.

As in the statement of conditions for problem (P1), we
require the following definitions.

Let LP2(x, λ) = λ0f(x) + 〈λ̄, F (x)〉 with λ = (λ0, λ̄),
λ0 ∈ R

1, and λ̄ ∈ Y ∗.
Denote by ΛP2 = ΛP2(x0) the set of the Lagrange

multipliers λ associated with problem (P2) corresponding
to the point x0 according to the Lagrange multiplier rule:

∂LP2

∂x
(x0, λ) = 0, λ0 ≥ 0, λ̄ ∈ NC(F (x0)), |λ| = 1.

Take any linear subspace M ⊆ Y and consider the set of
all Lagrange multipliers λ ∈ ΛP2 for which there exists a
linear subspace Π ⊆ X (depending on λ) such that

codimΠ ≤ k,

Π ⊆
(

∂F

∂x
(x0)

)−1

(M),

∂2LP2

∂x2
(x0, λ)[h, h] ≥ 0, ∀h ∈ Π

(Here, codim = codimX .) We denote this set of Lagrange
multipliers by ΛP2(x0,M).

Theorem 2: Let x0 be a point of local minimum with
respect to the finite topology τ of the problem (P2).

Then, for each ILS I with respect to C, the set ΛP2(x0, I)
is nonempty, and, moreover, for each h ∈ KP2 , defined by{

h :
∂F

∂x
(x0)h ∈ TC(F (x0)), 〈∂f

∂x
(x0), h〉 ≤ 0

}
,

and, for each convex set T (h) ⊆ O2
C(F (x0),

∂F

∂x
(x0)h), the

following condition holds

max
λ∈Λ

P2
a

(
∂2LP2

∂x2
(x0, λ)[h, h] − σ

(
λ̄, T (h)

))
≥ 0. (5)
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Here, ΛP2
a = convΛP2(x0, I).

Proof: As it was observed in the introduction, this
problem can be regarded as particular instance of the problem
(P1).

By applying theorem 1 to this particular instance of
problem (P1), we obtain the Lagrangian

L(x, y, λ) = λ0f(x) + 〈λ̄, F (x) − y〉

and conditions (1) become

∂L
∂y

(x0, F (x0), λ) = −λ̄ ∈ −NC(F (x0)).

Now, by using the later inclusion, formulas (1) and (2) and
definition of the set ΛP2

a we obtain the desired conclusion.
The theorem is proved.

There is a significant set of publications, notably [7], [8],
addressing (P2). By assuming the convexity of the set C
and Robinson’s constraint qualification for arbitrary Banach
space Y , the following optimality condition was derived:

max
λ∈ΛP2

(
∂2LP2

∂x2
(x0, λ)[h, h]

−σ

(
λ̄, T (h)

))
≥ 0 ∀h ∈ KP2 .

(6)

Clearly, theorem 2 shows that, for finite dimensional Y ,
the result of [8] holds for generalized Lagrangian without
Robinson’s constraint qualification and without the convexity
assumption on C.

Moreover, since, in general, ΛP2
a ⊆ convΛP2 , (5) is

stronger than (6).
At the same time, under Robinson’s constraint qualifica-

tion, we can guarantee in theorem 2 that λ0 > 0, ∀λ ∈ ΛP2 .
Finally, note that if C is a closed and pointed convex cone,

that is C ∩ [−C] = {0}, then the maximal ILS IC is equal
to {0} and the inclusion above becomes an equality.

The necessary conditions of optimality (6) for the problem
without Robinson’s constraint qualification and for which
the convex set C has nonempty interior was obtained in
[8]. Another type of necessary conditions of optimality was
obtained in [14], [15] for the problem without Robinson’s
constraint qualification and for which C has nonempty
interior and has a finite number of faces.

V. EXAMPLE

Let us consider the following semi-definite programming
problem

(P ) Minimize f(x)
subject to F1(x) ∈ Sp

−
F2(x) = 0,

being

• X = R
n, Y = Sp×R

k2 , where Sp is the space of p×p
symmetric matrices,

• n, p, k2 given integers,
• C = Sp

− × {0}, where Sp
− the cone of negative semi-

definite matrices,
• f :X →R a given smooth function which is assumed

(without loss of generality) to satisfy
∂f

∂x
(0) �= 0,

• F1:X→Sp defined by F1(x) :=
∑
i,j

xixjSi,j + ψ1(x),

where xi are coordinates of vector x, and Si,j are given
symmetric matrices,

• F2 : X → R
k2 defined by F2(x) =

1
2
Q(x) + ψ2(x)

where the bilinear mapping Q : X × X → R is
defined by Q(x) = (〈Q1x, x〉, ..., 〈Qk2x, x〉) where Qi

are given symmetric matrices, being
ψl, l = 1, 2, given smooth mappings such that ψl(0)=0,
∂ψl

∂x
(0) = 0,

∂2ψl

∂x2
(0) = 0, l = 1, 2.

Let k := p(p + 1)/2 + k2, F = (F1, F2) and equip the
space Sp with scalar product A•B = trace(AB). Then, the
dual cone to Sp

− is the cone Sp
+ of all positive semi-definite

matrices. (See details in [8].)

Consider the point x = 0. It can be readily seen that

this is an abnormal point and, hence, because
∂F

∂x
(0) = 0,

Robinson’s constraint qualification is not satisfied. Therefore,
known necessary conditions, [8], cannot be applied.

On the other hand, by applying theorem 2, we obtain the
following necessary conditions of optimality:

If x = 0 is a local minimum for (P ), then λ0 = 0 (again,

from the fact that
∂F

∂x
(0) = 0) and, hence, ∀h ∈ R

n, ∃λ1 ∈
Sp

+, λ2 ∈ R
k2 , such that⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ind
(∑

i,j

hihjSi,j • λ1 + 〈Q(h), λ2〉
)
≤ k,

(λ1, λ2) �= 0,∑
i,j

hihjSi,j • λ1 + 〈Q(h), λ2〉 ≥ 0.

(7)

where, ind q denotes the index of the quadratic form q on a
given space V which can be defined as the dimension of a
subspace of V of maximum dimension where the quadratic
form q is negative definite.

Notice that we used the fact that if h /∈ KP , then −h ∈ KP

and that σ(λ1, T
2
Sp
−
(0, 0)) = 0 for each λ1 ∈ Sp

+.
Therefore, we conclude that if there exists h ∈ R

n such
that ∑

i,j

hihjSi,j • λ1 + 〈Q(h), λ2〉 < 0

for any (λ1, λ2) which satisfies (7) (in particular, if

ind
(∑

i,j

hihjSi,j • λ1 + 〈Q(h), λ2〉
)

> k, ∀(λ1, λ2) �= 0

such that λ1 ∈ Sp
+), then x = 0 cannot be a local minimum

of the problem.
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