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Abstract— Dealing with nuisance parameters is an impor-
tant issue in monitoring safety-critical complex systems and
detecting events that affect their functioning. Several tools for
solving statistical inference problems in the presence of nuisance
parameters are described. The application of these tools to
(off-line) hypotheses testing and (on-line) change detection is
discussed. The usefulness of some of the proposed methods is
illustrated on a couple of monitoring problems.

I. INTRODUCTION

Monitoring complex structures and processes is necessary
for fatigue prevention, aided control and condition-based
maintenance. We have argued [1], [2] that i) faults can often
be modeled as deviations, w.r.t. a nominal reference value, in
the parameter vector of a stochastic system; ii) mathematical
statistics theories and tools for solving hypotheses testing
and change detection problems are relevant for addressing
monitoring problems; iii) key features of these methods are
their ability to handle noises and uncertainties, to select one
among several hypotheses, to reject nuisance parameters.

Handling the presence of nuisance parameters is indeed an
important issue in this framework. Distinguishing two sub-
sets of components of the parameter vector, the parameters
of interest and the nuisance parameters, may be necessary for
at least two reasons. First, some parameters of no interest for
monitoring, if not of no physical meaning, may appear in the
model for e.g. model flexibility or specification, or for data
interpretation reasons. Second, the fault isolation problem
(deciding which fault mode occurred) can be approached as
deciding in favor of one fault mode while considering the
other fault modes as nuisance information.

The purpose of this paper is to investigate the nuisance
parameters issue in monitoring and fault detection, isolation
and diagnosis (FDI) problems. A particular emphasis is put
on the invariant and generalized likelihood ratio (GLR) ap-
proaches to detection in the presence of nuisance parameters.
Moreover, whereas the discussion in [2] has concentrated on
(off-line) hypotheses testing, in the present paper the (on-
line) change detection problem is addressed.

The paper is organized as follows. A basic model and the
two off-line and on-line inference problems are introduced in
section II, together with key criteria for evaluating decision
algorithms. Section III is devoted to the handling of nuisance
parameters : classical tools are briefly reviewed and three sta-
tistical approaches – invariant tests, GLR tests and minimax
tests – are discussed. How to use these three approaches
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for change detection and hypotheses testing is explained in
section IV. Hypotheses testing is addressed in IV-B. Change
detection is the subject of IV-C, where on-line detection
and isolation of changes occurring within a data sample is
investigated. Some examples of FDI problems with nuisance
parameters are described in section V. Some conclusions are
drawn in section VI.

II. STATISTICAL TESTS FOR MONITORING

As argued in [2], two situations are relevant to monitoring :
i) hypotheses testing, namely deciding between two (or more)
hypotheses, for detecting (or isolating) faults; ii) detection
and isolation of changes soon after their onset time. These
two situations are now described.

A. Hypotheses testing

1) Problem statement: The parameterized distribution of
the observations is noted as (Y1, . . . , YN ) = Y ∼ Pθ. The
parameter vector θ is partitioned as:

θT = (φT , ψT ), φ ∈ R
m, ψ ∈ R

q (1)

where φ (resp. ψ) is the informative (resp. nuisance) parame-
ter. Here, the informative parameter vector φ is assumed to be
constant within the entire data sample Y = {Y1, . . . , YN}.

The hypotheses testing problem consists in deciding which
family of distributions Pi = {Pθ, φ ∈ Φi, ψ ∈ R

q} is the
true one. The null hypothesis H0 corresponds to the fault
free case, e.g. a nominal parameter φ within a set Φ0:

H0 : φ ∈ Φ0 ⊂ R
m, ψ ∈ R

q. (2)

The alternative hypotheses stand for different fault modes:

Hi : φ ∈ Φi ⊂ R
m, ψ ∈ R

q (i = 1, . . . ,K), (3)

where Φi

⋂
Φj = ∅ for i �= j. In case of a single fault mode,

the only problem to solve is the detection one. When K > 1,
the isolation and diagnosis problems have to be solved also.

A statistical test for testing between the Hi’s is any
measurable mapping δ : (Y) → {H0,H1, . . . ,HK} from
the observation space onto the set of hypotheses. The quality
of a statistical test is defined with a set of error probabilities:
αi(φ, ψ) = Pi (δ �= Hi) , i = 0, . . . ,K, where Pi stands for
observations Y1, . . . , Yn being generated by distribution Pi.
The test power is defined with a set of probabilities of
correct decisions: βi(φ, ψ) = Pi (δ = Hi) , i = 1, . . . ,K in
the class of tests with upper-bounded maximum false alarm
probability Kα =

{
δ : supφ∈Φ0, ψ P0(δ �= H0) ≤ α

}
.
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2) Roles of informative and nuisance parameters: As
made explicit in the two equations above, the performance
indexes of statistical tests are functions of both the informa-
tive parameters φ and nuisance parameters ψ. The desirable
relations between the error probabilities or the power of a
test and the informative vector φ usually result from the
application. Sometimes, the statistician must define some
additional constraints (possibly artificial w.r.t. the applica-
tion) resulting from the statistical nature of the problem, in
order to achieve optimal properties of the test. For example,
a family of surfaces parameterized by Kullback-Leibler (KL)
distance between the densities corresponding to H0 and Hi

is assumed and a constant power of the test over such a
family is imposed. This results in a test power which is an
increasing function of KL distance.

The main difference between φ and ψ is the following. In
contrast to the informative parameter, the nuisance parame-
ter ψ has no desirable impact on the performance indexes.
When designing a test for deciding between hypotheses in
the presence of a nuisance parameter, the goal is to achieve
performance indexes independent from the actual value of ψ.

3) UBCP tests: For introducing the uniformly best con-
stant power (UBCP) test, the nuisance-free case is consid-
ered, namely θ is entirely composed of informative param-
eters: θ = φ. The first solution to the composite hypotheses
testing problem for a vector parameter traces back to [3],
and summarizes as follows for a Gaussian mean. The ob-
servation Y is generated by a Gaussian distribution N (θ, Σ)
with mean θ and positive definite covariance matrix Σ, and
the problem consists in deciding between H0 :{θ = 0} and
H1 : {θ �= 0}. The UBCP test defined on the family of
surfaces (ellipsoids):

S = {Sc : θT Σ−1θ = c2, c > 0} (4)

is given by [3]:

δ∗(Y ) =
{ H0 if Λ(Y ) = Y T Σ−1Y < h(α0)

H1 if Λ(Y ) = Y T Σ−1Y ≥ h(α0)
, (5)

where h(α0) is tuned from the false alarm probability α0.
When the number of observations is large (N → ∞),

an asymptotic approach can be used for deciding between
H0 : {θ = θ0} and H1 : {θ �= θ0}. In the general case
Y ∼ Pθ, the relevant family of surfaces then writes:

S = {Sc : (θ − θ0)T F(θ0) (θ − θ0) = c2, c > 0} (6)

where F(θ) = Eθ (∂ log fθ(Y )/∂θ) · (∂ log fθ(Y )/∂θ)T (7)

is Fisher information matrix. Defining asymptotic optimality
is somewhat complex [3], and always involves a sequence
of tests {δN}. It can be shown [3–6] that the test based on:

Λ(Y1, . . . , YN ) = N (θ̂N − θ0)T F(θ0) (θ̂N − θ0), (8)

where θ̂N is the maximum likelihood estimate (MLE) of θ,
is asymptotically UBCP over the family of surfaces S.

The statistics Λ(Y ) in (5) obeys a χ2 distribution with
m degrees of freedom, central under H0, with noncentrality
parameter c2 under H1, and the power function:

βδ∗(c2) = Pc2 (Λ(Y ) ≥ h(α)) (9)

is constant over the surface Sc [7, Ch.2.7]. Under some
regularity conditions, Λ(Y1, . . . , YN ) in (8) is also asymp-
totically χ2-distributed with m degrees of freedom, central
under H0 and noncentral under H1. Finally, since the defi-
nition of the family (4) (resp. (6)) involves the KL distance
ρ(θ, θ0)

∆= 1/2 (θ − θ0)T F(θ0) (θ − θ0) (resp. its second
order approximation), the (asymptotic) power βδ∗ of the
(asymptotically) UBCP test is a function of the KL distance.

B. Change detection/isolation

For introducing the second situation, the nuisance-free
case θ0 = φ0 is considered as above. The sequence of
observations Y = {Y1, . . . , YN} is generated by the dis-
tribution Pθ0 . Until time k0 − 1, the parameter is θ(k) = θ0

and, from k0 onwards, it becomes θ(k) = θl for some l,
1 ≤ l ≤ K. The fault onset time k0 and fault index l
are assumed unknown and non random1. The problem is
to detect and isolate the change in θ (in other words, to
determine the fault type index l) as soon as possible.

The change detection/isolation algorithm should compute
a pair (N, ν) based on the observations (Yk)k≥1, where ν,
1 ≤ ν ≤ K, is the final decision and N is the alarm time at
which a ν-type change is detected. There are several different
criteria to evaluate a change detection/isolation algorithm.

1) Worst case conditional detection/isolation delay: For
k0 = 1, 2, · · · , let P l

k0
be the distribution of the observations

Y1, Y2, · · · , Yk0 , Yk0+1, · · · when Yk0 is the first observation
with distribution Pl, and let E

l
k0

(resp. E0) be the expectation
w.r.t. the distribution P l

k0
(resp. P0 = P0

∞). Following [10],
the worst case conditional detection/isolation delay2 :

E
∗
(N) ∆= sup

k0≥1,1≤l≤K
esssup E

l
k0

(
(N−k0+1)+|Yk0−1

1

)
(10)

where x+ = max(0, x), is required [11] to be as small as
possible for a given minimum γ of the mean times before
false alarm or false isolation:

E0

(
inf
r≥1

{Nr :νr =j}
)

≥ γ, El
1

(
inf
r≥1

{Nr :νr =j}
)

≥ γ (11)

for 1 ≤ l, j �= l ≤ K. For a more tractable performance
index, the isolation constraint in (11) has been replaced [12]
by the probability of false isolation:

P
l
1(ν = j �= l) ≤ β ∼ γ−1 as γ → ∞. (12)

An asymptotic lower bound for the worst case delay (10)-
(12), which extends the result in [10], is [9], [11]:

E
∗
(N ; γ) � log

γ

ρ∗
as γ → ∞, (13)

1The results of a Bayesian approach can be found in [8], [9].
2We say that y = esssup x if : i) P(x ≤ y) = 1; ii) if P(x ≤ y′) = 1

then P(y ≤ y′) = 1, where y, y′, x are three random variables and P(A)
is the probability of the event A.
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where ρ∗ ∆= min
1≤l≤K

min
0≤j �=l≤K

ρ(θl, θj)

and 0 < ρ(θl, θj)
∆= E

l
1

(
log

fθl
(Yi)

fθj
(Yi)

)
< ∞

is the KL information, which definition, in the general case
of dependent observations, is more complicated [9].

2) Uniformly constrained conditional probability of false
isolation: The drawback of criterion (10)-(12) lies in that
the probability of false isolation is constrained only if the
change time is k0 = 1. A more tractable criterion [13],
[14] consists in minimizing the maximum mean delay for
detection/isolation:

E(N) ∆= sup
k0≥1,1≤l≤K

E
l
k0

(N − k0 + 1 | N ≥ k0) (14)

subject to the constraints:

E0(N) ≥ γ, sup
k0≥1

P
l
k0

(ν = j �= l|N ≥ k0) ≤ β, (15)

for 1 ≤ l, j �= l ≤ K. An asymptotic lower bound n(γ, β)
for the maximum mean delay (14)-(15) is given by [14]:

E(N ; γ, β) � max
{

log
γ

ρ∗d
, log

β−1

ρ∗i

}
(16)

as min{γ, β−1} → ∞, where ρ∗d =min1≤j≤K ρ(θj , θ0) and
ρ∗i =min1≤l≤K min1≤j �=l≤K ρ(θl, θj).

3) Uniformly constrained probabilities of false alarm and
false isolation within a time window: For some safety-critical
applications, it is necessary to warrant that the false alarm
and false isolation probabilities within a time window with
size mα are lower than a prescribed upper bound. Since the
constraint E0(N) ≥ γ does not necessarily imply that the
probability of having a false alarm before some specified
time instant is small, it is proposed in [9] to minimize the
mean delay for detection/isolation for every 1 ≤ l ≤ K:

E
l
k0

(N − k0 + 1)+ (17)

subject to the following constraints :

sup
k≥1

P0(k ≤ N < k + mα) ≤ α mα (18)

sup
k0≥1

P
l
k0

(k0 ≤ N < k0 + mα ∩ ν �= l) ≤ α mα (19)

on the false alarm and false isolation probabilities. For every
1≤ l≤ K, an asymptotic lower bound for (17) under (18)-
(19) which holds uniformly in k0 when α→0 is [9] :

E
l
k0

(N−k0+1)+ ≥ P0(N ≥ k0) | log α|
ρl + o(1)

(20)

where ρl
∆= minj �=l ρ(θl, θj).

Note that, because of (13), (16) and (20), the perfor-
mance indexes of the change detection/isolation algorithms
discussed in this section are functions of KL distances, as it
is the case for the hypotheses testing algorithms in II-A.

III. DEALING WITH NUISANCE PARAMETERS

After a brief review of available methods for handling
nuisance parameters, we discuss two statistical approaches to
monitoring in the presence of nuisance parameters : invariant
tests, GLR and minimax tests. The emphasis here is put on
the GLR test, both for its connection with the invariant one,
and for its usefulness in the bounded and non-linear cases.
Other approaches to testing are described in [2].

A. Nuisance parameter elimination

Eliminating nuisance parameters is a long-standing and
major issue in statistical inference [15]. So many methods
have been proposed so far that it is impossible to describe all
of them in this section. Instead, we overview some key ideas
for reducing or eliminating the effect of nuisance parameters.

From a Bayesian point of view, computing the marginal
posterior distribution of the parameter of interest should help
eliminating a nuisance parameter [16], but in practice the
situation might be much less simple [17].

In the likelihood approach, the problem is to find a
likelihood function for the parameter of interest only [18]. In
special cases, it may happen that the marginal distribution of
some components of the observation do not depend on the
nuisance parameter ψ. Another idea is to base the inference
for φ on a conditional distribution of the observations given
a sufficient statistics for ψ for fixed φ [19]. Such distribu-
tions, called marginal likelihood and conditional likelihood
respectively, can then be used as pseudo-likelihoods for φ.
Such approaches should be used with care [17] (a marginal
and a conditional distribution may provide different results
[15]). The use of conditional score functions is supported
by optimality results, whereas marginal score functions are
not [19]. A detailed discussion of modern developments can
be found in [20][Chap.8]. How the nuisance information is
parameterized may be of key importance for that.

A property of particular interest is parameter orthogonali-
ty : the parameter of interest φ is said to be orthogonal (w.r.t.
Fisher information) to the nuisance parameter ψ if their cor-
responding score functions are uncorrelated, or equivalently
when the block off-diagonal terms Fφψ of Fisher matrix is
zero [21], [22]. Local (resp. global) orthogonality stands for
these conditions holding for one (resp. all) parameter values.
In case of orthogonality, the MLE’s of both parameters φ
and ψ are asymptotically independent. When φ is scalar,
a transformation to orthogonal parameterization can always
be found [22]. Parameter orthogonality is a special case of
estimating functions orthogonality discussed in [19]. Taking
advantage of an invariance property of the probability distri-
bution under some transformations is known under the name
of invariant approach [23] and further investigated in III-B.

The most general likelihood-based approach, further de-
veloped in III-C for testing, consists in maximizing the likeli-
hood over the nuisance parameter. The profile likelihood, also
called concentrated or peak likelihood, is Lp(φ) ∆= L(φ, ψ̂φ)
where ψ̂φ is the MLE of ψ for fixed φ [24]. The score
function corresponding to the profile likelihood is no longer
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zero-mean. When the number of nuisance parameters is
small w.r.t. the sample size, this bias is often negligible.
This no longer holds in case of many nuisance parameters.
Corrections to the profile likelihood have been proposed [22].

B. Invariant tests

When testing, as in (2) - (3), in the presence of a nuisance
parameter ψ ∈ R

q completely unknown and non-random, a
test statistics δ is wanted independent of the value of ψ.
The theory of invariance can be used for this purpose. For
instance, if the distribution of the observation Y depends
on g(ψ), where g is a vector-valued function, then it is natural
to state the hypotheses testing problem as invariant under the
group of transformations G = {g : ψg = g(ψ)}.

To apply the invariant test theory, it is necessary to check
that the family of distributions Pθ remains invariant under
a group of transformations G (see [23] for details and
definitions), which induces in the parameter space the group
G = {g} that leaves both Θ0 and Θ1 unchanged. The
optimal invariant tests are based on the maximal invariants
(invariance principle [23]). Let T = T (Y ) be a maximal
invariant. A statistics S is invariant if it depends on the
observation Y via the maximal invariant T : S = ϕ(T (Y )).

C. GLR tests

The invariant approach to testing may be of poor if not
no help when a group of transformations G under which
the problem remains invariant is hard to find, or when the
maximal invariant does not exist. For example, as shown
in section IV, for a linear model with bounded nuisance
parameters ψ ∈ Ψ, it is difficult to show that the hypotheses
testing problem is invariant, whereas the unbounded nuisance
case is usually to be solved with invariant tests. The same
kind of difficulties takes place in case of stochastic model
with non-linear nuisance parameters.

The likelihood ratio (LR) is a standard decision statistics
in a wide class of hypotheses testing problem. But in the case
of nuisance parameter, the LR cannot be directly computed
because of the unknown vector ψ. Hence, an adaptive testing
method (i.e. a method based on the estimation of ψ from
input data) as the GLR test δ̂ can be used :

δ̂(Y ) =

{
H0 if Λ̂(Y ) < h(α)
H1 if Λ̂(Y ) ≥ h(α)

(21)

where Λ̂(Y ) ∆= 2 log
supφ∈Φ1,ψ∈Ψ fφ,ψ(Y )
supφ∈Φ0,ψ∈Ψ fφ,ψ(Y )

.

D. Minimax tests

The minimax method considers the worst case situation,
e.g. the closest alternatives. It consists in optimizing the
worst case situation [23], [25]: a test δ is minimax in Kα

if it maximizes the minimum power in this class:

∀δ ∈ Kα : inf
φ∈Φ1, ψ

β δ(φ, ψ) ≥ inf
φ∈Φ1, ψ

βδ(φ, ψ) (22)

In the case of nuisance parameters, this requires, first, to
define a probabilistic distance (KL, for instance) and find a
set of closest alternatives; to design a test, optimal in some
sense over that set corresponding to the worst case.

IV. APPLICATION TO HYPOTHESES TESTING AND

CHANGE DETECTION/ISOLATION

We now address the application of techniques described
in III to the two testing situations introduced in II, and first
define a generic model with nuisance parameters.

A. Generic observation model with nuisance parameters

Consider the discrete time stochastic system:

Yk = F(Xk, φ(k), ξk, k), (23)

where Y ∈ R
r is the measured output, φ ∈ R

m the parameter
of interest, Xk ∈ R

q an unknown vector (typically a state or
a nuisance fault parameter), ξ a zero-mean white noise. This
system is observed sequentially: at time n, Y1, . . . , Yn are
available. Several cases of model (23), which turn out to be
relevant in practice, are discussed in section V.

B. Hypotheses testing

Testing hypotheses in the presence of nuisance parameters
is first addressed in a particular case.

1) Linear model - Invariant test: A linear instance of (23)
of wide interest [26], [27] is:

Yk = H Xk + M φ + ξk, (24)

where r > max{m, q}, H is a r × q full column rank
(f.c.r.) matrix, M is a r × m f.c.r. matrix, and the white
noise ξk ∼ N (0, σ2Ir) is Gaussian distributed with known
σ2 > 0. The application of the invariance principle to the
hypotheses testing problem (2) - (3) for model (24) involves
the projection of Y onto the orthogonal complement R(H)⊥

of the column space of matrix H . It results from [27] that
the invariant UBCP test is given by:

δ∗(Y ) =
{ H0 if Λ(Y ) < h(α)

H1 if Λ(Y ) ≥ h(α) (25)

where Λ(Y ) = Y T PHM
(
MT PHM

)−1
MT PHY/σ2 (26)

and PH = Ir − H(HT H)−1HT . Test (25) is UBCP over
the family of surfaces:

SWM =
{

Sc : 1/σ2 ‖WMφ‖2
2 = c2, c > 0

}
. (27)

2) Linear model - GLR test: For the linear model (24), it
can be shown that the GLR test writes:

Λ̂(Y ) = 2 log
supφ,X fφ,X(Y )

supX fX(Y )
=

Y T (PH − P
eH)Y

σ2
= Λ(Y )

where H̃
∆= (H M), P

eH = Ir−H̃(H̃T H̃)−1H̃T is assumed
to be f.c.r., and Λ(Y ) is in (26). Hence, the GLR test for
model (24) is an optimal invariant test.

3) Linear model - Minimax test: For the linear model
(24) with M = Ir, it is easy to see that the KL distance is
decomposed in the following manner:

ρ(θ, 0) ∆= ρ1(θ, 0) + ρ2(θ, 0) =
1

2σ2
θT PHθ +

1
2σ2

θT P⊥
H θ,

where P⊥
H = H(HT H)−1HT . The cylindric surface of

equal power can be interpreted as a surface of equal compo-
nent ρ1(θ, 0) of KL distance which defines the set of closest
to R(H) alternatives.
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4) Non-linear model and/or bounded parameters: As
mentioned above, for the non-linear model:

Yk = H(Xk) + M(φ) + ξk, (28)

or for the linear model (24) with bounded nuisance param-
eters Xk ∈ X ⊂ R

q , the application of the invariant tests
theory is usually very difficult. The solution is the GLR
test, and sometimes the minimax test. If the non-linearity
of functions H(.) and M(.) is moderate, then an ε-optimal
solution with a guarranted loss of optimality w.r.t. a linear
model can be obtained by using the linearization of H(.) and
M(.) and applying the invariant solution as an approximation
to an optimal one for limited sets of values of X and φ [28].

5) Local asymptotic model: The linear model (24) is also
of interest when monitoring non-linear systems and/or non-
Gaussian noises, thanks to the asymptotic local approach
[29]. This approach, which assumes small changes, is aimed
at circumventing the (difficult) issue of unknown distribution
of most decision functions, including the likelihood ratio.
Other estimation methods than ML can be considered in
building residuals for monitoring component faults affecting
the dynamics of a system. Performing the early detection
and isolation of slight deviations of a process, w.r.t. a
reference behavior, is of crucial importance for condition-
based maintenance. The local approach provides tools which
perform the early warning task [29].

Typically, a residual writes under the form:

ζN (θ) ∆=
N∑

k=1

K(θ, Zk)/
√

N (29)

where K is an estimating function for θ and Zk is an
auxiliary process based on (Yk) [29]. Under some conditions,
the residual ζN is asymptotically Gaussian distributed, and
reflects a small fault by a change in its mean vector.

Based on a first order Taylor expansion of (29):

ζN (θ)≈ζN (θ0) + 1/
√

N

N∑
k=1

∂/∂θK(θ0, Zk)Υ/
√

N

the following CLT can be shown to hold [6]:

ζN (θ0) →
{ N (0, Σ(θ0)) under Pθ0

N (M(θ0)Υ, Σ(θ0)) under Pθ0+Υ/
√

N

provided Σ(θ0) is positive definite,

with M(θ0)
∆= − Eθ0 ∂/∂θ K(θ, Zk)|θ=θ0

(30)

and: Σ(θ0)
∆= limN→∞ ΣN (θ0), where:

ΣN (θ0)
∆= Eθ0

(
ζN (θ0) ζT

N (θ0)
)

= 1/N
∑N

k=1

∑N
j=1 Eθ0

(
K(θ0, Zk)KT (θ0, Zj)

) (31)

This theorem means that a small deviation in θ is reflected
into a change in the mean of ζN (29), which is asymptotically
Gaussian distributed with the same covariance matrix under
both null and local alternative hypotheses.

The main use of this asymptotic Gaussianity result is the
design of asymptotically optimum tests between composite

hypotheses [6]. For deciding between Υ=0 and Υ �=0, the
optimum test statistics is the GLR which, in this case, writes:

χ2
N = ζT

N Σ−1
N M

(
MT Σ−1

N M
)−1

MT Σ−1
N ζN (32)

where the dependence on θ0 has been removed for simplicity.
Under both hypotheses, test (32) is distributed as a χ2-
random variable with l(= dim Υ) degrees of freedom, and
non-centrality parameter γ = ΥT MT Σ−1MΥ under H1.
The estimation of M(θ) in (30) is obtained using sample
averaging. Estimating Σ(θ) in (31) is more tricky [31].

C. Change detection/isolation

Pursuing the discussion of the linear model (24), we are
now interested in detecting a change from 0 to φl �= 0, while
considering X as an unknown nuisance parameter.

1) Invariant change detection/isolation: Motivated by the
navigation system integrity monitoring discussed in sec-
tion V, consider again the case of model (24) with M = Ir.
This now writes:

Yk = HXk + φl(k, k0) + ξk

where φl(k, k0) is the l-type change occurring at time k0:

φl(k, k0) =
{

0 if k < k0

φl if k ≥ k0
, 1 ≤ l ≤ K. (33)

The recursive invariant algorithm asymptotically attaining the
lower bound for the maximum detection/isolation delay (14)
is given by the alarm time and final decision (Nr, νr) [14]:

Nr
∆= min

1≤l≤K−1
{Nr(l)}, νr

∆=arg min
1≤l≤K−1

{Nr(l)}, (34)

where

Nr(l)=inf
{
t≥1 : min

0≤j �=l≤K−1
[gt(l, 0)−gt(j, 0)−hl,j ]≥0

}
and the recursive decision function gt(l, 0) is defined by:

gt(l, 0) = (gt−1(l, 0) + Zt(l, 0))+ (35)

with the invariant log-LR

S(Yk; l, 0) =
1
σ2

φT
l PHYk − 1

2σ2
φT

l PHφl, (36)

g0(l, 0) = 0 for every 1 ≤ l ≤ K − 1 and gt(0, 0) ≡ 0. The
thresholds hl,j are chosen by the following formula :

hl,j =
{

hd if 1 ≤ l ≤ K − 1 and j = 0
hi if 1 ≤ j, l ≤ K − 1 and j �= l

, (37)

where hd and hi are the detection and isolation thresholds.
2) Minimax change detection/isolation: Let:

Sk(l, j) = log fφl
(Yk;X l)/fφj

(Yk;Xj)

be the likelihood ratio between Hl and Hj , where Hl =
{Y ∼N (HX l + φl, σ

2Ir) and 0 ≤ l, j �= l ≤ K. It results
from sections II-B and III-D that the lower bound for the
detection/isolation delay is a monotone decreasing function
of the KL information. Therefore, designing the minimax al-
gorithm (minimizing the detection/isolation delay) consists in
finding a pair of least favorable values X l and Xj for which
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the KL information ρl,j = ρ(X l, Xj) is minimum, and in
computing the LR Sk(l, j) corresponding to these values.
Since the KL information is ρl,j(x) = ‖Hx + φl,j‖2

/2σ2,
where x = X l − Xj and φl,j = φl − φj , this boils down to
minimize ρl,j(x) w.r.t. x [11]. The log-LR between Hl and
Hj under the least favorable value x∗ writes:

S(x∗; l, j) =
1
σ2

φT
l,jPHYk − 1

2σ2
φT

l,jPHφl,j (38)

It is of interest to note that S(x∗; l, j) coincides with the log-
LR (36) of the invariant change detection/isolation algorithm.

V. NAVIGATION SYSTEM INTEGRITY MONITORING

We now describe an example outlining the importance of
dealing with nuisance parameters for system monitoring. In-
tegrity monitoring requires that a navigation system detects,
isolates faulty measurement sources, and removes them from
the navigation solution before they sufficiently contaminate
the output. A conventional multi-sensor integrated navigation
system includes different sensors (or subsystems): INS, G-
PS, Loran-C, air-data subsystem, Doppler radar and others.
A wide group of navigation (sub)systems is described by
measurement equations which can be reduced to the static
(slightly non) linear regression model:

Yk = H(Xk) + φl(k, k0) + ξk, (39)

where H(.) is a known vector-valued function, the state
vector X contains the unknown position of the vehicle (or its
velocities, accelerations,...) and φl(k, k0) is the l-type change
occurring at time k0 as in (33). Physically, the vector X is
completely unknown, non-random and it ranges over a large
domain of possible values. Therefore, it is considered as
a nuisance parameter. Integrity monitoring is then reduced
to the detection of faults φl that leads to a positioning
failure which is usually defined in terms of protection zone
around the aircraft (vertical and horizontal alarm limits). By
linearization of (39), the FDI integrity monitoring algorithm
is given by equations (34)-(36) in subsection IV-C.1.

VI. CONCLUSION

The FDI problem has been addressed from a statistical
point of view, with faults modeled as deviations in the
parameter vector of a stochastic system. Fault detection
and isolation have been discussed, in both frameworks of
(off-line) hypotheses testing and (on-line) change detection
and onset time estimation. Several major statistical tools
for solving these problems have been introduced. Particular
emphasis has been put on handling nuisance parameters. The
application to GPS integrity monitoring and vibration-based
structural health monitoring has been addressed.
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