
Abstract— Programmable Logic Controllers (PLCs) have been
of great eminence in manufacturing systems and will probably
remain predominant for some time to come. To allow re-
implementation on a new hardware and visualization of
existing code, a formalization approach for PLC programs is
proposed. The method presented here is not restricted to
binary operations in the PLC code but also considers digital
operations. In order to achieve compact visualization and
efficient re-implementation an abstraction of the low level
Instruction List (IL) programs is developed. The formalization
of the abstracted code results in a compact finite state machine
representation. The method is implemented using JAVA and
XML technologies. The IL is converted to XML, the XML
document object model (DOM) is used for parsing and scalable
vector graphics (SVG) is employed to graphically represent the
resulting automata. The presented approach is illustrated using
STEP 5 IL from Siemens. The method is however generic,
other IL dialects could be parsed if the corresponding
description files are built.

I. INTRODUCTION

OMPUTER driven hardware has become vital in almost
all areas of private and business live. Most of

the electrical (and mechanical) appliances we use every day
are controlled by micro controllers or computers in general
(often without us noticing it). These computers stabilize cars
during driving, ignite air bags, control elevators and fridges.
However, one of the main tasks of computer control was and
still is the control of manufacturing processes. In
manufacturing a special kind of computer is used, the
Programmable Logic Controller (PLC). PLCs have been
introduced in the 1970s and soon became the major
workhorse of industrial automation [1].

Because of the widespread use of PLCs in manufacturing,
industry experts and researchers on manufacturing
technology recognize the importance of simulation,
verification, analysis, visualization, and re-implementation
of PLC programs [2] [3].

Re-engineering of PLC programs is necessary when the
PLC hardware should be changed or the intellectual property
hidden in the code should be recovered to implement it in a
different setting.

To achieve these pursuits a formal model of the PLC
program under consideration is required. Formalization of
PLC programs is an important area of active research.

This work was supported by “Stiftung Rheinland-Pfalz für Innovation”,
under project number 616.

G. Frey is head of the Juniorprofessorship Agentbased Automation
(JPA²), University of Kaiserslautern, 67653 Kaiserslautern, Germany.
(phone: +49-631-205-4455; fax: +49-631-205-4462; e-mail: frey@eit.uni-
kl.de).

M. Bani Younis is with JPA², (e-mail: baniy@eit.uni-kl.de)

However, formalization alone and the methods based on a
formal description do not solve all problems connected with
PLC programs. A formal model allows formal verification
and also re-implementation on a new platform but it often
does not help the user in understanding the programs.

Generally, there is a lack of knowledge about the
implemented code due to missing documentation or on-the-
fly changes of the code after the first implementation. This
happens for example when the mechanical setup of a
manufacturing system is changed and the code has to be
adapted to some new configuration. The longevity of PLC
programs (often more than 10 years) accrues this problem.
Furthermore, PLCs are programmed using low-level
machine languages like Ladder Diagram (LD) or Instruction
List (IL) [4]. Larger and complex programs in these
languages are naturally hard to read and understand.
Therefore, visualization of existing PLC programs is also an
important step in re-engineering.

XML [5] and related technologies provide a good medium
to visualize PLC programs [6]. The XML generated from IL
programs as presented in [6] not only can be transformed
into other formats using XSL, but also can be converted
under JAVA to other forms like e.g. XML Metadata
Interchange (XMI) [7], the XML format of UML [8]. A
further technology related to XML is the basis for parts of
the work depicted in this paper: The Scalable Vector
Graphics (SVG) [9] can be used to graphically visualize the
formal description generated from the PLC program.

The rest of the paper is structured as follows. A short
introduction to PLCs and the proprietary STEP 5 language
from Siemens is given in the following section. Section III
explains the formalization of digital programs in general. In
 IV the abstraction method is explained in some detail.
Section V gives some information on implementation issues.
An example of the application of the method to a given PLC
code is presented in Section VI. Section VII concludes the
paper and gives an outlook on further work.

II. PLCS AND STEP 5
The hardware of a PLC consists of a microprocessor

based CPU, a memory, and input and output ports where
external signals can be handled, e.g. received from sensors
and sent to actuators.

PLCs operate in a polling mode with a precise execution
cycle. This cycle basically consists of three steps (cf. Fig 1)
which are continuously executed. In the “Read Inputs” step,
the PLC kernel reads all the input values and copies them
into its internal input memory PAE (cf. Fig 2). In the

Formalization and Visualization of Non-binary PLC Programs
M. Bani Younis and G. Frey

C

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

ThIC19.4

0-7803-9568-9/05/$20.00 ©2005 IEEE 8367

“Execute User Program” step, the PLC kernel executes the
user program which has access to all PLC memory areas.
The algorithm stores the execution results in the output
internal memory (PAA). Furthermore it can read from and
write to the internal memory of the PLC. In the “Write
Outputs” step, the PLC kernel copies the internal output
memory to the output modules. Note that the program can
also read form PAA.

Read Inputs

Write Outputs

Execute User
Program

Fig 1. PLC cycle

Though PLCs have become prominent in the industry,
they are devoid of the possibility to enhance compatibility,
openness and interoperability, because of different vendor
specific platforms. A working group within the International
Electro-technical Commission (IEC) [10] was set up to look
at the complete design of PLCs, including hardware design,
installation, testing, documentation, programming and
communications. The result of this process is the IEC
standard 61131. Part 3 of this standard defines a set of
programming languages including IL.

 The approach presented here is not based on the standard
form of IL proposed by the IEC but on the vendor-specific
STEP 5 IL (used on the last generation of Siemens PLCs)
 [11], [12], [13], this language was a quasi-standard in
Germany for several years but the corresponding hardware
is now no longer in production. This means that there is a
need for the application of re-engineering if the
implemented algorithms should be transferred to new
hardware. The approach itself however is easily adaptable to
other IL dialects including the standard form.

The software on a STEP 5 PLC is implemented in a quasi-
hierarchical form using four main types of modules as
follows:
OB: Organization Modules serve for the management of the

user program in form of a listing of the program
Modules to be worked on.

PB: Program Modules contain the user program structured
in groups. PBs contain only binary operations.

DB: Data Modules contain data, on which the user program
works.

FB: Function Modules are employed to realize frequently
 used or very complicated functions. The PLC
 operations in FBs are in a hybrid form i.e. digital and
 binary operations.

 In addition to these general types of modules STEP 5 also
holds special types of modules like timers and counters.
 The formalization of digital operations implemented in

the FBs will be shown in this paper. The formalization of
binary programs was presented in [8] and an extension on
timers and counters can be found in [14].

PAE
PLC Algorithm

and
PLC Cycle

PAA

Internal
Memory

Fig 2. PLC memory access

III. FORMALIZATION OF DIGITAL PROGRAMS

A. Classification of Digital Operations
Binary operations allow simple logical decisions. Digital

Operations in the Function Modules extend basic binary
operations to allow other types of control, for instance, Data
Handling, Numerical Logic, and Lists. A list of different
types of digital operations is shown in Table I below.

TABLE I
TYPES OF BINARY OPERATIONS

Type Operations
1 Load operation
2 Transfer operation
3 Arithmetic operation
4 Compare operation
5 Digital logical operation
6 1s complement operation
7 2s complement operation
8 Shift and rotate operation
9 Jump operation
10 Other operation

B. Transformation of Digital Programs
The most important step in the investigations to formalize

PLC programs is the choice of a state definition where the
influence of the PLC operations in a program on the
different possible state variables has to be investigated.
Besides the influence of these operations on the PAE, PAA
and the internal memory, the operations can also affect the
program counter of the execution algorithm (PC) as well as
the status word. The status word is 8-bit wide. Every bit
stands for a result display. This again can be a bit or a word
display. The displays are evaluated or changed by the
operations. Table II shows the content of the status word. In
case binary operations are under consideration only the VKE
(German for Current Result) is of importance, but in case
digital operations or timers and counters are to be formalized
it is important to check other elements of the Status Word
besides the other parts of the PLC namely, AKKU1 and
AKKU2 (accumulators in STEP 5).

8368

TABLE II
CONFIGURATION OF THE STATUS WORD (RESULT DISPLAYS)

Type (Word/Bit) Bit Abbr. Annotation
w 0/1 ANZ1/ANZ0 Result display 1/0
w 2 OV Overflow
w 3 OS Storing Overflow
b 4 OR Or; Internal CPU Display
b 5 STA STATUS
b 6 VKE CR Current Result
b 7 E R A B First Inquiry

In the following two possibilities are indicated to
transform a control program into a formal description. The
first description is based on the transformation according to
 [15]. The second description refers to the conversion of the
program into algorithms:

Using the method presented in [15] for binary operations,
a state extension is necessary for digital programs. The
extended state definition not only contains the variables, the
Current Result (VKE corresponds to the accumulator after
 [15]) and the program counter, but also the accumulators
AKKU1, AKKU2, the result displays ANZ1, ANZ0, and the
Overflow-Display OV.

The accumulators (AKKU1, AKKU2) are necessary for
example to compare two values against each other. The
displays are affected by arithmetic operations depending on
the value of the AKKU1 and are questioned by jump
operations, i.e. the jump operations are executed depending
on the signal states. Every operation is evaluated
individually and is described by a transition in a transition
system. The resulting transition system shows a good
structure with few branchings. However, the state definition
contains a lot of elements and the number of states
(especially with jump operations) is quite high.

Because of this high number of states a different
conversion for digital programs is presented here. The
resulting model is a Mealy machine expressing each
operation individually. For every non-binary operation in the
code at least one state in the Mealy machine is necessary.
The inputs and outputs of the PLC program, internal
variables, VKE, AKKU1, AKKU2, ANZ1, ANZ0 and OV
are represented as external variables of the automaton. Note
again, the accumulators and displays are not contents of the
state, but are treated like variables and are stored in the
external state memory.

IV. ABSTRACTION OF DIGITAL PROGRAMS

The abstraction of the IL program to higher level
algorithms is achieved through line-by-line conversion of
the existing code into IF-THEN-ELSE statements. The
process results in a series of IF-THEN-ELSE statements in
the form: IF <expr> THEN <statm1> ELSE <statm2>.
These can be converted to a state automaton. During this
conversion the Program Counter is removed from the model.
Starting from the initial state each IF-THEN-ELSE
statement leads to a new state. expr corresponds to the input
and statm1 to the matching output of the transition. If there

is an ELSE clause then a second transition between the
states is generated with NOT expr as an input and statm2 as
an output. If the instruction contains no ELSE clause, no
output takes place. Branching results only from conditional
jumps in the PLC code. After this abstraction an additional
step of optimization explained in the following is necessary.
In the following sub-sections this process is explained for
different operation types.

A. Load and Transfer Operations
A load operation (L) consists of two assignments, which

change the contents of AKKU 1 and AKKU 2:

L MW 150 AKKU 2 = AKKU 1
 AKKU 1 = MW 150

A transfer operation (T) initiates the assignment of the
contents of the AKKU 1 into an operand.

T MW 150 MW 150=AKKU1

B. Arithmetic Operation
Arithmetic operations combine the values of AKKU1 and

AKKU2, the result is stored in AKKU1. In addition,
arithmetic operations influence the result displays ANZ1,
ANZ0 and the Overflow-Display OV (cf. Table III).

TABLE III
INFLUENCE ON RESULT DISPLAYS FOR ARITHMETIC OPERATIONS

Contents of AKKU 1 after execution ANZ1 ANZ0 OV
Below the allowed lower limit (< -32768) 1 0 1
In the allowed negative domain (-1 to -32768) 0 1 0
Zero 0 0 0
In the allowed positive domain (+1 to +32768) 1 0 0
Above the allowed upper limit (> +32768) 0 1 1

This influence is realized in IF-THEN-ELSE statements
by which all arithmetic operations are treated similar. The
conversion of the arithmetic operation –F (integer
subtraction of AKKU2 from AKKU1) results in an IF-
THEN-ELSE-description as shown below:

-F AKKU1=AKKU2 - AKKU1
IF AKKU1 <= -1
THENIF AKKU1 < -32768

THEN ANZ1=1 AND ANZ0=0 AND OV=1
ELSE ANZ1=0 AND ANZ0=1 AND OV=0

ELSEIF AKKU 1 >= 1
THENIFAKKU1 > 32768

THEN ANZ1=0 AND ANZ0=1 AND OV=1
ELSE ANZ1=1 AND ANZ0=0 AND OV=0

ELSE ANZ1=0 AND ANZ0=0 AND OV=0

C. Compare Operation
By a compare operation the contents of AKKU1 and

AKKU2 are compared. The result of the comparison is
binary and is stored in the VKE. In addition, compare
operations have influence on the result displays ANZ1,
ANZ0 and OV (cf. Table IV).

TABLE IV
INFLUENCE ON RESULT DISPLAYS FOR COMPARE OPERATIONS

Operation ANZ1 ANZ0 OV
Equal 0 0 0

Smaller 0 1 0
Greater 1 0 0

8369

The conversion of the compare operation >F (check
whether the integer in AKKU2 is greater than the one in
AKKU1) results in an IF-THEN-ELSE-description as shown
below:

>F IF AKKU2>AKKU1
THEN VKE=1
ELSE VKE=0
IF AKKU2=AKKU1
THEN ANZ1=0 AND ANZ0=0 AND OV=0
ELSEIF AKKU2<AKKU1

THEN ANZ1=0 AND ANZ0=1 AND OV=0
ELSE ANZ1=1 AND ANZ0=0 AND OV=0

D. Digital Logical Operation
With the digital logical operations the values from

AKKU1 and AKKU2 are logically combined. The result is
saved in AKKU1. This corresponds to an allocation. Again
an influence on the displays exists. ANZ0 and OV are set
independently of the result to zero. The influence on ANZ1
is described by an IF-THEN-ELSE statement. Below the
transformation for OW (Or for a word format) is shown.

OW AKKU1=AKKU1 OW AKKU2
 ANZ0=0
 OV=0

IF AKKU1=0
THEN ANZ1=0
ELSE ANZ1=1

E. Conversion Operation
These operations are used to convert the contents of the

AKKU 1, for example into 2’s complement using the
operation KZW. This assignment influences the values of
ANZ1, ANZ0, and OV.

TABLE V
INFLUENCE ON RESULT DISPLAYS FOR 2’S COMPLEMENT (KWZ)

Value of AKKU 1 after the 2’ Complement ANZ1 ANZ0 OV
(-)65536 (Result of KZW for KH=0000) 0 0 1
Below the allowed lower limit < -32768 1 0 1
In the allowed negative domain-1 to -32768 0 1 0
In the allowed positive domain +1 to +32768 1 0 0
Above the allowed upper limit > +32768 0 1 1

The transformation of the conversion operation KZW (2’s
complement) results in an IF-THEN-ELSE description as
shown below:

KZW AKKU1= inverse AKKU1+1
IF AKKU1 = ± 65536
THENANZ1=0 AND ANZ0=0 AND OV=1
ELSEIFAKKU1 < -1

THENIF AKKU1 < - 32768
THEN ANZ1=1 AND ANZ0=0 AND OV=1
ELSE ANZ1=0 AND ANZ0=1 AND OV=0

ELSEIF AKKU1 > 32768
THEN ANZ1=0 AND ANZ0=1 AND OV=1

ELSE ANZ1=1 AND ANZ0=0 AND OV=0

F. Bit- Shift and Rotate Operation
Applied on the AKKU 1 to shift or rotate it bitwise left or

right. The rotate bit is evaluated according to ANZ1. ANZ0
and OV are always set to zero by these operations.
Therefore, the conversion of the operation SLW 1 (shift to
left by one bit) results in an IF-THEN-ELSE-description as
shown below:

SLW 1 AKKU1= AKKU1 shifted to left by one Bit
 ANZ0=0
 OV=0

IF Bit 15 of AKKU1 =1
THEN ANZ1=1
ELSE ANZ1=0

G. Jump Operation
The declaration of the jump target is carried out

symbolically through a jump label. Conditional jump
operations must be treated individually because of the form
of the condition (cf. Table VI). The operation SPO (jump in
case of Overflow) is carried out if OV = 1.

TABLE VI
EXECUTED JUMP OPERATION ACCORDING TO RESULT DISPALYS

ANZ1 ANZ0 Executed jump operation
0 0 SPZ jump when zero

0 1 SPM
SPN

jump when negative
jump when not zero

1 0 SPN
SPP

jump when not zero
jump when positive

Examples for the conversion of jump operations are shown
below:

SPM= M001 IF ANZ1=0 AND ANZ0=1 THEN Jump toM001.
SPN= M001 IF ANZ1 ANZ0 THEN Jump toM001.
SPO= M001 IF OV=1 THEN Jump toM001.
SPP= M001 IF ANZ1=1 AND ANZ0=0 THEN Jump toM001.
SPZ= M001 IF ANZ1=0 AND ANZ0=0 THEN Jump toM001.

H. Optimization of the Abstraction
To reach an optimization concerning the number of states

different operations are merged. An algorithm was
developed to optimize the digital operations according to the
types mentioned above to merge them and extract the
information relevant for the output changes. This algorithm
can not be exposed in the scope of this paper because of
space limitation. Its crucial steps for several operations are
elucidated in the following section and through an example
in Section VI. During the optimization, AKKU 1 and
AKKU 2 are eliminated from the description.

The load operations can be excluded as an important step
for this optimization algorithm. This exclusion occurs when
the AKKUs are irrelevant to the syntax of the performance
of following operations. In case that the succeeding
operation is of Type 3 or Type 5 (cf. Table I) or there is a
jump in the digital program to the operation assigned (Load
Operation) then this exclusion can not take place.

V. IMPLEMENTATION USING JAVA AND SVG
This implementation is an extension to the previous work

described in [6]. It is done in Java and it can be illustrated by
the following steps:
Step 1: Initializing the Instruction, Address, Type, Operand,
and Label. The raw XML mapping the tabular form of the
PLC program text (compare [6] [8]) is converted to a core
XML using XSL. This XML contains the Address, Label,
Instruction, and Operand, together with the attributes of the
instruction like the InstructionId, Type, Condition, and the

8370

Denotation. The type of the instruction is the crucial
attribute. The formalization is implemented according to the
algorithms for the optimization of digital programs (compare
 IV).
Step 2: Splitting the Type attribute in the XML to obtain the
IF-THEN-ELSE statements. The type splitting in the XML
becomes very essential for constructing the algorithms.
Step 3: Constructing IF-THEN-ELSE statements (compare
the examples above) with the help of the Document Object
Model (DOM) [16] which makes it easy to extract
information from the XML.
Step 4: Developing the FSM pane using SVG. The states
and the transitions of the FSM are automatically generated
from the IF-THEN-ELSE statements. SVG is used to draw
the Finite state machine.

The SVG format is a new XML grammar for defining
vector based 2D graphics for the web and other applications.
SVG was created by World Wide Web consortium (W3C)
 [17] that created HTML and XML. As an XML grammar,
SVG offers all the advantages of XML like
internationalization (Unicode support), wide tool support,
easy manipulation through standard APIs such as DOM,
easy transformation through XML style sheet language
transformation (XSLT).

SVG has many advantages over other image formats, and
particularly over JPEG and other common graphic formats
used on the web today. It is a vector format, meaning SVG
images can be printed with high quality at any resolution,
without the “staircase” effects. Moreover tools available like
the SVG Rasterizer [18] which is part of the Batik
distribution [19] can convert the SVG to raster format. The
Rasterizer can convert individual files or sets of files. The
provided formats are JPEG, PNG, and TIF, however the
design allows new formats to be added easily.

The SVG Generator uses the DOM API to build the Finite
state machines. This generator manages a tree of DOM
objects that represent the SVG content corresponding to the
SVGgraphics2D instance.

VI. EXAMPLE

This section explains the formalization of the digital
programs using the example code in Fig 3.

0001 :L KB0
0002 :T PW138
0003 :L KM0000000010011
0004 :OW
0005 :T PY128
0006 :L KB85
0007 M0 :L KB1
0008 :-F
0009 :SPZ= M0
000A M2 :L PY28
000B :T MB225
000C :UN M225.7
000D :SPB= M2
000E :BE

Fig 3. Program code in IL in STEP 5

The program is transformed to a first (raw) XML using
JAVA. The result of this transformation is shown in Fig 4
where this XML is mapping the tabular form of the PLC
program code. This raw XML is then transformed to the
core XML shown in Fig 5. The program is converted into
seven IF-THEN-ELSE statements (cf. Fig 6). Note that the
IF-THEN-ELSE algorithm shown here is the one after
optimization (compare section IV H), where the load
operations followed by transfer operation are excluded from
the IF-THEN-ELSE abstraction according to the
optimization. The Load operations assigned after the labels
can not be excluded since this will affect the logic of the
PLC code to be manipulated. These statements are modeled
to a mealy automaton of 11 states including one initial and
one final state shown in Figure 7.

<?xml version="1.0" encoding="UTF-8" ?>
<ILCodeBlock CodeName="digital.example"
xmlns="IL"xmlns:xsi="http://www.w3.org/2001/XMLSche
ma-instance"xsi:schemaLocation="http://www.eit.uni-
kl.de/frey/PLC/ILns.xsd" name="Code">
 <ILRow>

<Address>0001</Address>
<Instruction>L</Instruction>
<Operand>KB0</Operand>

</ILRow>
 <ILRow>

<Address>0002</Address>
<Instruction>T</Instruction>
<Operand>PW138</Operand>

</ILRow>
 <ILRow>

<Address>0003</Address>
<Instruction>L</Instruction>
<Operand>KM0000000010011</Operand>

</ILRow>
<ILRow>
<Address>0004</Address>
<Instruction>OW</Instruction>

</ILRow>

Fig 4. Raw XML

<?xml version="1.0" encoding="ISO-8859-1" ?>
<ILCodeBlock>
 <ILRow>

<Address>0001</Address>
<Instruction InstructionId="Load-

 ,Transferoperation" Type="typ1"
 Condition="no condition"
 Denotation="no denotation">L</Instruction>

<Operand>KB0</Operand>
</ILRow>
<ILRow>
<Address>0002</Address>
<Instruction InstructionId="Load-

 ,Transferoperation" Type="typ2"
 Condition="no condition"
 Denotation="no denotation">T</Instruction>

<Operand>PW138</Operand>
</ILRow>
<ILRow>
<Address>0003</Address>
<Instruction InstructionId="Load-

 ,Transferoperation" Type="typ1"
 Condition="no condition"
 Denotation="no denotation">L</Instruction>

<Operand>KM0000000010011</Operand>
</ILRow>

Fig 5. XML with attributes for instruction identification

8371

 PW138 = KB0
 AKKU 1 = KM0000000010011OW KB0
 ANZ0 = 0 AND OV = 0
 IF AKKU 1 = 0 THEN ANZ1 = 0 ELSE ANZ1 = 1
 PY128 = AKKU 1
 AKKU 1 = KB 85
M0 AKKU 2 = AKKU 1
 AKKU 1 = KB1
 AKKU1 = AKKU 2-AKKU 1

IF AKKU1 <= -1
THEN IF AKKU1 < -32768

THEN ANZ1 = 1 AND ANZ0 = 0 AND OV = 1
ELSE ANZ1 = 0 AND ANZ0 = 1 AND OV = 0

ELSEIF AKKU1 >= 1
THEN IF AKKU1 > 32768

 THEN ANZ1 = 0 AND ANZ0 = 1 AND OV = 1
ELSE ANZ1 = 1 AND ANZ0 = 0 AND OV = 0

ELSE ANZ1 = 0 AND ANZ0 = 0 AND OV = 0
 IF ANZ1 = 0 AND ANZ0 = 0 THEN Jump to M0
M2 MB225 = PY28
 IF (N M225.7) = 1 THEN Jump To M2
BE

Fig 6. IF-THEN-ELSE Algorithm for the example

Fig 7. SVG for the FSM of the Example

VII. CONCLUSION AND OUTLOOK

The paper presents an approach for the formalization and
visualization of non-binary PLC programs. In this, it is an
extension to previous work of the authors on purely binary,
i.e. logical, PLC programs. The construction of an abstracted
formal model and the graphical visualization thereof allow
easier understanding of the given code. The presented work
serves as a basis for ongoing research in the direction of re-
implementation and re-engineering of PLC programs. The
automata or the IF-THEN-ELSE algorithms built from an
existing PLC program will be used for the migration to other
kinds of hardware or programming environments. In
addition to the STEP 7 language, IEC 61131 and IEC 61499
 [20] are planned target environments.

REFERENCES

[1] H. Jack, Automating Manufacturing system with PLCs.
http://claymore.engineer.gvsu.edu/~jackh/books/plcs/. Unpublished.

[2] S. Lampérière-Couffin, O. Rossi, J.-M. Roussel, J.-J.Lesage, “Formal
Validation of PLC Programs: A SURVEY,” Proc. of the European
Control Conference (ECC99), Karlsruhe, Germany, Sept. 1999, paper
N° 741.

[3] A. Mader and Hanno Wupper, “What is the method in applying formal
methods to PLC applications?.” Proc. of the ADPM 2000 Conference,
Shaker Verlag 2000, pp. 165-171.

[4] K-H. John, M. Tiegelkamp, Programming Industrial Automation
Systems. Springer , 2001.

[5] XML Home Page: http://xml.com/
[6] M. Bani Younis and G. Frey, “Visualization of PLC Programs Using

XML,” Proceedings of the American Control Conference (ACC2004),
Boston, USA, June 30 - July 2, 2004, pp. 3082-3087.

[7] XML Metadata Interchange (XMI) Home Page
http://www.omg.org/technology/documents/formal/xmi.htm

[8] G. Frey, M. Bani Younis, “A Re-Engineering Approach for PLC
Programs using Finite Automata and UML,” 2004 IEEE International
Conference on Information Reuse and Integration, IRI-2004, Las
Vegas, USA, pp. 24-29, Nov. 2004.

[9] Scalable Vector Graphics (SVG) 1.1 Specification
http://www.w3.org/TR/SVG/

[10] International Electrotechnical Commission, IEC International Standard
1131-3, Programmable Controllers, Part 3, Programming Languages,
1993.

[11] Berger, H.: Automatisieren mit S5-115U. Berlin, München: Siemens
Aktiengesellschaft, [Abt. Verl.], 1987.

[12] S5-135U/155U-Tabellenheft. Karlsruhe: Siemens AG, 1993.
[13] S5-115U-Operationsliste. Nürnberg: Siemens Aktiengesellschaft,

[Bereich Automatisierungstechnik], 1992.
[14] M. Bani Younis, G. Frey, “Formalization of PLC Programs to Sustain

Reliability,” Proceeding of the 2004 IEEE Conference on Robotics
Automation and Mechatronics, RAM-2004, Singapore, pp. 613-618,
Dec. 2004.

[15] G. Canet et al., “Towards the automatic verification of PLC programs
written in Instruction List” IEEE Conf. on Systems, Man and
Cybernetics (SMC'2000), Nashville, USA, Oct. 2000, pp. 2449-2454.

[16] DOM website http://www.w3schools.com/dom/
[17] W3C website http://www.w3.org/
[18] SVG rasterizer web site http://xml.apache.org/batik/svgrasterizer.html
[19] Batik website Batik website http://xml.apache.org/batik/
[20] R. Lewis, Modelling Control Systems using IEC 61499. The

Institution of Electrical Engineers, London, United Kingdom, 2001.

8372

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

