
An Intrinsic Behavioural Approach to the Gap Metric

Wenming Bian, Mark French and Harish Pillai

Abstract— An intrinsic trajectory level approach without
any recourse to an algebraic structure of a representation is
utilized to develop a behavioural approach to robust stability.
In particular it is shown how the controllable behaviour can be
constructed at the trajectory level via Zorn’s Lemma, and this
is utilized to study the controllable-autonomous decomposition.
The gap distance is generalised to the behavioural setting via a
trajectory level definition; and a basic robust stability theorem
is established for linear shift invariant behaviours.

1. INTRODUCTION

We begin by observing that the graph topology with its
various metrizations plays a fundamental role in the theory
of robust stability for classical LTI systems([1], [2], [15].
The contribution of this note is to develop the basic theory
of robust stability involving the gap-distance directly from
a behavioural perspective, observing that recent approaches
to generalisations of the gap metric [2] have been purely
trajectory based and hence are easily amenable to such a
approach. There has been previous interest in developing
behavioural notions of the gap metric, see e.g. [6] for an
example.

From a behavioural point of view ([4], [9], [10], [11]), the
approach is especially fundamental. Much has been made
of the intrinsic nature of behavioural definitions and the
need for ‘representation free’ approaches. In this note, we
do not recourse to representations at all, indeed all proofs
are at the intrinsic trajectory level. Our basic robust stability
theorem should provide a consistent basis for the robustness
interpretation of the behavioural H∞ results in [12], [7].

In relation to the classical approaches, we remark that
the standard H2 gap is a metric on transfer functions,
and does not directly apply to systems which either have
non-zero initial conditions or which are not minimal (i.e.
have non-controllable modes). The ν-gap ([8]) metric also
induces the graph topology on the transfer functions, and
can handle non-zero initial conditions at zero by its intrinsic
definition on the doubly infinite time-axis. However, the ν-
gap is also only directly applicable to controllable systems.
By defining systems to be limits of Cauchy sequences in
the graph topology [8], the standard gap approaches can
also be extended to non-minimal cases; a contribution of
this paper from a classical perspective is to provide an
alternate and slightly more general approach to these cases.
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We observe also that within the classical framework there
has been a move towards representation free approaches to
the gap, e.g. especially for approaches to nonlinear systems
[2]. The behavioural approach considered here is one natural
extension of this viewpoint.

2. BEHAVIOURAL DEFINITIONS

Let T denote the time set, taken throughout to be either
Z or R, and let T+ = N if T = Z and T+ = R+ if T = R.
For n ≥ 1, an n-valued behaviour B is a subset of the set
of all maps T �→ R

n, i.e. B ⊂ {w : T → Rn}. The shift
operator σt, t ∈ T is defined: σtw(·) = w(· + t).

Definition 2.1: Let B be a behaviour. Then:
1) B is said to be linear if B is a vector space.
2) B is said to be shift invariant (time invariant) if w ∈ B

implies σtw ∈ B for all t ∈ T .
Smooth differential behaviours are linear, shift invariant,

continuous-time behaviours which can be expressed as the
kernel of a differential operator, ie. those for which there
exists a polynomial valued matrix R s.t. that

B =
{

w ∈ C∞ | R

(
d

dt

)
w = 0

}
. (2.1)

Observe that in this note we will be interested in non-
differential/difference behaviours, for example, systems in-
corporating a time delay.

Definition 2.2: A behaviour B is said to have memory
l ≥ 0 if for any w1, w2 ∈ B, w1|[0,l] = w2|[0,l], the
trajectory

w3(t) =

{
w1(t) if t ≤ 0,

w2(t) if t ≥ 0,
(2.2)

also lies in B.
It is easy to show that
Lemma 2.3: If B is shift invariant, then B has memory

l ≥ 0 if and only if for any w1, w2 ∈ B with w1|[a,a+l] =
w2|[a,a+l] and a ∈ T , the trajectory

w3(t) =

{
w1(t) if t ≤ a,

w2(t) if t ≥ a,

also lies in B.
If a behaviour has memory 0 ≤ l < ∞ it is said to have

finite memory, if l = 0 then it is memoryless. Note that a
non-memoryless continuous time differential behaviour has
finite memory, and l > 0 can be taken to be arbitrarily
small; a discrete time behaviour also has finite memory,
and here l ≥ 0 depends on the system order. The minimal
memory l0 ≥ 0 of a behaviour B is the largest number s.t.
B has memory l for all l > l0. Note that the minimum is
not necessarily attained.
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The standard definition of autonomy is that behaviour
B is said to be autonomous if for any w1, w2 ∈ B,
w1|(−∞,0] = w2|(−∞,0] implies w1 = w2. We relax this
definition as follows:

Definition 2.4: A behaviour B with minimal memory
l0 ≥ 0 is said to be autonomous if for any w1, w2 ∈ B,
and any interval V of length greater than l0, w1|V = w2|V
implies w1|T = w2|T .

Non-autonomy of a behaviour with finite memory is thus
just the existence of a trajectory in the behaviour whose
support has complement containing an interval of length
greater than l0, eg. a compactly supported trajectory.

The behavioural notion of controllability is defined in [4]
as follows:

Definition 2.5: A behaviour B is said to be controllable
if and only if given w1, w2 ∈ B, there exist w3 ∈ B and
τ ∈ T+ such that

w3(t) =

{
w1(t) if t ≤ 0,

w2(t − τ) if t ≥ τ.
(2.3)

This definition requires that the patch function w3 remains
in B with a time delay which is hard to deal technically in
some cases including generalisation into multi-dimensional
systems. So we introduce the following definition.

Definition 2.6: Given a behaviour B, a sub-behaviour
B∗ ⊂ B is said to be B-controllable or controllable as
abbreviation if and only if given w1, w2 ∈ B∗ and s ∈ T
there exist w3 ∈ B and τ ∈ T+ such that

w3(t) =

{
w1(t) if t ≤ s,

w2(t) if t ≥ s + τ.
(2.4)

We remark that if B∗ = B, then the B-controllability of
B∗ is the same as defined by Definition 2.5 except for the
shift. So controllability implies B-controllability. But the
following example shows that the converse is not true.

Example 2.7: Let B = C∞(R, R) and B∗ = {c : c ∈ R}.
Then both B and B∗ are linear shift invariant behaviours
with finite memory and B∗ ⊂ B. It is straightforward to
check that B∗ is B-controllable, but not B∗-controllable nor
controllable in the sense of Definition 2.5 even without the
time delay.

For shift invariant behaviours, we have
Lemma 2.8: Suppose B,B∗ are both shift invariant be-

haviours and B∗ ⊂ B. B∗ is B-controllable if and only if
given any w1, w1 ∈ B∗, there exists w3 ∈ B, τ ∈ T+ s.t.

w3(t) =

{
w1(t) if t ≤ 0,

w2(t) if t ≥ τ.
(2.5)

We now consider the properties of controllable behaviour.
All the conclusions in this section hold for both B-
controllability and the controllability of Polderman and
Willems’ defined by Definition 2.5 although we present
them for B-controllability only. So in occasions, we omit
the prefix “ B-”.

Corresponding to the notion of controllability distin-
guished controllable sub-behaviours can be defined.

Lemma 2.9: Suppose B is a behaviour. Then there exists
at least one maximal B-controllable sub-behaviour.

Proof: Set inclusion defines an order in the set of all B-
controllable sub-behaviours. For any chain of B-controllable
sub-behaviours: Bα ⊂ Bβ ⊂ · · · ⊂ Bγ ⊂ . . . with
α, β, γ · · · ∈ Γ and Γ the index set, it has an upper bound:
B∗ ⊂ ∪β∈ΓBβ , where B∗ ⊂ B is B-controllable since
given any w1, w2 ∈ B∗, we have w1 ∈ Bα, w2 ∈ Bβ

for some α, β ∈ Γ, hence w1, w2 ∈ Bγ , γ = max{α, β},
and by the controllability of Bγ it follows that there exists
w3 ∈ B satisfying equation (2.4), thus the controllability
of B∗ follows. Zorn’s lemma then gives the existence of a
maximal sub-behaviour as required.
Note that this set-theoretic construction is extremely gen-
eral: we do not require any linearity, memory or dif-
ferential/difference structure on B. In general, maximal
controllable sub-behaviours are not unique. However, if the
behaviour B is linear, then there exists a unique maxi-
mal controllable linear sub-behaviour, which we denote by
Bcont.

Lemma 2.10: Suppose B is a linear behaviour. Then
there exists a unique maximal linear B-controllable sub-
behaviour Bcont.

Proof: We consider the set of all linear B-controllable
sub-behaviours. With the relation induced by subset in-
clusion, this set is partially ordered and a maximal sub-
behaviour Bcont exists which is also linear.

To show the uniqueness, let B1 be another non-zero
linear maximal B-controllable sub-behaviour and let
B2 = span(Bcont,B1), the linear span of Bcont and B1.
For any w1, w2 ∈ B2, without loss of generality, we may
suppose that wi = αixi + βiyi with αi, βi ∈ R, xi ∈
Bcont, yi ∈ B1 and i = 1, 2. Since 0 ∈ Bcont ∩ B1, by
the definition of controllability, for all s ∈ T , there exist
τ1, τ2 > 0 and z1, v1 ∈ B such that z1|(−∞,s] =
x1|(−∞,s], z1|[s+τ1,∞) = 0|[s+τ1,∞), v1|(−∞,s] =
y1|(−∞,s], v1|[s+τ2,∞) = 0|[s+τ2,∞). Let τ3 = max{τ1, τ2}
and w3 = α1z1 + β1v1 ∈ B. Then we have
w3|(−∞,s] = α1x1|(−∞,s] + β1y1|(−∞,s] = w1|(−∞,s]

and w3|[s+τ3,∞) = 0|[s+τ3,∞). This shows that
w1 is switched to 0 in B. Similarly we can
prove that there exists τ4 > 0, w4 ∈ B such that
w4|(−∞,s] = 0|(−∞,s] and w4|[s+τ4,∞) = w2|[s+τ4,∞).
Write τ5 = max{τ3, τ4}, w5 = w3 + w4. Then
we see that w5 ∈ B, w5|(−∞,s] = w1|(−∞,s] and
w5|[s+τ5,∞) = w2|[s+τ5,∞). This shows that B2 is
B-controllable. Since Bcont ⊂ B2 and Bcont �= B2, it
contradicts with the maximality of Bcont. Hence Bcont is
unique.

The above proof also shows that the span of any two
linear controllable sub-behaviours is controllable and, there-
fore, so is the span of all linear controllable sub-behaviours.
Hence

Bcont = span{B ⊂ B : B is linear and controllable}.

1554



To the best knowledge of the authors, this direct set-
theoretic construction of Bcont does not appear in the
literature. Within the behavioural literature, the controllable
sub-behaviour is typically constructed algebraically given
the equations governing the behaviour, and it is shown
via the duality between the behaviour and the algebraic
structure that the controllable sub-behaviour is the ‘largest’
such subset. It is noteworthy to observe that in some settings
(e.g. one dimensional differential systems), the existence of
a suitable maximal algebraic object appears constructively.

Next we show that shift invariance is preserved for unique
maximal controllable sub-behaviours elements B∗ ⊂ B. In
particular, in the shift invariant linear setting, Bcont is linear
and shift invariant.

Lemma 2.11: Suppose B is shift invariant and has a
unique maximal B-controllable sub-behaviour B∗. Then B∗

is shift invariant.
Proof: Let r, s ∈ T , σrw1, σrw2 ∈ σrB∗ with

w1, w2 ∈ B∗. Then there exist w3 ∈ B∗ and τ > 0 such
that w3(t) = w1(t) for t ≤ s + r and w3(t) = w2(t) for
t ≥ s + r + τ . Hence

σrw3(t) =
{

σrw1(t), if t ≤ s
σrw2(t), if t ≥ s + τ.

for any r ∈ T .

Since σrw3 ∈ σrB∗, we see σrB∗ is B-controllable and
hence σrB∗ ⊂ B∗ as B∗ is the unique maximal B-
controllable sub-behaviour.

Similarly, B∗ = σ−rσrB∗ ⊂ σrB∗. This completes the
proof.

Corollary 2.12: Suppose B is linear and shift invariant.
Then, Bcont is linear and shift invariant.
We conclude this section by showing that B-controllable
linear sub-behaviours inherit memory properties from the
original behaviour B:

Lemma 2.13: Let B be a linear shift invariant behaviour
with finite memory l ≥ 0. Then Bcont has memory l ≥ 0.

Proof: First of all, we need a new notion: a sub-
behaviour B∗ is 0-B-controllable if given any w1, w2 ∈ B∗,
there exist w3 ∈ B and τ ∈ T+ satisfying 2.5. Using the
same procedure as used in Lemma 2.10, we can see that a
maximal linear 0-B-controllable sub-behaviour of B exists
which is denoted by B0

cont. Using the same procedure as
used in Lemma 2.11, we can see that B0

cont is shift invariant.
By Lemma 2.8, Bcont = B0

cont.
Now, let w1, w2 ∈ B∗ with w1|[0,l] = w2|[0,l]. Then

w3(t) =
{

w1(t), if t < 0
w2(t), if t ≥ 0 ∈ B.

Since Bcont is B-controllable, for any w ∈ Bcont, there exist
τ1 > 0 and v1 ∈ B such that v1|(−∞,0] = w1|(−∞,0] =
w3|(−∞,0] and v1|[τ1,∞) = w|[τ1,∞), that is, w3 can be
switched to w. Similarly, there exist τ2 > 0 and v2 ∈ B such
that v2|(−∞,0] = w|(−∞,0] and v2|[τ2,∞) = w2|[τ2,∞) =
w3|[τ2,∞), that is, w can be switched to w3. Hence w3 ∈
B0

cont by its maximality and therefore w3 ∈ Bcont as shown
above. This completes the proof.

3. THE AUTONOMOUS-CONTROLLABLE

DECOMPOSITION

For 1D (one dimensional) differential/difference be-
haviours B it is well known that B can be split into a direct
sum of the controllable and an autonomous part:

B = Bcont ⊕ Baut. (3.6)

where Bcont ⊂ B is the maximal controllable sub-behaviour.
It is known that in the nD differential/difference setting, this
sum is not direct for n > 1 (see [13]).

This section aims to provide characterisations for both
direct and non-direct sum decompositions at the trajectory
level. We consider the linear, shift invariant, autonomous
behaviours with finite memory:

Lemma 3.1: Let B,B∗ be linear, shift invariant be-
haviours with finite memory and B∗ ⊂ B. Let (B∗)cont be
the maximal linear B∗-controllable sub-behaviour of B∗ and
B∗

cont be the maximal linear B-controllable sub-behaviour
of B∗.

(i) If B∗ is autonomous, then (B∗)cont = {0}.
(ii) If B∗

cont = {0}, then B∗ is autonomous.
Proof: (i) First of all, 0 ∈ (B∗)cont is obvi-

ous. Suppose there exists w �= 0, w ∈ (B∗)cont. By
B∗-controllability, there exist trajectories w1, w2 ∈ B∗

and τ1, τ2 > 0 s.t. w1|(−∞,0] = 0, w1|(τ1,∞) =
w|(τ1,∞) and w2|(−∞,0] = w|(−∞,0], w2|(τ2,∞) = 0. By
shift invariance,σ−τ2−l0w1 ∈ B∗ where l0 is the mini-
mum finite memory. Since σ−τ2−l0w1|[τ2,τ2+l0] = 0 =
w2|[τ2,τ2+l0], it follows from the autonomous assumption
that σ−τ2−l0w1(t) = w2(t) for all t ∈ T . This tells
w2(t) = 0 for all t ∈ T and therefore w1 = στ2+l0w2 = 0.
So w ≡ 0 which is a contradiction.

(ii) Suppose B∗ is not autonomous. Then there exists
w1, w2 ∈ B∗ such that w1|V = w2|V for some interval
V = [r, r + l0] with r ∈ T and for which w1 �= w2. Let
0 �= v = σr(w1 − w2). Then, v|[0,r] = 0, v ∈ B and by
the finite memory assumption, it follows that w3, w4 ∈ B
where the signals w3, w4 are defined by w3|(−∞,0] = 0,
w3|[l0,∞) = v|[l0,∞) and w4|(−∞,0] = v|(−∞,0], w4|[l0,∞) =
0. By Lemma 2.8, span{0, v} is a 0-B-controllable sub-
behaviour of B. Since v �= 0, a non-empty maximal linear
0-B-controllable sub-behaviour, denoted by (B∗

cont)
0, exists.

By Lemma 2.8, B∗
cont = (B∗

cont)
0. This contradicts the

assumption B∗
cont = {0}.

Lemma 3.2: Let B be a linear, shift invariant behaviour
with finite memory and suppose B = Bcont ⊕ B∗ where
B∗ has finite memory and is shift invariant. Then B∗ is
autonomous.

Proof: Let B∗
cont be the maximal linear B-controllable

sub-behaviour of B∗. Then Bcont ⊂ Bcont + B∗
cont ⊂

Bcont +B∗. Since Bcont +B∗
cont is B-controllable and Bcont

is maximal, it follows that B∗
cont = {0}. Since B∗ has finite

memory, B∗ is autonomous by Lemma 3.1.
We observe that if Bcont has finite co-dimension (as in
the differential ([5]) and commensurate delay ([3])settings),
then it is known that Bcont splits B.
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Let PV , V ⊂ R denote the natural projection (restriction)
of signals defined on R to signals defined on V . As a
shorthand we write P+ for PR+ and P− for PR− .

Lemma 3.3: 1) For any two behaviours B1,B2, we have
PV (B1 + B2) = PV B1 + PV B2.

2) If B is a linear, shift invariant behaviour with finite
memory l > 0 and B = Bcont⊕B∗ then PV B = PV Bcont⊕
PV B∗ for all intervals V of length greater than l.

Proof: Claim 1) is rather obvious. For claim 2), we
need only to prove the sum PV Bcont ⊕ PV B∗ is direct.

Let w1 ∈ B∗, w2 ∈ Bcont such that w1|V = w2|V , i.e.
w1|V = w2|V ∈ PV Bcont∩PV B∗ Consider any w3 ∈ Bcont.
Then by the memory property w1 can be patched to w2 and
conversely, and by B-controllability w2 can be patched to
w3 and conversely. This tells that w1 can be patched to w3

in B and conversely. Hence w1 ∈ Bcont. By the direct sum
property it follows that w1 = 0, hence w1|V = w2|V = 0.

4. STABILITY

Stability is closely related to the signal spaces involved.
Since this section, the behaviours considered will be re-
stricted to be within the extended signal spaces Lp

e :=
Lp

e(T , Rn), 1 ≤ p ≤ ∞, i.e., Lp behaviours or subsets of
Lp

e . Here and after, given a general normed signal space
(say) Y of signals from T or T+ to R

n, its extended space
Ye is defined as:

Ye = {y | I → R
n : Tτy ∈ Y for all τ > 0},

where I = T or T+ subject to on which set Y is defined,
and Tτ is the truncation operator, that is

(Tτy)(t) =
{

y(t) for t ≤ τ
0 for t > τ.

As a shorthand we denote by

X = Lp(T+) =: Lp(T+, Rn), 1 ≤ p ≤ ∞.

So Xe = Lp
e(T+). We remark that some of our discussions

remain valid for C∞ behaviours.
The standard behavioural definition of stability for au-

tonomous systems is as follows:
Definition 4.1: An autonomous system Baut is said to be

X-stable if and only if for any w ∈ Baut, w|[0,∞) ∈ X .
The stability can be equivalently expressed as the state-

ment that Baut is stable if and only if P+Baut ∩ X =
P+Baut.

The results hold in both cases. But in the next two
sections, the underlying signal spaces are required to have
a norm and therefore the consideration in the next two
sections will be restricted to Lp behaviours.

Definition 4.2: A behaviour B with i/o partition u|y is
stable if and only if for all u ∈ X and for all w ∈ B for
which w|R+ = (u, y) then y ∈ X .

Associated to any behaviour are the stable sub-behaviours
which correspond to the behaviour taking zero values up to
time t = 0:

Definition 4.3: The graph GB of a behaviour B is defined
to be:

GB :=
{

w ∈ B|R+

∣∣∣∣ v ∈ B, w|R+ = v|R+ ,
v|(−∞,0] = 0, v|R+ ∈ X

}
.

The extended graph GB of B is defined to be

ZB := {w ∈ B|R+ | v ∈ B, w|R+ = v|R+ , v|(−∞,0] = 0}.
Note that when X = L2, GB corresponds to the classical
H2 graph.

Lemma 4.4: Let B = Bcont ⊕ Baut be a linear, shift
invariant behaviour with finite memory. Then ZBcont = ZB
and GBcont = GB.

In the case when the sum of B = Bcont + Baut is not a
direct sum, this lemma is hardly true since it depends on
Lemma 3.3 (ii).

Definition 4.5: A linear behaviour with i/o partition u|y
is uniformly stable if and only if

1) B is stable.
2) There exists a bounded operator Ψ: X → X such that

for all (u, y) ∈ B such that u|R+ ∈ X , (u, y)|R− = 0
it follows that y = Ψ(u).

Note that the existence of a single stable autonomous
sub-behaviour Baut s.t. B = Bcont ⊕ Baut does not imply
stability. e.g. consider ẋ = x + u, ż = −z, y = x + z.
Then the sub-behaviour generated by ż = −z, u = x = 0,
y = z is stable and has the direct sum property and yet the
behaviour is not stable. This property however, characterizes
stabilizability.

Definition 4.6: A behaviour B is said to be stabilizable
if and only if for all w1 ∈ B, there exists w2 ∈ B s.t.
w1|(−∞,0] = w2|(−∞,0] and w2|[0,∞) ∈ X .

Lemma 4.7: Let B be a linear shift invariant behaviour
with finite memory. If B = Bcont +Baut and Baut is stable,
then B is stabilizable.

Proof: Suppose here exists a stable autonomous sub-
behaviour Baut s.t. B = Bcont + Baut. Then given any
w ∈ B, there exist w1 ∈ Bcont, w2 ∈ Baut s.t. w = w1+w2.
By controllability and shift invariance of Bcont, w1 can
be patched with 0 ∈ Bcont so there exists w′

1 ∈ X s.t.
w1|(−∞,0] = w′

1|(−∞,0]. By the stability of Baut, w2 ∈ X
Hence w′ = w′

1 + w2 ∈ X and w|(−∞,0] = w′|(−∞,0],
hence B is stabilizable.

Note that stabilizability is a property independent of any
choice of i/o partition: indeed Lemma 4.7 says stabilizabil-
ity only requires the stability of an autonomous behaviour,
and this does not require a i/o partition.

5. INTERCONNECTIONS

Definition 5.1: Given a plant behaviour BP , a controller
behaviour BC and interconnection equations BI :

BI = {(w0, w1, w2)T ∈ Xe | w0 = w1 + w2} (5.7)

we define the closed loop behaviour BP∧IC as follows:

BP∧IC = {(w0, w1, w2)T ∈ BI | w1 ∈ BP , w2 ∈ BC}.
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To ensure uniqueness of solutions of the closed loop
(modulo the autonomous part of the behaviour) we adopt
the following definition:

Definition 5.2: Given a plant behaviour BP , a controller
behaviour BC and interconnection equations BI (5.7), the
behaviour BP∧IC is said to be well posed if and only if

Xe = ZBP ⊕ZBC (5.8)
This captures the idea that for the interconnection of be-
haviours with zero past, ‘w0 is an input, and for any input
w0, there exists unique internal signals w1, w2.

By (5.8), any w0 ∈ Xe has a unique decomposition
w = w1 + w2 with w1 ∈ ZBP and w2 ∈ ZBC . Hence
two projection operators can be defined as below:

ΠP//Cw0 = w1, ΠC//P w0 = w2 (5.9)

which satisfy

ΠP//C + ΠC//P = I. (5.10)

6. A BEHAVIOURAL GENERALISATION OF THE GAP

METRIC AND A ROBUST STABILITY THEOREM

In this section we will be concerned with deriving the
behavioural version of the central robust stability theorem
for LTI systems. Our concern, for now, is with behaviours
whose underlying signal space is equipped with a norm ‖·‖,
that is X is a vector space and all behaviours B are such that
P+B ⊂ Xe. Furthermore, we assume that (X, ‖ · ‖) has the
property that ‖Tτx‖ ≤ a with a > 0 for all τ ≥ 0 implies
x ∈ X . The classical spaces, e.g. X = Lp, 1 ≤ p ≤ ∞
satisfy this condition.

Definition 6.1: A mapping Ψ : Xe → Xe is said to be
causal if and only if TτΨw = TτΨTτw for all w ∈ Xe

and τ > 0. Its induced norm, denoted by ‖Ψ‖, is defined
as

‖Ψ‖ = sup
{ ‖TτΨw‖

‖Tτw‖

∣∣∣∣ w ∈ Xe, τ > 0, Tτw �= 0
}

.

Observe that ‖ΠP//C‖ ≥ 1 since for any w0 ∈ GBP
,

ΠP//Cw0 = w0.
Definition 6.2: Given two behaviours B1, B2 define a

gap function:

�δ(B1,B2) =

{
infΦ∈O ‖(I − Φ)|GB1‖ if B2 ∈ Ω
1 if not,

δ(B1,B2) = max
{
�δ(B1,B2), �δ(B2,B1)

}
where

Ω = {B : ∃Baut stable s.t. B = Bcont + Baut},

O =
{

Φ: D ⊂ GB1 → GB2

∣∣∣∣ Φ surjective, causal
and Φ(0) = 0

}
.

Observe that this a ‘real’ behavioural definition: ev-
erything is defined in terms of trajectories, and all sub-
behaviours involved can be expressed in set-theoretic terms
from the original behaviour B. From a behavioural perspec-
tive, it should also be noted that the definition does not
require a distinguished i/o partition.

The central reason for consideration of gap distances
in systems theory is to obtain robust stability results. In
particular we want δ to capture the idea that any reasonable
stabilizing controller for BP will also stabilize BP1 provided
δ(BP ,BP1) is small. We remark that B2 ∈ Ω implies the
stabilizability of B2. In the differential case, the reverse is
also true and the distance between B and Bcont is zero if
B is stabilizable – this is reasonable since any stabilizing
controller for B will automatically stabilize Bcont. Conse-
quently δ is necessarily at most a pseudo-metric; indeed the
distance between two stabilizable state-space systems with
the same transfer function will be 0.

We first consider the controllable-autonomous decompo-
sition of the interconnected behaviour.

Lemma 6.3: Suppose BP , BC are linear behaviours and
BP = BP

cont + BP
aut, BC = BC

cont + BC
aut. Then BP∧IC =

BP∧IC
cont +BP∧IC

aut . If BP = BP
cont⊕BP

aut, BC = BC
cont⊕BC

aut,
Then BP∧IC = BP∧IC

cont ⊕ BP∧IC
aut . Here

BP∧IC
cont =

{
(w1 + w2, w1, w2) | w1 ∈ BP

cont, w2 ∈ BC
cont

}
⊂ (BP

cont + BC
cont) × BP

cont × BC
cont,

BP∧IC
aut =

{
(w1 + w2, w1, w2) | w1 ∈ BP

aut, w2 ∈ BC
aut

}
⊂ (BP

aut + BC
aut) × BP

aut × BC
aut, (6.11)

and BP∧IC
aut is autonomous.

Proof: It is straightforward to verify that BP∧IC
cont is

the maximal controllable behaviour, and that BP∧IC
aut is

autonomous. Let w ∈ BP∧IC . Then w = (v1 + v2, v1, v2),
and by the direct sum decompositions of BP , BC , there
exist elements x1 ∈ BP

cont, x2 ∈ BP
aut, and y1 ∈ BC

cont,
y2 ∈ BC

aut such that v1 = x1 + x2, v2 = y1 + y2.
Consequently, there exists a decomposition of w = z1 + z2

where z1 ∈ (BP
cont + BC

cont) × BP
cont × BC

cont and z2 ∈
(BP

aut +BC
aut)×BP

aut×BC
aut, namely z1 = (x1 +y1, x1, y1),

z2 = (x2 + y2, x2, y2).
When BP = BP

cont ⊕ BP
aut, BC = BC

cont ⊕ BC
aut, the

existence for x1, x2, y1, y2 and z1, z1 are all unique. Hence
BP∧IC = BP∧IC

cont ⊕ BP∧IC
aut .

The following key proposition relates a condition of
stability of a particular half-line projection to stability of
the entire system behaviour.

Proposition 6.4: Let BP , BC be linear, shift invariant
behaviours with finite memory and BP = BP

cont + BP
aut,

BC = BC
cont + BC

aut. Suppose BP
aut and BC

aut are stable and
BP∧IC is well posed. Suppose further that X = GBP ⊕GBC .
Then BP∧IC is stable.

Proof: Suppose w ∈ BP∧IC , and w|[0,∞) =
(w0, w1, w2). We have to show if w0 ∈ X then w1, w2 ∈ X .
So let w0 ∈ X . Since BP∧IC = BP∧IC

cont + BP∧IC
aut , it

follows that w = x + y, where x = (x0, x1, x2) ∈ BP∧IC
cont

and y = (y0, y1, y2) ∈ BP∧IC
aut . By stability of BP

aut,
BC

aut we know x0|[0,∞) = w0 − y0|[0,∞) ∈ X . Since
X = GBP ⊕ GBC , we see x0|[0,∞) = x̃1|[0,∞) + x̃2|[0,∞)

for some x̃1 ∈ GBP , x̃2 ∈ GBC . By the controllability of
BP∧IC

cont it follows that there exists z ∈ BP∧ICsuch that
z|(−∞,−τ ] = 0, z|[0,∞) = x|[0,∞) and therefore there exist
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z1 ∈ BP , z2 ∈ BC such that z1|(−∞,−τ ] = 0, z1|[0,∞) =
x1|[0,∞) and z2|(−∞,−τ ] = 0, z2|[0,∞) = x2|[0,∞). By shift
invariance of BP , σ−τz1 ∈ BP . Since (σ−τz1)|(−∞,0) = 0,
we know σ−τz1 ∈ ZBP . Similarly, σ−τz2 ∈ ZBC . Since
σ−τxi|[τ,∞) = σ−τzi|[τ,∞)(i = 1, 2) and x0 = x1 + x2,
we have σ−τx0|[τ,∞) = σ−τx1|[τ,∞) + σ−τx2|[τ,∞) =
σ−τz1|[τ,∞) + σ−τz2|[τ,∞). Since x0|[0,∞) = x̃1|[0,∞) +
x̃2|[0,∞) and the well posedness assumption, we see
(σ−τz1)|[τ,∞) = σ−τx1|[τ,∞) = σ−τ x̃1|[τ,∞) and
(σ−τz2)|[τ,∞) = σ−τx2|[τ,∞) = σ−τ x̃2|[τ,∞), which
indicate that σ−τx1|[τ,∞), σ−τx2|[τ,∞) ∈ X and hence
x1|[0,∞), x2|[0,∞) ∈ X . Hence w1 = x1|[0,∞) + y1|[0,∞) ∈
X,w2 = x2|[0,∞) + y2|[0,∞) ∈ X as required.

We can now give the proof of the main robust stability
result. Before giving the proof we remark that the result
follows straightforwardly from Proposition 6.4 once it has
been shown that X = GBP

cont
⊕ GBC

cont
, and that this

classical condition is obtained directly using the technique
of [1]: we have included this part of the proof from [1] for
completeness.

Theorem 6.5: Suppose BP , BP1 , BC are linear, shift
invariant behaviours with finite memory. If:

1) there exist stable BP
aut,BC

aut such that BP = BP
cont +

BP
aut and BC = BC

cont + BC
aut

2) BP∧C is uniformly stable,
3) BP1∧C is well-posed, and,
4) �δ(BP ,BP1)‖ΠP//C‖ < 1,

then BP1∧C is uniformly stable.
Proof: Condition 4 implies that there exists a stable

BP1
aut such that BP1 = BP1

cont + BP1
aut by definition of the

gap and since ‖ΠP//C‖ ≥ 1. By condition 4, there exists
a surjective mapping Φ : D ⊂ GBP → GBP1 such ‖Φ −
I‖‖ΠP//C‖ < 1.

Let w0 ∈ L2(R), w0|R− = 0. By the well-posedness
of BP1∧C (condition 3), we may let w0|R+ = w1 + w2

with w1 ∈ ZBP1 , w2 ∈ ZBC . Since BP1 ,BC are shift
invariant and BP1

aut,BP
aut are stable, for any τ > 0, there exist

wτ
1 ∈ GBP1 , wτ

2 ∈ GBC such that Tτw1 = Tτwτ
1 , Tτw2 =

Tτwτ
2 . Since Φ is surjective from GBP to GBP1 , there exists

wτ
3 ∈ GBP and wτ

1 = Φwτ
3 . Write xτ = wτ

3 + wτ
2 .

Then by condition 2, for all xτ ∈ X , ΠP//Cxτ = wτ
3 ∈

X, ΠC//P xτ = wτ
2 ∈ X and

Tτw0 = Tτw1 + Tτw2 = Tτwτ
1 + Tτwτ

2

= TτΦwτ
3 + Tτwτ

2

= TτΦΠP//Cxτ + TτΠC//P xτ

= TτΦΠP//CTτxτ + TτΠC//P Tτxτ

= Tτ (Φ − I)ΠP//CTτxτ + Tτxτ , (6.12)

TτΠP1//Cw0 = Tτw1 = TτΦwτ
3 = TτΦΠP//Cxτ

= TτΦΠP//CTτxτ . (6.13)

By (6.12), we have

‖Tτxτ‖ ≤ ‖Tτw0‖ + ‖Tτ (Φ − I)ΠP//CTτxτ‖
≤ ‖w0‖ + ‖Φ − I‖‖ΠP//C‖‖Tτxτ‖,

which gives

‖Tτxτ‖ ≤ ‖w0‖
1 − ‖Φ − I‖‖ΠP//C‖

.

By (6.13), we have

‖TτΠP1//Cw0‖
≤ ‖Tτ (Φ − I)ΠP//CTτxτ‖ + ‖TτΦΠP//CTτxτ‖

≤ (1 + ‖Φ − I‖)‖ΠP//C‖
‖w0‖

1 − ‖Φ − I‖‖ΠP//C‖
.

Hence w1 = ΠP1//Cw0 ∈ X and therefore, by (5.10), w2 =
ΠC//P1w0 ∈ X .

So, for any w0 ∈ X , w0|R− = 0, we have shown there
exists w1 ∈ GBP1 , w2 ∈ GBC such that w0 = w1 + w2, i.e.
X = GBP1 ⊕GBC . The proof is completed by an application
of Proposition 6.4.

Notice in the case of differential systems, that the con-
verse of Lemma 4.7 holds, and hence condition 1) in
Theorem 6.5 and Ω in Definition 6.2 can be replaced by
stabilizability conditions. See [3] for a discussion of Lemma
4.7 in the commensurate delay setting.

REFERENCES

[1] Georgiou T. and Smith M. C., Optimal robustness in the gap metric,
IEEE Trans. Auto. Control, 35(1990), 673-686

[2] Georgiou T. and Smith M. C., Robustness analysis of nonlinear
feedback systems: an input-output approach, IEEE Trans. Auto.
Control, 42(1997), 1200–1221

[3] Gluesing-Luerssen H., Delay-Differential Systems with Commensu-
rate Delays: An Algebraic Approach; Lecture Notes in Mathematics
1770; Springer 2002

[4] Polderman J. W. and Willems J. C., Introduction to Mathematical
Systems Theory, Springer, 1997

[5] Rocha, P. and Wood, J., Trajectory control and interconnection of
1D and nD systems. SIAM J. Contr. Opt., 40(2001), 107-34.

[6] Sasane A. J., Distance between behaviours, Int. J. Control, 72(2003),
1214-1223

[7] Trentelman H. L. and Willems J. C., Synthesis of dissipative systems
using quadratic differential forms: Part II, IEEE Trans. Auto. Control,
47(2002), 70 - 86

[8] Vinnicombe G., Uncertainty and Feedback: H∞-shaping Control
System Synthesis, Imperial College Press, London, 2001

[9] Willems J. C., From time series to linear system - Part I. Finite
dimensional linear time invariant systems, Automatica, 22(1986),
561-580

[10] Willems J. C., From time series to linear system - Part II. Exact
modelling, Automatica, 22(1986), 675-694

[11] Willems J. C., From time series to linear system - Part III. Approx-
imate modelling, Automatica, 23(1987), 87-115

[12] Willems J. C. and Trentelman H. L., Synthesis of dissipative systems
using quadratic differential forms: Part I, IEEE Trans. Auto. Control,
47(2002), 53-69

[13] Wood J., Rogers E. and Owens D. H., Controllable and autonomous
nD linear systems, Multidimens. Systems Signal Process., 10(1999),
33-69

[14] Wood J. and Zerz E., Notes on the definition of behavioural control-
liability, Systems and Control Letters, 37(1999), 31-37

[15] Zames G. and El-Sakkary A. K., Unstable systems and feedback: The
gap metric, Proceeding of the Allerton Conf., (Oct. 1980), 380–385

1558


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




