
Abstract—Finding conditions for absolute stability of 
a system containing a linear part and a scalar nonlinear sector 
restricted function is a classical Lur’e problem. Most of the 
corresponding results are based on the frequency domain or 
Lyapunov functions methods which are applied to systems with 
a time-invariant or periodic linear block. This paper develops a 
new approach to stability analysis of the problem based on a 
direct analysis of the corresponding integral Volterra equation 
about the input of the nonlinear block. The obtained sufficient 
stability criterion is applicable to non-autonomous systems with 
arbitrary time-varying delay in the feedback. The approach is 
extended to general time-varying systems including a linear 
block and norm bounded vector nonlinear terms with 
uncertain time-varying delays. The obtained delay-independent 
stability conditions are formulated in the terms of the 
transition matrix of the linear part and the norms of the 
nonlinear terms.  The systems are indicated for which the 
obtained criteria are not only sufficient but also necessary for 
any delay function. The obtained results are applied to stability 
analysis of some systems previously studied in the literature; in 
all cases less conservative stability bounds are found.  

I.INTRODUCTION 

The classical Lur’e problem is to find conditions for 
absolute stability of a control system consisting of a linear 
block and a nonlinear feedback contained within a 
prescribed sector [1]. Over the last few decades there has 
appeared an extensive literature devoted to the problem and 
its generalization. Most of the known results are obtained by 
the frequency domain or Lyapunov functions methods and 
relate to systems with a time-invariant or periodic linear 
block (e.g., [2]-[10]). The Lyapunov method enables, in 
principle, to tackle arbitrary time-varying systems; however, 
finding the Lyapunov function for such systems is, 
generally, a difficult problem.  

In paper [11] sufficient stability conditions for the Lur’e 
problem which are equally applied to time-invariant and 
time-varying systems are found. The results are based on a 
direct analysis of the corresponding integral Volterra 
equation about the input of the nonlinear block )(t . In this 
paper we extend this approach to systems with delay in the 
feedback. Namely, we assume that the corresponding output 
is of the form )),((( ttt  where the function )(t  is 
piecewise continuous, nonnegative and bounded for 

),0[t . The corresponding integral equation becomes  
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where ),( stw  is the transfer function of the linear block. 
Note that no other information on the linear block is 
employed, so the last may be described by time-varying 
ordinary or partial differential equations with or without 
delay, integral equations, etc.  

The piecewise continuous scalar valued function )(tf
describes a solution in the absence of the feedback for 
nonzero initial conditions and, perhaps, external perturbation 
disappearing at infinity. We assume that the linear block is 
exponentially stable, so  

0)(tf  as t .                        (2) 

The function ),( t  belongs to the class ),( 21 KK ,  i.e. 
satisfies the inequality

2
2

2
1 ),( KtK , ),(       (3)

We assume that with a given initial function 
0for  )( tt , the solution )(t  of equation (1) is 

continuable on ),0[ .
Definition. System (1) is called absolutely stable in the 

class ),( 21 KK  if for any functions )(tf , ),( t ,
satisfying conditions (2), (3),  and any piecewise continuous 
nonnegative bounded for ),0[t  function )(t , the 
corresponding solution )(t  of (1.1) satisfies the condition

0)(t   as t .                       (4)

If condition (4) is not fulfilled for some ),( t , )(t  and 
)(tf  from the indicated classes, the system is referred to as 

unstable.
Putting KKtt 11 ),(),( , 2/)( 12 KKK

and returning to the previous notation, we reduce (3) to the 
form  

22 ),( KtK , ),( .              (5)                      

Thus, we replace the class ),( 21 KK  by ),( KK ; thus 
we assume that the transfer function ),( stw  in (1) is 
changed correspondingly.  

In Section 2 a value *K  is found such that for *KK ,
the system is absolutely stable independent on the delay 
function )(t  (Theorem 1). For some linear parts (including, 
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in particular, the autonomous ones) the value 0K  is found 
such that the system is unstable in the class ),( 00 KK  for 
any )(t  (Theorem 2).

In Section 3 systems with a nonnegative transfer function 
are considered. It is shown (Theorem 3) that asymptotic 
stability for Kt),(  guarantees absolute stability of 
the system in the class ),( KK . Thus, such systems for 
arbitrary delay )(t  in the feedback, satisfy the Aizerman 
conjecture [12] (note that the known results of such kind 
[13-15] relate to time-invariant systems). Under some 
additional condition, a precise upper bound for the stability 
sector is found (Theorem 4).  

In Section 5 applications of the obtained results to some 
systems are discussed. It is shown that a closed-loop system 
consisting of any number of first order time-varying links 
and arbitrary delay in the feedback satisfies the Aizerman 
conjecture in the class ),( KK . The efficiency of the 
derived stability criterion for systems with vector 
nonlinearities is illustrated by examples which were studied 
in the literature using different stability conditions.

In Section 4 the developed approach is extended to 
systems consisting of a linear block and norm bounded 
vector nonlinear terms with uncertain time-varying delays. 
An explicit delay-independent sufficient stability condition, 
expressed in the terms of the transition matrix of its linear 
part and bounds for the norms, is obtained (Theorem 5). 
This condition turns out to be also necessary (Theorem 6) 
when the matrix of the linear part is symmetric and time-
invariant. We show that the last system satisfies the 
Aizerman conjecture for any delays in the nonlinear terms.  

II. ABSOLUTE STABILITY AND INSTABILITY CRITERIA 

Suppose that the linear block is exponentially stable, then 

)](exp[),( stCstw ,               (6)

where the constants C and 0  are independent on t and s.
Let us put

sstwtW
t

d),()(
0

, )(sup)( tWtW k  for ktt ,

)(lim)(lim k
tt

tWtWW
k

.                        (7) 

Here W  is the upper limit of )(tW  as t ; it 
coincides with the conventional limit when the last exists. 
This is certainly the case when the linear block is time-
invariant. Really, here )(),( stwstw , so, setting 

zst , we obtain

zzwtW
t

d)()(
0

.                             (8)

The function )(tW  in (8) increases monotonically and, 
therefore, tends to a limit.  

The following theorem establishes a sufficient condition 
for absolute stability of system (1), (5). 

Theorem 1. If

WKK /1* ,                             (9)

the system is absolutely stable in the class ),( KK .

Proof. Let )(t  be a solution  of equation (1). First let us 
show that for any  01t , there exists 1ttm  such that 

),[for  )()( 1ttttm . Really, otherwise, there is a 
sequence kttt ,...;, 21  as k , such that 

)()( ktt  for ],[ 1 kttt . Then from (1) and (5) we 
have

)()(),(

d))((),(),()(

1

1

1

kkk

t

t
kkk

ttKWttR

sssstwKttRt
k

     (10) 

where
1

0
1 d))((),()(),(

t

kkk sssstwKtfttR .

Observing that )()( kk tWtW , WtW k )( ,
0),( 1ttR k  as kt  and, by (9), 1KW , we find that 

inequality (10) cannot hold for large k . The contradiction 
obtained shows that there exists a sequence ,...2,1, mtm

such that mtm as  and )()( ttm  for 

),[ mtt . Evidently, 0)()( 1mm tt , therefore; 

there exists )(lim mt  as mt . Let us prove that 
0 .

By assumption, ht)(  for some h . Assuming 
htt im , analogously (10) we find  

.)()(),(

d))((),(),()(

imim

t

t
mimm

ttKWttR

sssstwKttRt
m

i
           (11) 

Since the sequence ,...2,1,)( mtm  is convergent, then 

for any 0 , there exists such i that  mi tt ((  for 
all im . Therefore, from (11) we find  

)(),()](1[)( mimmm tWKttRtWKt
           (12) 

Since ),( im ttR  for large im tt ,
1)(lim KWtKW m  as kt  and  )()( mm tWtW ,
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then 1)( mtKW  for large m. Therefore, inequality (12) is 
true only if 0)( mt  as m , i.e. 0)(t  as  

t .
Let us now obtain a condition guaranteeing instability of 

the system. To this end, we put  

sstwtW
t

d),()(
0

0 .                           (13) 

Suppose there exists
0)(lim 0

0 tWW
t

.                        (14)

Theorem 2.  If

00 /1 WKK ,                            (15)

then  system  (1),(2) is unstable.  

Proof. Let us put

.0for1)(
,sgn)(,/)(1)( 0000

0
0

tt

WKWtWtf     (16)

In view of (14) and (16), 0)(0 tf  as t ; by (15), 
),()(0 KK . By a direct substitution one can check 

that 1)(t  is the corresponding solution of (1). Since it 

does not satisfy condition (4), the system is unstable. 
Let bK  be the value of the constant K  such that the 

system is stable in the class ),( KK  for bKK  and 
unstable for bKK . Then from Theorems 1 and 3 it 
follows that bK  satisfies the inequality

0/1/1 WKW b .                        (17)

III. SYSTEMS WITH SIGN-CONSTANT TRANSFER 
FUNCTION

Suppose now that the transfer function ),( stw  is sign-
constant. Without loss of generality, we assume that  

0for        0),( ststw .                      (18)

Theorem 3. System (1), (18) is absolutely stable in the 
class ),( KK  if it is stable for ))(( ttK .

Proof. Let )(0 t  be the solution of the equation

,d))((),()()(
0

000

t

sssstwKtft          (19)

where
)()(0 tt    for 0t ,

)exp()()(0 ttftf  for 0t .                (20) 

Clearly, 0))(())((0 stst  for sufficiently 
small 0t . Let us show that this inequality cannot break as 
t  increases. Really, let ))(())(( 11110 tttt  for 
some 1t , then, subtracting (1.1) from (3.2), we find  

,d)]),((())(()[,(

                    )exp()()(0

1

0
01

111
t

ssssssKstw

ttftf

       (21) 

which is impossible, because the right-hand side of (21) is 
positive ( )(0K  for 0 ).  ` 

If )()( 110 tt , then, summing (19) and (1), we find   

1

0

01

111

d)]),((())(()[,(

)exp()()(0
t

ssssssKstw

ttftf

,

where the right-hand side is also positive.
The obtained contradiction shows that )()(0 tt   for 

0t  and, therefore, 0)(t  as t .
Suppose, moreover, that limit (14) exists.  

Theorem 4. For absolute stability of system (1), (18), it is 
necessary and sufficient that

WK /1 .                                   (22)                     

In fact, by (18), )()( 0 tWtW , 0WW , so Theorem 4 
follows directly from inequality (17).  

IV. SYSTEMS WITH VECTOR NONLINEARITIES 

The above approach can be extended to a linear system 
with arbitrary time-varying delays and nonlinear vector 
perturbations:

k

i
ii tttxftxtAtx

1
)),((()()()( ,              (23) 

where nRx  and )(ti  are piecewise continuous functions 
( hti )(  for ),0[t  where h  is an arbitrary constant). 
The nonlinear perturbations are norm-bounded, i.e.  

xttxf ii )(),( , ki ,...,1 ,              (24) 

where )(ti  are continuous bounded functions, a  denotes 
the Euclidean norm of a vector a.

The initial condition is given by

]0,[for)()( htttx ,                         (25) 

where )(t  is a continuous function.
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We assume that for any admissible 
),(and)(),( txftt ii , the corresponding solution )(tx  is 

continuable on ),0[ .
We call system (23) absolutely stable if for any choice of 

the functions )(),( tt i  and ),( txf i  satisfying the above 
conditions, the corresponding solution

0)(tx  as t .                            (26) 

The system is called unstable if (26) fails for some 
admissible )(),( tt i  and ),( txfi .

Note that recently a significant attention has been devoted 
to stability analysis of systems with an uncertain delay. A 
number of stability conditions for such systems were 
developed using various approaches (see, e.g. papers [19]-
[22] and survey [23]). The delay-dependent conditions
contain a prescribed upper bound for the uncertain delays, 
the delay-independent ones relate to systems for which such 
a bound can be arbitrarily large. Below we obtain delay-
independent conditions for absolute stability of system (23), 
(24).

Denote by IttWstW ),((),(  where I is the unit matrix) 
the transition matrix of the equation  

0)()()( txtAtx .                           (27) 
Let us put

k

i
ii ssxstWsstw

1
))((),()(),( ,

k

i
i stWsstv

1
),()(),( ,

t

sstvtV
0

d),()( ,    (28)

where A  denotes the induced norm of the matrix A which 

is equal to the largest eigenvalue of the matrix 2/1)( AAT .
Suppose that 27) is exponentially stable, then 

)](exp[),( stCstw ,                        (29) 

where the constants C and 0  are independent on t and s.
The following theorem provides a sufficient stability 

condition for system (23), (24),(29).  
Denote by V  the upper limit of )(tV .

Theorem 5. If
1V ,                                    (30) 

then the system is absolutely stable. 

Proof. The solution )(tx  of equation (23) satisfies the 
relation

t k

i
ii ssssxfstWxtWtx

0 1
)d)),(((),()0()0,()( . (31) 

From (31), (24) and (28) it follows that  
t

sstwxtWtx
0

d),()0()0,()( .                (32)

The further proof is analogous to that of Theorem 1. 
Let us indicate a class of systems for which stability 

condition (30) is not only sufficient but is necessary as well.
Consider the system  

k

i
ii tttxftAxtx

1
)),(((()()( ,                   (33) 

where A  is a constant symmetric matrix ( TAA ) and the 

functions nitxfi ,..,1),,(  satisfy inequalities (24) with 
constant i .

In view of the symmetry of the matrix A , its eigenvalues 
nii ,...,1,  are real [24]. Since, by supposition, equation 

(27) is exponentially stable, the smallest eigenvalue, 01 .
The following theorem shows that here stability condition 

(30) is necessary for any delays )(ti .

Theorem 6. For absolute stability of system (33), it is 
necessary and sufficient that

k

i
i

1
1 .                               (34) 

Proof. Since the matrix 0A  is constant, then

])(exp[),( 0AststW .                   (35) 

By (35), the eigenvalues of the matrix ),( stW ,
nistii ,...,1)],(exp[ . Since A  is symmetric, 

),( stW  is symmetric as well, so  

)](exp[max),( 11 ststW i
i

.        (36) 

Then from (28), and (36) we have  

k

i
i ststv

1
1 )](exp[),( ,

k

i
iV

11

1 .      (37) 

Thus, inequalities (30) and (34) are identical and 
consequently the condition (34) is sufficient. To prove its 
necessity, we consider the marginal system  

))(()()(
1

ttxtAxtx i

k

i
i .                (38) 

Let 0
1x  be the eigenvector of the matrix 0A  corresponding 

to the eigenvalue 1 . By a direct substitution, one can check 

that for 11
k

i i , equation (38) admits the solution 
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0
1)( xtx . Since the last does not satisfy (26), equation (38) 

is unstable, which proves the necessity of condition (34). 

V. DISCUSSION 

Stability condition (9) can be applied to a wide range of 
systems with, generally, time-varying linear block and 
arbitrary delay )(t  in the feedback. Under this condition, a 
system is absolutely stable in the class 

),( 11 WW where 0  is an arbitrary small 
value. If limit (14) exists, the system is certainly unstable in 
the wider class ),( 1

0
1

0 WW  (Theorem 2).
The Lur’e problem was first formulated for the system  

)(cxbAxx                                 (39)

where bRx n ,  and c are column and row vectors, 
correspondingly. The problem is reduced to (23) where 

cx),(  and )(),( stwstw , because (39) is 
time-invariant.  

In 1949 Aizerman conjectured [12] that system (25) is 
absolutely stable in the class ),()( 21 KK , provided
that the linear system kbcxAxx  is stable for any 

],[ 21 KKk . Subsequently counterexamples showed that 
this conjecture is, in general, false (the history of the 
Aizerman conjecture can be found in the book by Gil’ [13]). 
So, the problem is to find classes of systems satisfying the 
Aizerman conjecture. The first result in this direction was 
obtained by Gil’ [13] who proved that if in system (39) the 
transfer function is nonnegative, then its absolute stability in 
the class ),0( K  is guaranteed by stability of the system 

KbcxAxx . Recently he extended this result to 
distributed and delay time-invariant systems [14, 15].  

In paper [11] it was shown that stability of a time-variable 
system with a nonnegative transfer function in the class 

),( KK  is guaranteed by stability for Kt),( .
Theorem 3 of the present paper extends this result to 
systems with arbitrary delay )(t  in the feedback. If in (14) 

the limit 0W  exists, the precise bound for the stability sector 
equals WK /1  (Theorem 4) for any delay )(t . Note that 
at first sight the invariance of the stability sector on )(t
looks surprising; however, this is due to the fact that for 

WK /1  and )(tf , determined by (16), equation (1) 
admits the ‘unstable’ solution 1)(t  for any )(t .

Let the linear block be a closed-loop system consisting of 
n (generally, time-varying) links. Suppose that the 
individual transfer functions nistwi ,...,1),,(  are sign-
constant. For a sign-constant input, the output of each link is 
sign-constant as well, therefore, so is the transfer function 

),( stw  of the entire linear block.

Suppose, in particular, that the links are of the first order, 
i.e. the linear block is described by the equations  

.,...,2,)(
,0)(

1

11
nixkxtax

xtax

iiiii

i              (40)

There exists an extensive literature devoted to an analysis 
of feasibility of the Aizerman conjecture to closed-loop 
systems with first order time-invariant links and a feedback 

)( . Bergen and Williams proved [17] that systems of the 
third order satisfy this conjecture. Trukhan extended this 
result on systems with up to five stable links [18]. For an 
arbitrary number of links, the transfer function is positive, so 
stability in the class ),0( K  follows from Gil’ theorem 
[13]. Let us show that the above findings enable us to 
essentially generalize these results in some respects.

Evidently, the individual transfer functions of a link,

nissastw
t

s
ii ,...,1,]d)(exp[),( ,          (41) 

is positive, hence, the transfer function of time-varying 
system (40) is positive as well. So, from Theorem 3 it 
follows that system (40) with the feedback ))),((( ttt
is absolutely stable in the class ),( KK , provided that it 

is stable for )),(( tttK . If in (14) the limit 0W

exists, then for any prescribed delay )(t , the obtained 
bound for the stability sector coincides with the upper bound 
of the Hurwitz angle, i.e. 0

2* /1 KWK  (Theorem 4).  
For system (33) with a symmetric constant matrix A ,

necessary and sufficient stability condition is provided by 
inequality (34) which does not depend on the delays )(ti

(Theorem 5). Note that for system (33) with arbitrary 
constant matrix A , sufficient stability condition in the form 
(34) was found in [14, p.192].  

To check the efficiency of stability criterion (30), let us 
consider some system which were previously studied in the 
literature via various criteria. 

Example 1.   Consider the system 

.),(,
01
23

,

),),((()()(

0
2 xtxfARx

tttxftAxtx

             (41) 

The transition matrix of the system 0)()( tAxtx  is

)exp(2)2exp()exp()2exp(
))exp(2)2exp(2)exp()2exp(2

)(
tttt

tttt
tW .

By Theorem 5, system (41) is absolutely stable for 
arbitrary bounded )(t , provided that  
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1d)(
0

zzWV ,                      (42) 

where stz , )(zW  is the largest eigenvalue of the 

matrix 2/1))()(( zWzW T . The calculations offer 
9289.1V , so that system (41) is absolutely stable for 

5184.0 . This result substantially improves the known 
bounds, 1458.0 , 178.0  and 2389.0 , obtained 
by different criteria in papers [20] and [21].   

Example 2. Consider the system  

01
10

,
20
12

,

)),(()()(

0
2

0

AARx

ttAxtxAtx

.                  (43) 

Here

,
)2exp(0

)2exp()2exp(
)(

z
zzz

zW

0)2exp(
)2exp()2exp(

)(
z

zzz
AzW .

Since the matrix AzW )(  is symmetric, 

iAzW max)( , where 2,1, ii  are the eigenvalues of 
the matrix AzW )( . Condition (30), taking form (42) in this 
case, implies that system (43) is absolutely stable for 

5322.1 .
Note that system (43) with 1  and constant delay was 

studied in [22] and [23] where it was shown that the system 
is absolutely stable if 3624.0  and 4212.0 ,
respectively. In fact, the system is stable for arbitrary time-
varying bounded delay )(t as follows from the above result.  

Thus, in the considered examples the criterion presented 
in this paper provides less conservative stability bounds for 
the uncertain terms as compared with the known ones.  
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