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Abstract— We derive a distributed Nyquist type criterion that
can certify scalable robust stability for linearly interconnected
heterogeneous dynamical systems. The result holds for linear
SISO dynamical systems with bidirectional links between them.
Unlike previous results of this kind, we allow for otherwise
arbitrary interconnection topologies (i.e linear systems on
arbitrary underlying undirected graphs). Each agent is required
to satisfy a local test that involves only a knowledge of its own
dynamic and those of its neighbours; a new agent introduces
only an additional such condition hence the stability certificates
scale with the network size.

I. INTRODUCTION

Analysis and decentralized control of interconnected dy-

namical systems has traditionally received considerable at-

tention by the control community. Typical examples of early

work include the dissipativity approach in [1] and [2] and the

use of vector Lyapunov functions in [3]. A renewed interest

in the recent years has led to work on decentralized optimal

control design, such as the spatially invariant case in [4] and

the relaxation to a more general setting using LMI techniques

in [5] and [6].

Nevertheless in many applications including data net-

works, flocking phenomena, financial markets decentraliza-

tion is not sufficient: scalability is also a major property

that needs to be maintained without often being feasible to

implement sophisticated control strategies. By this we mean

that we want on the one hand stability guarantees for the

entire network with each agent satisfying a rule that involves

only local information, but at the same time we require

that network stability is preserved even when the network

is modified with the addition/removal of agents.

As we are looking for decentralized stability certificates

that hold for arbitrary interconnections, the degree of con-

servatism will inevitably be based on an interplay between

possible structure in the interconnections or certain homo-

geneity assumption in the participating dynamics. This kind

of structure has played a substantial role in most of the

scalable stability results available so far.

For example, in [1] and [2] a generalized dissipativity de-

scription with quadratic supply rates is adopted for participat-

ing agents. By appropriate conditions on the interconnection

matrix the summation of individual storage functions be-

comes a common Lyapunov function for the interconnected

system. Note, however, that such interconnection constraints

can be rather conservative for arbitrary networks unless these
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constraints appear naturally within the interconnection proto-

col obeyed by the system. Decentralized stability conditions

of Internet congestion control protocols as described in [7]

and references therein, are an example of an application

where scalability is important. These protocols, however, im-

pose a very special interconnection structure that simplifies

the analysis [8].

Interconnection constraints are being relaxed in the paper

by deriving stability conditions that involve not only the

dynamics of an individual agent, but also those of its neigh-

bours i.e. only cycles of length two are taken into account.

Scalability follows from the fact that a new agent introduces

only an additional such decentralized condition.

Our main result, roughly speaking, requires that a cer-

tain convexification of each “loop gain” (i.e. product of

neighbouring dynamics) satisfies a common Nyquist-like

condition. This is an extension to arbitrary underlying graphs

of ideas in [9] where a bipartite interconnection structure

has been exploited to derive decentralized delay stability

conditions for congestion control models in data networks.

The motivation for working in the frequency domain in

this way goes far beyond the possibility of developing an

appealing graphical test to verify stability: converting the

stability certification to a spectral inclusion problem of a

complex matrix allows one to exploit the internal structure

present in the system through the use of the numerical range

together with tools from convex and complex analysis. The

S-hull, a relaxed notion of convexity in the complex plane,

is used as a crucial tool in this direction since it enables to

define numerical range type spectral bounds with only the

frequency responses of participating agents, in a distributed

way. Note that the linear analysis is rather more involved than

a mere dissipativity argument as it requires taking the square

root of frequency response functions. It is thus intriguing to

contemplate what any nonlinear generalization of this theory

might look like.

Finally, even though we are not considering controller

design with performance criteria, robust stability certificates

in such networks (where scalability is important) can have

substantial contribution in their design. This is because one

can see whether part of the network is being unnecessarily

too conservative in its response. For example, an impor-

tant contribution along these lines has been a theoretical

justification in [10] that TCP is being too sluggish at high

bandwidths, with a proposal for modification in [11].
The paper is structured as follows. In section II we prove
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the main lemmas on which the stability results are going

to be based. We define the S-hull and show how it can

be used to bound the Numerical Range of matrices with

a structure relevant to our analysis. In section III we give

the stability results, for bipartite graphs first and then for

arbitrary graphs. Examples of potential application, such as

Internet and consensus protocols, are finally outlined.

II. PRELIMINARY RESULTS

A. Notation

The field of real and complex numbers are denoted by

R, C respectively. R
m×n, C

m×n are the m by n matrices

with elements in the corresponding fields. R+ is the set of

non-negative reals and C+ the closed right half plane. σ(M)
denotes the spectrum of a square matrix M, ρ(M) its spectral

radius, |M| the elementwise absolute value of the matrix i.e.

|[Mi j]| := [|Mi j|], Mi• is the ith row and M• j the jth column.

Co(S) denotes the convex hull of a set S and diag(xi) the

matrix with elements x1,x2, . . . on the leading diagonal and

zeros elsewhere. We denote the square of a set P ⊂ C as the

set of the squares of its elements i.e. P2 = {p2 : p ∈ P}.

The Numerical Range of a matrix M ∈ Cn×n is the set

N(M) := {v∗Mv : v ∈ Cn,v∗v = 1} . The property σ(M) ⊂
N(M) is frequently used in this paper (see e.g. [12] [13] for

a more detailed discussion of the properties of the Numerical

Range).H∞ is the set of proper transfer functions analytic

and bounded in C+. C0 is the class of functions continuous

in jR∪{∞} and A0 := H∞ ∩C0.

B. The S-hull and the Numerical Range

Definition 1 (S-hull): Let P ⊂ C. The S-hull of set P is

defined as

S(P) := (Co(
√

P))2 where
√

P := {x : x2 ∈ P}
Given a set P it is always true that 0 ∈ S(P) and1 S(P) ⊇
Co{P ∪ 0}. The discrepancy between the S-hull and the

corresponding Convex Hull in the last inclusion is generally

small relative to the size of P (see example in fig. 1). The

S-hull is a map that plays a crucial role in this paper because

it relates the numerical range of a product of matrices with a

particular structure, which is relevant to our analysis, to the

nonzero elements of those matrices. The following lemma is

a key result in this context and gives an alternative definition

for the S-hull.

Lemma 1: Let gi ∈ C for i = 1,2, . . . ,n. Then{
(∑i a∗i gi)(∑i aigi)

(∑i |ai|)2 : ai ∈ C, i = 1, . . . ,n

}
=

S({g2
i : i = 1, . . . ,n}) (1)

Proof: Main Observation:

(Co({±gi : i = 1, . . . ,n}))2 =({
∑i λigi

∑i |λi| : λi ∈ R, i = 1, . . . ,n

})2

(2)

1The statement 0 ∈ S(P) follows easily from the fact that Co(
√

P) is
symmetric about the origin. S(P)⊇Co{P∪0} is true since S(P) is a convex
set (Theorem 3 in the appendix) and S(P) always includes P and 0.
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Fig. 1. Comparing the S-hull and Convex Hull of a set that includes the
origin.

Let a = [ a1 a2 . . . an ]T ,g = [ g1 g2 . . . gn ]T .

Then

(
∑

i
a∗i gi

)(
∑

i
aigi

)
=

=(ℜ(a)− jℑ(a))T g . (ℜ(a)+ jℑ(a))T g

=(ℜ(aT )g)2 +(ℑ(aT )g)2

∈
(

∑
i
|ℜ(ai)|

)2

(Co({±gi : i = 1, . . . ,n}))2 +

(
∑

i
|ℑ(ai)|

)2

(Co({±gi : i = 1, . . . ,n}))2
(using (2))

⊂
⎡
⎣(∑

i
|ℜ(ai)|

)2

+

(
∑

i
|ℑ(ai)|

)2
⎤
⎦ .

Co
(
(Co({±gi : i = 1, . . . ,n}))2

)
Therefore

(∑i a∗i gi)(∑i aigi)

(∑i |ai|)2 ∈

⎛
⎜⎝ (∑i |ℜ(ai)|)2 +(∑i |ℑ(ai)|)2(

∑i
√

[ℜ(ai)]2 +[ℑ(ai)]2
)2

⎞
⎟⎠

︸ ︷︷ ︸
≤1

.

Co
(
(Co({±gi : i = 1, . . . ,n}))2

)
⊂Co

(
(Co({±gi : i = 1, . . . ,n}))2

)
(3)

Using the fact that (Co({±gi : i = 1, . . . ,n}))2 is a convex

set (proved in Theorem 3 in the appendix), (3) gives the

following inclusion for Lemma 1.

(∑i a∗i gi)(∑i aigi)

(∑i |ai|)2 ⊂ (Co({±gi : i = 1, . . . ,n}))2

The inclusion in the reverse direction is obvious from (2),

since we can always choose real ai’s so as to match the λi’s

in (2) .

The following is the main lemma in this section that gives

a bound for the numerical range of a product of matrices

with a specific structure. As it will be discussed in detail in

section III, this structure can characterize the return ratio of

any symmetric linear interconnection of dynamical systems

in a bipartite graph. The importance of this bound is that it

is the convex hull of S-hulls of products of elements which
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are adjacent in a graph theoretic sense. This graph theoretic

interpretation is an important part of the problem formulation

given in section III-A.

Lemma 2: Let R ∈Cm×n satisfy ρ(|R|T |R|) ≤ 1, and G =
diag(g1, . . . ,gn), F = diag( f1, . . . , fm), gi, f j ∈ C ∀i, j then

N(G1/2R∗FRG1/2) ⊂
Co({ fiS({gk : Rik 	= 0}) : i = 1, . . . ,m})

where G1/2 = diag(
√

g1, . . . ,
√

gn), and either of the square

roots can be used.

Proof:

ρ(|R|T |R|) ≤ 1 ⇒ v∗|R|T |R|v ≤ 1 ∀v ∈ C
m s.t. v∗v = 1

since ρ(|R|T |R|) = ‖|R|‖2
2 = sup

v∈Cn,v�=0

‖|R|v‖2
2

‖v‖2
2

expanding |R|T |R| we get

∑
i
(|v1|Ri1|+ v2|Ri2|+ . . . |)2 ≤ 1 ∀v ∈ C

n s.t. v∗v = 1

And since this is true for all such v

∑
i
(|v1Ri1|+ |v2Ri2|+ . . .)2 ≤ 1 ∀v ∈ C

n s.t. v∗v = 1 (4)

Considering now the definition of the Numerical Range

note that

v∗G1/2R∗FRG1/2v =
m

∑
k=1

fk(v
∗G1/2R∗

k•Rk•G1/2v)

=
m

∑
k=1

fk

(
n

∑
j=1

v∗jR
∗
k j
√

g j

)(
n

∑
j=1

v jRk j
√

g j

)
(5)

=
m

∑
k=1

(
n

∑
j=1

|v jRk j|
)2

fk

(
∑n

j=1 v∗jR
∗
k j
√

g j

)(
∑n

j=1 v jRk j
√

g j

)
(

∑n
j=1 |v jRk j|

)2

∈
m

∑
k=1

(
n

∑
j=1

|v jRk j|
)2

.

Co

⎧⎪⎨
⎪⎩ fk

(
∑n

j=1 v∗jR
∗
k j
√

g j

)(
∑n

j=1 v jRk j
√

g j

)
(

∑n
j=1 |v jRk j|

)2 : k = 1, . . . ,m

⎫⎪⎬
⎪⎭

⊂
m

∑
k=1

(
n

∑
j=1

|v jRk j|
)2

. (using Lemma 1)

Co
({

fkS({g j : Rk j 	= 0}) : k = 1, . . . ,m
})

(6)

From (4) we note that the convex hull in (6) is multiplied

by a real number in [0,1]. We hence deduce that

{v∗G1/2R∗FRG1/2v : v ∈ C
n, v∗v = 1} ⊂

Co
({

fkS({g j : Rk j 	= 0}) : k = 1, . . . ,m
})

Remark 1: The inclusion in Lemma 2 is actually an

equality if we consider the union of all Numerical Ranges

such that the matrix |R| satisfies the spectral radius bound

and has a specified sparsity (Theorem 4 in the Appendix).

III. MAIN RESULTS

A. Problem formulation

We consider single input single output linear time invariant

dynamical systems with transfer functions in A0. These are

linearly interconnected i.e. the input to each system is a linear

combination of the outputs from other systems. We consider

a directed graph representation of the interconnected system

and use the notation below.

G = (V,E,A) is a weighted directed graph2, where V =
{v1, . . . ,vn} is the set of nodes, E ⊆V ×V the set of directed

edges and A = [ai j] a weighted adjacency matrix. Directed

edges are denoted as ei j = (vi,v j), such that ei j is defined

to be incident to node v j. The adjacency matrix A ∈ Rn×n

satisfies a ji 	= 0 ⇔ ei j ∈ E . The in-neighbours of a node

vi are defined as N in
i = {v j ∈ V : (v j,vi) ∈ E} and its in-

degree as |Nin
i |. Similarly the out-neighbours are defined

as Nout
i = {v j ∈ V : (vi,v j) ∈ E} and the out-degree as

|Nout
i |. In the digraph representation of the network each

dynamical element corresponds to a node of the graph.

Furthermore in a network of n dynamic agents, each with

scalar input ui(t), scalar output yi(t) and transfer function

gi(s), the input and output vectors, u(t) = [u1(t), . . . ,un(t)]T

and y(t) = [y1(t), . . . ,yn(t)]T respectively, satisfy the relation

u(t) = Ay(t), where A is the adjacency matrix of the graph.

The section is structured as follows. We consider first

symmetric (the adjacency matrix A is symmetric) bipartite

graphs. These are easy to analyze due to the block antidiag-

onal structure of the adjacency matrix, or in graph theoretic

terms, all cycles have even length. The results are then

extended to arbitrary graphs by an appropriate transformation

of the problem.

B. Stability conditions

An interconnected system with n dynamic agents with

transfer functions g1(s), . . . ,gn(s) respectively and adjacency

matrix A, can be represented with the block diagram in figure

2(a), where G(s) = diag(gi(s)).
In a bipartite graph there exist two disjoint sets of dynamics

{h1(s), . . . ,hm(s)} and { f1(s), . . . , fn(s)} such that dynamics

from one set are connected directly only to dynamics from

the other set. This means that the interconnection is defined

by
y(s) = G(s)u(s), u(s) = Ay(s),

G(s) =

[
F(s) 0

0 H(s)

]
, A =

[
0 RT

R 0

]
(7)

where F(s) = diag( f1(s), . . . , fn(s)), H =
diag(h1(s), . . . ,hm(s)), R ∈ Rm×n. An alternative block

diagram representation in this case is shown in figure 2(b).

Theorem 1 (Stability of bipartite graphs): The intercon-

nection of linear dynamical systems described in (7) where

ρ(|R|T |R|) ≤ 1 and fi(s), h j(s) ∈ A0 for i = 1, . . . ,n , j =

2from now on the word graph or digraph will refer to a weighted directed
graph.
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AG(s)

(a) The underlying
graph can have arbitrary
structure.

T

R

R

F(s) H(s)

(b) The underlying graph is
bipartite.

Fig. 2. Block diagram representations of interconnected systems.

1, . . . ,m is asymptotically stable if

1 /∈Co
({

fk( jω)S({h j( jω) : R jk 	= 0}) :

ω ∈ R+,k = 1, . . . ,n}) (8)

OR 1 /∈Co
({

hk( jω)S({ f j( jω) : Rk j 	= 0}) :

ω ∈ R+,k = 1, . . . ,m}) (9)

Proof: From the block diagram in figure 2(b) the return

ratio of the interconnected system is L(s) = H(s)RF(s)RT .

Using the multivariable Nyquist criterion [14] the closed loop

system is stable if the eigenloci of the return ratio do not

encircle the 1 point. A sufficient condition is the existence of

a convex set that does not include 1, but includes σ(L( jω))
∀ω ∈ R+. We generate such a set by noting that L( jω)
and H( jω)1/2RF( jω)RT H( jω)1/2 have the same non-zero

eigenvalues. Zero eigenvalues are not a problem since these

are always included by the bounding set we will consider.

The Numerical Range is always a bound for the spectrum of

a matrix. Hence condition (8) follows directly from Lemma

2. Similarly the sufficiency of (9) can be proved by bounding

the spectrum of F( jω)1/2RT H( jω)RF( jω)1/2.

Remark 2: The convex hull conditions (8), (9) can easily

be given decentralized interpretations by means of hyper-

plane arguments. Note first that

Co
({

hk( jω)S({ f j( jω) : Rk j 	= 0}) :

ω ∈ R+, k = 1, . . . ,m}) =

Co
({

S({hk( jω) f j( jω) : Rk j 	= 0}) : ω ∈ R+,k = 1, . . . ,m
})

Using a duality argument the convex hull of S-hulls condition

is equivalent to each of the S-hulls not intersecting a globally

specified hyperplane through the point 1 since the S-hulls

will necessarily lie on the same side of the hyperplane (this

is because the S-hull of a set always includes the point 0).

Decentralization is a result of the fact that the domain of

each of the S-hulls depends only on a given dynamic and

its neighbours. Scalability follows from the fact that a new

agent introduces only an additional hyperplane condition for

an S-hull.

Remark 3: Given relations y = |R|x and q = |R|T p the 2-

norm bound on R can be achieved by appropriate scaling.

This is because the return ratio L(s) = H(s)RT F(s)R is

similar to

diag(y j)H(s)R̂F(s)diag

(
qi

xi

)
R̂T diag

(
1

p j

)

where R̂ = diag

(√
p j

y j

)
Rdiag

(√
xi

qi

)
The spectral radius bound on R̂ is valid since

ρ(|R̂|T |R̂|) = ρ
(

diag

(
1

qi

)
|R|T diag

(
p j

y j

)
|R|diag(xi)

)

≤
∥∥∥∥diag

(
1

qi

)
|R|T diag(p j)

∥∥∥∥
∞

∥∥∥∥diag

(
1

y j

)
|R|diag(xi)

∥∥∥∥
∞
≤ 1

where the last inequality follows using the fact that for a

matrix M ∈Cm×n the induced infinity norm satisfies ‖M‖∞ =
maxi ∑ j |Mi j|. In the case all elements of |R| are in [0,1] it is

sufficient to take p, x as vectors with all elements being equal

to 1 and y, q vectors of in-degrees i.e. y j = |Nin
j | where v j is

the node associated with the dynamic with transfer function

h j(s), similarly qi = |Nin
i | where vi is node associated with

the dynamic with transfer function fi(s).
Remark 4: In the special case where there are no dynam-

ics associated with one of the disjoint sets of vertices in the

bipartite graph, i.e. H(s) = ki, ki ≤ 1, the stability condition

in Theorem 1 reduces to

1 /∈Co({ fk( jω) : ω ∈ R+,k = 1, . . . ,n}∪0)
Remark 5: Theorem 1 also holds when R is a transfer

matrix R(s) analytic in the closed right half plane such that

it can be factorized as RT (s) = diag(gi(s))RT (−s) and R( jω)
satisfies the spectral radius bound ρ(|R( jω)|T |R( jω)|) ≤ 1.

Conditions (8), (9) then hold but with fk( jω) replaced by

fk( jω)gk( jω). This is particularly useful for some networks,

such as the Internet, where R(s) can be a transfer matrix of

the propagation/return delays (see [10]).

We now consider general symmetric graphs i.e. the intercon-

nection is defined by

y(s) = G(s)u(s), u(s) = Ay(s) (10)

where G(s) = diag(g1(s), . . . ,gn(s)) and A = AT ∈ Rn×n

without any restrictions in its sparsity.

Theorem 2 (Stability of arbitrary graphs): The intercon-

nection of linear dynamical systems described in (10), where

ρ(|A|T |A|) ≤ 1 and gi(s) ∈ A0, for i = 1, . . . ,n is asymptoti-

cally stable if

1 /∈Co
({

gk( jω)S({g j( jω) : Ak j 	= 0}) :

ω ∈ R+, k = 1, . . . ,n})
Proof: The return ratio in this case is G(s)A and we

use the fact 1 /∈ σ(G( jω)AG( jω)A)⇒ 1 /∈ σ(G( jω)A). This

is true since for a matrix M ∈ Ck×k σ(M2) = (σ(M))2.

Moreover, given a convex set P s.t. 0 ∈ P and P ⊃
σ(G( jω)AG( jω)A) ∀ω ∈ R+ then 1 /∈ P implies 1 /∈
kP ∀k ∈ [0,1] and hence 1 /∈σ(kG( jω)A) ∀k∈ [0,1],ω ∈R+.

Therefore {σ(G( jω)A) : ω ∈ R+} does not encircle the

point +1. It is hence sufficient for stability to bound the

spectrum of G( jω)AG( jω)A by a convex set for all ω ∈R+.

A return ratio G(s)AG(s)A may be interpreted as that of

a bipartite graph with F(s) = H(s) = diag(g1(s), . . . ,gn(s))
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and R = RT = A, where F(s), H(s), R are as defined in (7).

Theorem 2 follows then from Theorem 1.

Remark 6: A decentralized interpretation of the stability

condition can be given as explained in Remark 2. As in

Remark 3, the 2-norm of matrix |A| in the case all its

elements are in [0,1] can be bounded by an in-degree scaling

of the inputs of the dynamics.

Remark 7: In the case A ≥ 0 it is shown in [15] that

a result analogous to that in Remark 4 applies i.e. the

interconnected system is stable if

ρ(A)≤ 1 and 1 /∈Co({gk( jω) : ω ∈ R+,k = 1, . . . ,n}∪0)
Remark 8: A being skew symmetric i.e. A = −AT corre-

sponds to the case where all cycles of length 2 are in negative

feedback. In this case the same stability conditions hold but

with respect to the point −1 instead of +1.

Remark 9: In comparison with Theorem 1, the price paid

for guaranteeing stability of arbitrary graphs is that the

stability condition requires all dynamics to appear in the

domain of an S-hull whereas, in Theorem 1 only one of

the two sets of the bipartition of dynamics has to appear in

the S-hull. More specifically, if Theorem 2 is applied to the

bipartite case, both (8) and (9) are required to hold, whereas

Theorem 1 needs only either of them. Even though we are

eventually considering the convex hull of the S-hulls, the

conservatism lies in the fact that the S-hull of a set always

includes the corresponding convex hull.

IV. EXAMPLES

An important illustrative example of the applicability of

the more general results developed in section III is stability

analysis of models for Internet congestion control protocols.

Such protocols fit within the graph theoretic setting of this

paper, in the sense that TCP imposes an underlying bipartite

graph. This is the case because users/sources communicate

directly only with links/routers. This implies that Theorem 1

can be applied to derive decentralized local robust stability

conditions in the presence of dynamics at both users and

routers (see [9]). In addition, systems of interacting agents

such as consensus protocols (e.g. [16], [17], [18]) could be

analysed in the case of bidirectional links between agents,

despite the potential presence of heterogeneous agent dynam-

ics.

As a final comment, it should be noted that the stability

conditions presented in the paper are tight in the sense that

there exist configurations for which they are also necessary

(e.g. a delayed integrator connected to a static agent). On

the other hand, there exist dynamics and topologies for

which they are only sufficient. The point that needs to be

emphasized here is that our main contribution is that we

have derived a novel methodology for designing networks

such that stability can be guaranteed for heterogeneous
systems on arbitrary underlying graphs. Any conservatism

in specific configurations is the price paid for maintaining

stability in arbitrary networks while relaxing structure in the

underlying graph (Remark 9)3. Successful, non conservative,

3Extensions to MIMO systems is likely to increase such conservatism
unless there is some internal structure associated with these systems.

applications of special cases of these results (Remarks 4, 7)

to data network protocol design problems [7] is an indication

of the fertile ground lying ahead.

V. CONCLUSIONS

We have shown a generalization of the Nyquist criterion

that enables one derive scalable decentralized conditions for

the stability of a network of interconnected linear dynamical

systems. These conditions require that each dynamic agent

knows only the dynamics of its neighbours and hence are

independent of the size of the network and the way it is inter-

connected. If there is some structure in the interconnections,

e.g. a bipartite graph, the stability conditions can be reduced

to less conservative certificates. Possible applications of these

results include Internet congestion control and consensus

protocols. Our primary aim has been to demonstrate that it

could provide a basis for analyzing many classes of networks

where scalability to the network size and topology is a

primary issue.

APPENDIX

The following lemma is used to prove the fact that the

S-hull is a convex set (Theorem 3).

Lemma 3: Let a,b ∈ C and l1 : [0,1] → C, l1(t) = ta +
(1− t)b. Then

±
√

l1(t) ∈Co{0,±√
a,±

√
b} ∀t ∈ [0,1]

Proof: Without loss of generality assume

a = rae jθa , b = rbe jθb , π ≥ θb ≥ θa ≥ 0, ra,rb ≥ 0 (11)

We will in fact prove a stronger statement. This is√
l1(t) ∈Co{0,

√
a,
√

b} ∀t ∈ [0,1] (12)

where for

g ∈ C, g = re jθ , r ≥ 0, θ ∈ [0,2π ]
√

g :=
√

re jθ/2

Let l2 : [0,1]→C, l2(t) = t
√

a+(1−t)
√

b. (12) is equivalent

to l1(t) ∈ (Co{0,
√

a,
√

b})2 ∀t ∈ [0,1] .

We prove this by showing that the origin and any point

(l2(t2))2 lie on opposite sides of the track of the line l1(t)
(see figure 3). This statement can be stated in cross product

form as

[(b−a)× ((l2(t))
2 −a)] . [(b−a)× (0−a)]≤ 0

∀t ∈ [0,1] (13)

where for a,b as in (11) b×a := rarb sin(θb −θa)

Now (b−a)× ((l2(t))
2 −a) =

= (b−a)× (t2a +(1− t)2b + 2t(1− t)
√

ab−a)

= (b−a)× (t2 +(1− t)2−1)+ 2t(1− t)(b−a)×
√

ab

= 2t(t −1)b×a + 2t(1− t)
√

rarb(rbe jθb − rae jθa)× e j
θa+θb

2

= 2t(t −1)rbra

[
sin(θb −θa)− rb + ra√

rbra
sin

(
θb −θa

2

)]

= 4t (t −1)︸ ︷︷ ︸
≤0

rbra sin

(
θb −θa

2

)[
cos

(
θb −θa

2

)
︸ ︷︷ ︸

0≤.≤1

− rb + ra

2
√

rbra︸ ︷︷ ︸
≥1

]
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b
a

l2

√
a

√
b

√
l1

l1

(l2)2

Fig. 3. The root of the straight line joining a,b ∈ C and the square of the line joining
√

a,
√

b.

So (b−a)× ((l2(t))
2 −a) = k1(t)sin

(
θb −θa

2

)
where k1(t) ≥ 0 ∀t ∈ [0,1]

and also it is apparent that

(b−a)× (0−a)= −k2 sin(θb −θa) where k2 ≥ 0

Hence (13) is true.

Theorem 3 (Convexity of S-hull): Let A ⊂C. S(A) is con-

vex where

S(A) = (Co({±√
g : g ∈ A}))2

Proof: Let a,b ∈ S(A). Then

±√
a,±

√
b ∈Co({±√

g : g ∈ A})
hence Co(±√

a,±
√

b) ⊂Co({±√
g : g ∈ A}) (14)

In order to prove convexity of S(A) we need to show that

the line joining any two points in S(A) lies in S(A) i.e.

ta +(1− t)b∈ S(A) for all a,b ∈ S(A), t ∈ [0,1]

This is equivalent to showing that

±
√

ta +(1− t)b∈Co({±√
g : g∈A}) ∀ a,b∈ S(A), t ∈ [0,1]

And from (14) it is sufficient to show that

±
√

ta +(1− t)b∈Co(±√
a,±

√
b) ∀ a,b ∈ C, t ∈ [0,1]

This follows from Lemma 3.

Theorem 4 (S-hull gives tight bound for Numer. Range):
Let R̂∈Cm×n and G = diag(g1, . . . ,gn), F = diag( f1, . . . , fm),
gi, f j ∈ C ∀i, j then{⋃

R

N(G1/2R∗FRG1/2) s.t. R ∈ C
m×n,

ρ(|R|T |R|) ≤ 1,Ri j = 0 ⇔ R̂i j = 0

}
= Co

({
fiS({gk : R̂ik 	= 0}) : i = 1, . . . ,m

})
= Co

({
(Co({±

√
figk : R̂ik 	= 0}))2 : i = 1, . . . ,m

})
Proof: See [19] .
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