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Abstract— Modern spectral estimation techniques often rely
on second order statistics of a time-series to determine a
power spectrum consistent with data. Such statistics provide
moment constraints on the power spectrum. In this paper
we study possible distance functions between spectra which
permit a reasonable quantitative description of the uncertainty
in moment problems. Typically, there is an infinite family of
spectra consistent with given moments. A distance function
between power spectra should permit estimating the diameter
of the uncertainty family, a diameter which shrinks as new data
accumulates. Abstract properties of such distance functions
are discussed and certain specific options are put forth. These
distance functions permit alternative descriptions of uncertainty
in moment problems. While the paper focuses on the role
of such measures in signal analysis, moment problems are
ubiquitous in science and engineering, and the conclusions
drawn herein are relevant over a wider spectrum of problems.

I. INTRODUCTION

The moment problem in its most basic formulation

amounts to determining a non-negative distribution dµ con-

sistent with a given set of moments

∫
θ∈S

gk(θ)dµ(θ), for k = 0, 1, 2, . . . , n,

where dµ and the integration kernels gk are defined on a

support set S. The classical theory [16], [17], [1] focused

on S being 1-dimensional and on the integration kernels

forming a Tchebyshev system (see [16]). It is worth noting

that analytic interpolation problems of the Nevanlinna-Pick

type can be cast as such [16]. Perhaps the most commonly

encountered version of such a problem is the so-called

trigonometric moment problem where gk(θ) = e−jkθ, θ ∈
(−π, π] and dµ(θ) a bounded non-negative measure. It is

this latter problem that will be our focus in this paper.

Motivation for studying the trigonometric moment prob-

lem comes from the theory of stochastic processes. Indeed,

if {yt : t ∈ Z} is a discrete time, zero mean, second

order stationary stochastic process, the auto-covariances (i.e.,

autocorrelation samples)

ck := E(ytȳt−k), for k = 0,±1,±2, . . . ,±n
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provide moment constraints on the power spectrum dµ of

the process:

ck =
1
2π

∫ π

−π

e−ikθdµ(θ) for k = 0,±1,±2 . . . ,±n. (1)

It is well known [12], [13] that moments of a non-negative

distribution (at least for classical problems) are characterized

by the non-negativity of a suitable quadratic form—in our

case, the form specified by the Toeplitz matrix

Tn =

⎡
⎢⎢⎢⎣

c0 c−1 · · · c−n

c1 c0 · · · c−n+1

...
...

. . .
...

cn cn−1 · · · c0

⎤
⎥⎥⎥⎦ .

When Tn ≥ 0 and singular, there is a unique dµ consistent

with (1) and the requirement that dµ ≥ 0. In fact, this dµ is

singular with respect to the Lebesgue measure and consists of

a finite number (≤ n) of “spectral lines.” In general however,

when Tn > 0, the family of consistent distributions

Fc0:n = {dµ : dµ ≥ 0, and (1) holds}
is an infinite one. Here, and throughout, c0:n :=
(c0, c1, . . . , cn) denotes the vector of the first (n + 1)
moments, c := (c0, c1, . . .) denotes the infinite sequence,

while the fact that dµ is a real measure dictates that ck = c̄−k

for k = 0, 1, . . .. The sequence c is said to be positive if

Tn > 0 for all n. Similarly c0:n is said to be positive if

Tn > 0. Accordingly, the term non-negative is used when

the relevant Toeplitz matrices are non-negative definite.

Theory and practice of spectral estimation (see [13], [18])

revolve around specific choices within Fc0:n which then form

the basis of particular spectral estimation algorithms (see [4]

for a concise exposition). In the present paper we view Fc0:n

as an “uncertainty set”. We seek ways to quantify “modeling

uncertainty” and “variability of spectra” consistent with (1).

More specifically, we seek suitable distance functions

δ(dµ1, dµ2) ≥ 0

with certain natural properties that allow defining a “diam-

eter”

ρδ(Fc0:n) := sup{δ(dµ1, dµ2) : dµ1, dµ2 ∈ Fc0:n}
of Fc0:n .

The following properties are sought for any such distance

function δ(·, ·). First, that the corresponding induced radius

ρδ(Fc0:n) decreases to zero whenever Fc0:n tends towards

a singleton. There are two cases in particular when this

happens. This is the case when the length of the vector
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of moments c0:n increases without bound, i.e., when ck for

k = n + 1, n + 2, . . . become successively known. This is

due to the fact that the trigonometric problem is determinate
[1] in that c specifies uniquely a measure dµ for which (1)

holds for all n, i.e.,

∩∞
n=0Fc0:n = {dµ}.

A second case is when the values for the first n + 1
moments is perturbed so that the Toeplitz matrix Tn tends

to become singular. In both those cases ρδ(Fc0:n) needs to

reflect that the size decreases to 0. It turns out that these

first two properties are closely related to a certain type of

continuity of δ(·, ·) (weak∗ continuity). An additional issue

we consider is that of computability of ρδ(Fc0:n). It turns

out that computability is greatly facilitated by convexity of

δ(·, ·).
Section II reviews certain mathematical concepts on mea-

sures and harmonic functions as they pertain to representa-

tion of power spectra. Section III expands on the connection

between distance functions and the induced diameter of the

uncertainty set. Section IV gives a characterization of the

essential boundary of uncertainty sets, while Sections V and

VI expand on possible alternatives for distance functions with

desirable properties. Technical arguments and background

information are provided in an appendix.

II. POWER SPECTRA & HARMONIC ANALYSIS

The power spectrum of a discrete-time stationary process

can be thought of as a bounded non-negative measure on

the unit circle. The derivative (of its absolutely continuous

part) is often referred to as spectral density while the

singular part may contain jumps (spectral lines) associated

with the presence of sinusoidal components. Non-negative

measures are naturally associated with analytic and harmonic

functions—a connection which has profitably been studied

in classical circuit theory in the context of passive circuits.

In fact, power spectra relate, in a very precise sense, to

boundary limits of the (harmonic) real parts of so-called

“positive-real functions.” This brief section reviews relevant

facts and notation.

Weak* convergence

Bounded measures on the boundary of the unit disc D :=
{z : |z| < 1} can be thought of as functionals on C(T),
the class of continuous functions defined on T := (−π, π].
Indeed, if C(T)∗ denotes the set of such bounded linear

functionals Λ : C(T) → R, the Riesz representation theorem

asserts the existence of bounded measure dµ such that

Λ(f) =
∫

T

f(t)dµ(t)

for all f ∈ C(T). Then, a natural topology is induced by

the notion of weak* convergence, where a sequence dµn

converges to dµ if
∫

fdµn → ∫
fdµ for every f ∈ C(T).

Analytic and harmonic representations of power spectra

Herglotz’ theorem states that if dµ is a bounded non-

negative measure on T, then

H[dµ](z) =
1
2π

∫
T

eit + z

eit − z
dµ(t)

defines a function which is analytic in D and has positive

real part. Conversely, any such function can be represented

(modulo an imaginary constant) by the above formula for a

suitable non-negative measure. The class of analytic func-

tions in D with non-negative real part is usually denoted by

C (after Carathèodory) and this is the notation we follow as

well.

The Poisson integral of a non-negative measure dµ

P [dµ](z) :=
1
2π

∫
T

Pr(θ − t)dµ(t), z = reiθ,

where Pr(θ) = 1−r2

|1−reiθ|2 is the Poisson kernel, is a harmonic

function which is non-negative in D and equal to the real

part of H[dµ](z). The measure dµ is uniquely determined

via the limit of P [dµ](reiθ)dθ → dµ as r → 1 in the weak*

topology.

III. LIMIT PROPERTIES OF THE DIAMETER ρδ

The point of this section is to show that weak* continuity

of the distance function δ gives the desired limit properties

for the radius ρδ(Fc) of the uncertainty set.

We begin by highlighting the fact that weak* convergence

of measures relates to convergence of their Poisson integrals.

Proposition 1: Let {dµk}∞k=1 be a sequence of uniformly

bounded signed measures on T, let dµ be a bounded measure

on T, and let u(z) = P [dµ](z), uk(z) = P [dµk](z) be their

corresponding Poisson integrals. The following statements

are equivalent:

1) dµk → dµ weak*,

2) uk(z) → u(z) pointwise ∀z ∈ D,

3) uk(z) → u(z) in L1(D),
4) uk(z) → u(z) uniformly on compact subsets of D.

Proof: The equivalence of the conditions follows from

standard arguments of complex analysis (see [14]).

Formally, in this paper, a distance function is simply a

mapping from a pair of non-negative measures to the non-

negative reals , i.e., (dµ1, dµ2) �→ δ(dµ1, dµ2) ≥ 0, such that

the non-negative measures with metric δ is a metric space.

The next proposition points out that weak*-continuity of the

distance function ensures that the induced diameter of Fc0:n

goes to zero as n → ∞.

Proposition 2: If δ(·, ·) is a weak* continuous distance

function, and c a non-negative sequence, then ρδ(Fc0:n) → 0
as n → ∞.

Proof: Let dµ be the unique measure specified by c,

and let dµn ∈ Fc0:n denote a sequence of measures, for

n = 1, 2, . . .. Clearly dµ ∈ Fc0:n for all n. From [10, §1.16]

it follows that

|P [dµ](z) − P [dµn](z)| ≤ c0

√
8|z|n

(1 − |z|) 3
2
,∀n,
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and hence from Proposition 1, that dµ is the weak* limit of

dµn as n → ∞. Weak* continuity of δ now ensures that

the supremum of δ(dµn, dµ) over dµn ∈ Fc0:n goes to zero

with n, and so does ρδ(Fc0:n).
The following proposition explains what happens when the

values of the entries of c0:n, as a vector of constant length

n, vary so that Tn tends to become singular.

Proposition 3: Let ĉ0:n be a non-negative sequence cor-

responding to a singular Toeplitz matrix (i.e., ĉ0:n in non-

negative but not positive), and let c0:n(�) (� = 1, 2, . . .)
denote a sequence of nonnegative (n+1)-vectors of moments

tending to ĉ0:n. If δ(·, ·) is a weak* continuous distance

function, then ρδ(Fc0:n(�)) → 0 as � → ∞.

Proof: See appendix.

It should be noted that if c0:n is positive, then Fc0:n

contains infinitely many measures and among them at least

two singular measures with non-overlapping support, i.e.,

supp(dµ1) ∩ supp(dµ2) = ∅ and the total variation of their

difference is 2c0. Therefore, the statements of Proposition 2

and Proposition 3 would fail if the total variation is used to

define distances in the cone of non-negative measures.

IV. EXTREME POINTS OF THE UNCERTAINTY SET

Computation of the diameter ρδ(Fc0:n) of the uncer-

tainty set amounts to solving the optimization problem

sup{δ(dµ1, dµ2) : dµ1, dµ2 ∈ Fc0:n}. At the outset this

appears infinite dimensional, since an infinite set of parame-

ters are needed to characterize a typical element dµ ∈ Fc0:n .

However, it turns out, that weak* continuity and convexity

of δ reduce the problem to a finite dimensional one that can

be solved with standard methods.

The uncertainty set Fc0:n is the intersection of the positive

cone (non-negative measures) with a closed subspace (mo-

ment constraints), hence it is convex and closed. The norm

of its elements is bounded by c0—this is the total variation

since these are considered as functionals on C(T). Hence

Fc0:n is compact in the weak* topology [11, p. 19].

Now, since Fc0:n is a compact convex set in a locally

convex topological linear space, it is the closure of the convex

hull of its extreme points [11, p. 28-29]. Extreme points
have the property that they are not a (nontrivial) convex

combination of elements in the set. The set of extreme points,

i.e. the essential boundary, will be denoted by ext(Fc0:n) and

its characterization will be given shortly.

Finally, if δ is a weak*-continuous and jointly convex

function, then the diameter is attained as the precise distance

between two elements in ext(Fc0:n). The set of extreme

points admits a finite dimensional characterization and hence,

computation of the diameter becomes a tractable problem.

Proposition 4: Let c0:n be a nonnegative sequence. Then,

dµ ∈ ext(Fc0:n) if and only if dµ ∈ Fc0:n and the support

of dµ consists of at most 2n + 1 points.

Proof: See appendix.

The proposition states that any dµ ∈ ext(Fc0:n) is a singu-

lar measure with at most (2n+1) points of increase. Hence,

to specify c we only need to specify (cn+1, cn+2, . . . , c2n+1)
so that T2n+1 ≥ 0 and singular. Thus, ext(Fc0:n) admits a

finite dimensional characterization and ρδ(Fc0:n) reduces to

a finite dimensional problem.

V. DISTANCE FUNCTIONS

In the previous sections we argued that weak* continuity

and joint convexity are desirable properties of any dis-

tance function between nonnegative measures. Three possible

choices are given below.

(i) If we consider measures as functionals on C(T), it

is natural to quantify distance between such based on their

action on particular subsets of C(T), e.g.,

δ(dµ1, dµ2) = sup
z∈K

∣∣∣∣ 1
2π

∫
T

gzdµ1 − 1
2π

∫
T

gzdµ2

∣∣∣∣
with {gz}z∈K ⊂ C(T) and K being an indexing set. For this

to be a metric, the set {gz}z∈K needs to be sufficiently rich

to separate measures. An interesting special case is when

K is taken to be a compact subset of D and gz the Poisson

kernel. In this case the distance reduces to the sup-norm over

K between harmonic functions on the disc

δK(dµ1, dµ2) = max
z∈K

|P [dµ1 − dµ2](z)|.

If K ⊂ D has a nonempty interior δK defines a metric which

is treated in the next section.

(ii) Alternative possibilities include L1-distances between

respective functionals over a set of functions

δ(dµ1, dµ2) =
∫

z∈K

∣∣∣∣ 1
2π

∫
T

gzdµ1 − 1
2π

∫
T

gzdµ2

∣∣∣∣ dz,

and in particular, the L1(D)-distance between the respective

harmonic functions on the disc

δ1(dµ1, dµ2) =
∫

D

|P [dµ1 − dµ2](z)|dxdy, z = x + iy.

(iii) A range of possibilities opens up if we forgo the

requirement of δ being a metric, and are prepared to consider

pseudodistances, such as a relative entropy functional (e.g.,

see [9]). For the purposes of this paper, the usual expression

for the relative entropy is not applicable because it is not

weak* continuous. However, alternative choices are possible

as for instance

δ(dµ1, dµ2) =
∫

D

P [dµ1] log
(

P [dµ1]
P [dµ2]

)
dxdy, z = x + iy.

This notion of distance is again weak* continuous and jointly

convex, and will be discussed in [14].

VI. THE CASE ρδK

The size of the uncertainty set with respect to the distance

δK turns out to be especially easy to compute. Indeed, the

diameter is attained on a special subset of the essential

boundary which corresponds to measures with only n + 1
points of increase (i.e., support). This is the content of the

following proposition.
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Proposition 5: Let c0:n be a positive covariance sequence

and let K ⊂ D be closed. Then

ρδK
(Fc0:n) = max

z∈K

⎧⎪⎨
⎪⎩2

⎛
⎝

∣∣∣∣∣
2

1−zz̄ + (bz, dz)
(bz, bz)

∣∣∣∣∣
2

− (dz, dz)
(bz, bz)

⎞
⎠

1
2

⎫⎪⎬
⎪⎭ ,

where

bz =

⎛
⎜⎜⎜⎝

z−1

z−2

...

z−n−1

⎞
⎟⎟⎟⎠ , dz =

⎛
⎜⎜⎜⎝

z−1(c0)
z−2(c0 + 2c1z)
...

z−n−1(c0 + 2c1z + · · · + 2cnzn)

⎞
⎟⎟⎟⎠ ,

and (x, y) denote the inner product y∗T−1
n x. Furthermore,

ρδK
(Fc0:n) is attained as the distance between two elements

of Fc0:n which are both singular with support containing at

most n + 1 points.

Proof: See appendix.

Both claims in Proposition 5 can be used separately for

computing ρδK
(Fc0:n). The first one suggests finding the

maximum of a real valued function over K. The second

claim suggests search for a maximum for δK(dµ1, dµ2) over

a rather small subset of ext(Fc0:n), namely nonnegative

sequences c0:(n+1) parametrized by cn+1 being a solution

of the quadratic equation

det(Tn+1) = 0.

The corresponding values for cn+1 lie on a circle in the

complex plane, and hence, computation of ρδK
(Fc0:n) will

require search on a torus (each of the two extremal dµ1, dµ2

where the diameter is attained can be thought of as points

on the circle).

As an example, Figure 1 shows ρδK
(Fc0:n) for

c0:2 = (1, c1, c2)

as a function of the corresponding Schur parameters [10]

−1 < γ1 := c1 < 1,

−1 ≤ γ2 :=
det

⎛
⎝ c1 c2

1 c1

⎞
⎠

det

⎛
⎝ 1 c1

c̄1 1

⎞
⎠

≤ 1,

and K is taken as {z : |z| ≤ 0.5} ⊂ D.

The plot confirms that the diameter decreases to zero as the

parameters or, alternatively, the covariances c1 and c2, tend

to the boundary of the “positive” region (which in the Schur

coordinates corresponds to the unit square). However, it is

interesting to note that the diameter of Fc0:n as a function

of c0:n has several local maxima.

CONCLUSIONS

The purpose of this paper has been to bring attention to

the issue of quantifying uncertainty in the context of moment

problems. Such problems arise in a variety of engineering ap-

plications (signal processing, feedback control, circuit theory,

theory of measurements, statistical mechanics, etc., see [2],

[3], [6], [7], [8]). To this end we seek a distance function with
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Fig. 1. ρδK
as a function of γ1, γ2 when c0 = 1. K = {z : |z| ≤ 0.5}

certain desirable properties: first that the induced diameter

of the uncertainty set reduces to zero as the set reduces to

a singleton, and second that the diameter can be computed

with reasonable efficiency. Certain alternatives are proposed

which are further explored and discussed in [14].
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VIII. APPENDIX: BACKGROUND & TECHNICAL

ARGUMENTS

Orthogonal polynomials and Schur coefficients

Let c be a nonnegative covariance sequence with corre-

sponding measure dµ and consider the inner product

〈a(z), b(z)〉 =
1
2π

∫
T

a(eiθ)b(eiθ)dµ(θ).

The so-called orthogonal polynomials (of the first kind)
φk(z) [10] are (uniquely defined) monic polynomials with

deg φk(z) = k, k = 0, 1 . . ., which are orthogonal with

respect to 〈·, ·〉. They are shown [10] to satisfy the recursion

φk+1(z) = zφk(z) − γ̄kφk(z)∗,
φk+1(z)∗ = φk(z)∗ − zγkφk(z), (2)

where φk(z)∗ = zkφk(z̄−1) and {γk}∞k=1 are the so-called

Schur parameters.

The orthogonal polynomials of the second kind are defined

by

ψk(z) =
1
c0

[(f(z̄−1))φk(z)]+,

where [·]+ denote “the polynomial part of”. They are also

“orthogonal polynomials” but with respect to a certain “in-

verted” covariance (corresponding to the negative of the

original Schur parameters, cf. [10]) and satisfy the recursion

ψk+1(z) = zψk(z) + γ̄kψk(z)∗,
ψk+1(z)∗ = ψk(z)∗ + zγkψk(z). (3)
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The positive-real function f(z) = H[dµ](z) may be

expressed using the orthogonal polynomials as

f(z) = c0
ψk(z)∗ + zsk+1(z)ψk(z)
φk(z)∗ − zsk+1(z)φk(z)

,

where sk+1 belong to the Schur class S, i.e. the class of

analytic functions on D uniformly bounded by 1. Equations

(2-3) lead to

f(z) = c0
1 + zs1(z)
1 − zs1(z)

, sk(z) =
γk + zsk+1(z)
1 + zγ̄ksk+1(z)

, (4)

for k = 1, 2, . . ..
Lemma 1: Let fj(z) = H[dµj ](z) where dµj are non-

negative measures, j = 1, 2. Let {γj
k}, {sj

k(z)} be the

corresponding sequences of Schur parameters and Schur

functions. Then the following inequalities hold pointwise for

z ∈ D:

|f1 − f2| ≤ 2|c1
0 − c2

0| + |c1
0 + c2

0||s1
1 − s2

1|
(1 − |z|)2 , and

|s1
k − s2

k| ≤
6|γ1

k−γ2
k|+|s1

k+1−s2
k+1|

√
(1−|γ1

k|)(1−|γ2
k|)

(1 − |z|)2 .

Proof: They follow easily from (4).

Proof: [Proposition 3] Let dµ being the unique measure

specified by ĉ0:n, and let dµ� ∈ Fc0:n(�) denote a sequence

of measures, for � = 1, 2, . . .. The Schur parameters γk

corresponding to dµ satisfies |γk| < 1 for k = 1, . . . ,m− 1,

|γm| = 1, for some m ≤ n. Since ck(�) → ĉk, the k:th

Schur parameter corresponding to dµ� converges to γk, for

k = 1, . . . ,m [10, §8.2, §8.5]. By Lemma 1 the harmonic

functions representing P [dµ�](z) converge to P [dµ](z) uni-

formly on compact subsets of D, hence (Proposition 1)

dµ� → dµ weak*. Weak* continuity of δ now ensures that

the supremum of δ(dµ�, dµ) over dµ� ∈ Fc0:n(�) goes to

zero with n, and so does ρδ(Fc0:n(�)).
Proof: [Proposition 4] Assume that dµ ∈ Fc0:n

has more than 2n + 1 points of increase. Then let

[E1, E2, ..., E2n+1, E2n+2] be a partition of T such that

µ(Ej) > 0. Denote µj = µ|Ej
and denote by c0:n(j)

the covariances corresponding to dµj . By assumption ck =
1
2π

∫
e−iθkdµ. It follows that the set of linear equations⎡

⎢⎢⎢⎣
c0

c1

...

cn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

c0(1) · · · c0(2n + 2)
c1(1) · · · c1(2n + 2)
...

...

cn(1) · · · cn(2n + 2)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

τ1

τ2

...

τ2n+2

⎤
⎥⎥⎥⎦

has real positive solution τi ≥ 0 (i = 1, 2, . . . , 2n + 2).

Dimensionality considerations show that the solution is not

unique. Indeed the matrix [ck(j)] has range with real di-

mension 2n + 1 whereas the domain has dimension 2n + 2.

Hence there is at least a one-dimensional family of solutions

(τ1, τ2, . . . , τ2n+2). Since dµ corresponds to a positive solu-

tion, dµ belongs to the relative interior of this family, hence

it can be written as a proper convex combination of two other

measures in Fc0:n , i.e. dµ /∈ ext(Fc0:n).
To show the converse, let dµ ∈ Fc0:n be a measure with at

most 2n+1 points of increase. Then it is of the form dµτ =

∑2n+1
j=1 τjdµj , where dµj is the measure with unit mass at

tj and all tj are distinct. Denote by ck(j) the covariances

corresponding to dµj . Then τj satisfies⎡
⎢⎢⎢⎣

c0

c1

...

cn

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

c0(1) · · · c0(2n + 1)
c1(1) · · · c1(2n + 1)
...

...

cn(1) · · · cn(2n + 1)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

τ1

τ2

...

τ2n+1

⎤
⎥⎥⎥⎦. (5)

The linear mapping [ck(j)] is nonsingular and have both

range and domain of real dimension 2n+1. Therefore τ is

the unique real solution of Equation 5. If dµ is a convex

combination of dν� ∈ Fc0:n , � = 1, 2, then supp(dν1) ∪
supp(dν2) ⊂ supp(dµ), hence they are of the form dν� =∑2n+1

j=1 τj(�)dµj , τj(�) real. But since dµ is the only measure

of this form in Fc0:n we have dµ = dν1 = dν2, hence

dµ ∈ ext(Fc0:n).
Proof: [Proposition 5] There exists an analytic function

f(z) = H[dµ](z), dµ ∈ Fc0:n , such that f(z) = wz if and

only if its associated Pick matrix is nonnegative [15], i.e.(
2Tn bzwz − dz

w̄zb
∗
z − d∗

z
wz+w̄z

1−zz̄

)
≥ 0. (6)

By using Schur’s lemma and completing the squares we

arrive at∣∣∣∣∣wz−
2

1−zz̄ +(dz, bz)
(bz, bz)

∣∣∣∣∣
2

≤
∣∣∣∣∣

2
1−zz̄ +(bz, dz)

(bz, bz)

∣∣∣∣∣
2

− (dz, dz)
(bz, bz)

, (7)

where equality holds if and only if the Pick matrix (6) is

singular. From this, the first part of Proposition 5 follows.

Since the maximum is obtained when equality holds in

Equation 7, the associated Pick matrices are singular. Hence

the solutions are unique and correspond to measures with

support on n + 1 points [5, prop. 2].
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[12] U. Grenander and G. Szegö, Toeplitz Forms and their Applications,
Chelsea, 1958.

[13] S. Haykin, Nonlinear Methods of Spectral Analysis, Springer-
Verlag, New York, 247 pages, 1979.

[14] J. Karlsson and T.T. Georgiou, “Quantifying uncertainty in the moment
problem,” report in preparation, KTH.

[15] I.V. Kovalishina and V.P. Potapov, Integral Representation of Her-
mitian Positive Functions,, Khark’hov Railway Engineering Inst.,
Khar’kov 2001. English translation by T. Ando, Sapporo, Japan, 1981.

[16] M.G. Krein and A.A. Nudel’man, The Markov Moment Problem
and Extremal Problems, American Mathematical Society, Provi-
dence, RI, 417 pages, 1977.

[17] J.A. Shohat and J.D. Tamarkin, The problem of moments, New York
city, American mathematical society, 1943, 140 pages, 1943.

[18] P. Stoica and R. Moses, Introduction to Spectral Analysis, Prentice
Hall, 1997.

5715


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




