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Abstract— The gain governors use receding horizon opti-
mization to adjust parameters (such as gains) in the nominal
control laws. The parameters are optimized at each time
instant to minimize a cost function subject to pointwise-in-time
constraints and subject to the condition that the parameter
values are constant over the horizon. The gain governors
may be viewed as a special class of Model Predictive Control
(MPC) algorithms. They provide guaranteed stability properties
without terminal set conditions as well as a large degree of
flexibility in accommodating the on-line computational effort.
The paper reviews the properties of the gain governors and
discusses different implementations allowed by the general
theory with a view towards effectively accommodating the
computational effort involved with the on-line optimization.

I. INTRODUCTION

The gain governors, first proposed in [9], utilize receding

horizon optimization to adjust parameters (such as gains)

in the nominal control laws so that to improve closed-loop

performance and satisfy pointwise-in-time constraints. The

parameters are assumed to remain constant over the horizon,

and they are re-optimized at each time instant to minimize

a cost function defined over the horizon subject to given

pointwise-in-time constraints. It was shown in [9] that if the

horizon satisfies appropriate assumptions then the closed-

loop stability and constraint satisfaction can be assured

without explicit terminal set conditions. The underlying on-

line optimization reduces to a finite number of simulations

if the parameters can only assume a finite set of values.

The gain governor belongs to a larger family of suboptimal

yet computationally simpler schemes for controlling systems

with pointwise-in-time constraints, which also includes the

reference governors (see, e.g. [1], [2], [4], [5], [6] and refer-

ences therein) and feedforward governors [9]. Because these

schemes do involve on-line optimization, albeit a simple

one (or equivalent explicit computations of the solution [5]),

the required computational effort may still be excessive for

embedded applications that involve fast dynamics and low

cost processors.

The present paper describes several approaches for accom-

modating the computational effort associated with the gain

governors. For instance, it is shown that the exact minimizer

is not required and the updates can be less frequent than

every sampling period. Another approach involves develop-

ing an explicit implementation of the gain governor (i.e., pre-

computing the solution to the optimization problem off-line
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and storing a functional approximation of that solution for

on-line use) for a subset of the full state space (a patch) and

extending it beyond this subset so that to avoid constraint

violation and preserve state convergence. These and other

approaches are covered in Section II. The double integrator

example with input constraints is used for illustration of

the main ideas in Section III. A more elaborate example

is considered in Section IV. Concluding remarks are made

in Section V.

II. GAIN GOVERNOR AND APPROACHES TO ITS

IMPLEMENTATION

In this Section we first review the gain governor theory. We

then describe various approaches to its implementation aimed

at improving computational efficiency while preserving its

basic properties.

A. The Gain Governor

The gain governor [9] is applied to disturbance-free,

nonlinear discrete-time systems of the form,

x(t + 1) = f(x(t), u(t)), (1)

where x(t) is the state of the system and u(t) is the control

input. A parameter-dependent family of nominal control

laws, controlling the system to the origin is assumed to be

available,

u(t) = Uθ(x(t)), (2)

where θ ∈ Θ is the parameter and Θ is a given set. As one

example, θ(t) may represent some or all of the gains in a

given feedback law.

The pointwise-in-time constraints imposed on x(t) and on

θ(t) have the form:

(θ(t), x(t)) ∈ C, ∀t ∈ Z+, (3)

where C is a given subset. Because of (2), the input con-

straints can always be recast as equivalent constraints on x(t)
and θ(t).

The on-line selection of θ(t) for each t ∈ Z+ is based on

the minimization of a cost function,

J(x(t), θ(t)) = 1
2θ(t)TΨθ(t) +

k=T∑
k=0

Q
(
φθ(t)(k, x(t)), θ(t)

)
,

(4)

subject to

(θ(t), φθ(t)(k, x(t))) ∈ C, k = 0, 1, · · · , T, (5)

where φθ̄(k, x̄) denotes the solution of (1), (2) at time k
given that x(0) = x̄ and θ(t) ≡ θ̄ is maintained constant.
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The function Q is the incremental cost and Ψ = ΨT

is a parameter penalty matrix. If C admits an inequality

characterization

C = {(θ, x) : gj(θ, x) ≤ 0, j = 1, · · · , q},
then the constraint (5) reduces to

gj(θ, φθ(k, x(t))) ≤ 0, j = 1 · · · , q; k = 0, · · · , T. (6)

The constraint (5) can be also restated equivalently as

(θ(t), x(t)) ∈ OT , OT
∆= {(θ, x) : (θ, φθ(k, x)) ∈ C,

k = 0, 1, · · · , T}.
(7)

The rationale for the gain governor is easy to understand

in the case of systems with input constraints and it is similar

to that for the multi-mode controller [7], [8]. Specifically, the

gain governor can lower the gains when it becomes necessary

to avoid violating the input constraints; the gain governor

can increase the gains when there is no danger of constraint

violation and doing so improves the performance. In com-

parison to the multi-mode controller, the gain governor has

an advantage in that it explicitly incorporates a cost function

in deciding which gains to use.

Under reasonable assumptions (see [9]), the desirable

response properties of the gain governor, including the as-

ymptotic convergence of x(t) and θ(t) to the origin if starting

with a feasible initial state, can be rigorously guaranteed.

The needed assumptions for convergence of x(t) include

compactness of C and Θ, asymptotic stability of (1), (2) with

θ(t) fixed, continuity and positive-definiteness properties of

the function Q (Q(a, b) ≥ 0, for all a, b, Q(a, b) > 0 if a �=
0), Ψ ≥ 0, and an adequate horizon, T . Specifically, T must

satisfy the condition that if t > T , then Q(φθ(t, x), θ) ≤
q · Q(x, θ) for some 0 ≤ q < 1 and all (θ, x) ∈ C, θ ∈ Θ.

This condition is reasonable in view of asymptotic stability

of (1), (2) with θ(t) fixed and compactness of C and Θ. In

addition, T must satisfy the property that if (θ, x) ∈ C, θ ∈
Θ, φθ(t, x) ∈ C for t = 0, 1, · · · , T then φθ(t, x) ∈ C for

t > T . Under additional technical assumptions which include

convexity of Θ, 0 ∈ intΘ, and Ψ > 0, the convergence of

θ(t) to the origin can be guaranteed.

Numerical procedures are available for estimating an

acceptable value of T [9]. One procedure is based on

computing two quantities, L1(k) and L2(k), k ∈ Z+:

L1(k) = max
j=1,···,q,θ∈Θ,(θ,x)∈C

gj(θ, φθ(k, x)),

L2(k) = max
θ∈Θ,(θ,x)∈C

Q(φθ(k, x), θ)
Q(x, θ)

,

where gj is defined in (6). The L1(k), L2(k) are, respec-

tively, the maximum constraint violation and the minimum

decay in the incremental cost due to φθ(k, x) as x and θ
vary (θ ∈ Θ, (θ, x) ∈ C). An acceptable T must satisfy the

conditions L1(k) ≤ 0 and L2(k) ≤ q for all k ≥ T and

some 0 ≤ q < 1. Either off-line numerical optimization or

multiple off-line simulations of the model for different x and

θ can be used to estimate L1(k) and L2(k). An acceptable T

can be easily picked from the graphical plots of L1(k) and

L2(k) versus k. We note that the resulting T is a numerical

approximation to the required horizon and not a guaranteed

upper bound.

Note that as compared to more general MPC schemes

in which a control sequence needs to be computed over

the specified horizon, the condition θ(t + k) = θ(t), k =
0, · · · , T , makes the optimization problem (4), (5) lower

dimensional; in fact, its dimension does not depend on

the horizon, T . In the case when Θ has a finite number

of elements (which is allowed by the theory in [9]), the

optimization reduces to a finite number of simulations. In that

case, the gain governor provides a stability preserving and

performance improving mechanism for switching between a

finite family of controllers.

The gain governor permits a large degree of flexibility

in incorporating the on-line optimization to improve the

performance and enforce the constraints.

B. The use of non-exact minimizers

In minimizing (4) it is not necessary to obtain the exact

optimizer to preserve the state convergence. Indeed, suppose

a feasible θ(t−1) has been computed at a time instant t−1
and suppose θ(t) has been determined at the time instant t
using numerical optimization (e.g., with θ(t−1) as the initial

guess) so that the condition,

J(x(t), θ(t)) ≤ J(x(t), θ(t − 1)), (8)

is satisfied. Then,

J(x(t), θ(t)) ≤ J(x(t), θ(t − 1))
= J(f(x(t − 1), Uθ(t−1)(x(t − 1))), θ(t − 1))
≤ J(x(t − 1), θ(t − 1)) − (1 − q)Q(x(t − 1), θ(t − 1))
≤ J(x(t − 1), θ(t − 1)).

Consequently, if (8) is satisfied for all t and given that J
and Q are non-negative, it follows that Q(x(t), θ(t)) → 0
as t → ∞, and by continuity and positive-definiteness of

Q with respect to the first argument, it then follows that

x(t) → 0. For unconstrained problems or for problems

where the constraints are incorporated into the cost through

the penalty function, the condition (8) can be satisfied by

the usual line search methods, for which the gradient of

J(x(t), θ(t)) with respect to θ(t) can be easily computed.

If the line search iterations at a particular time instant do

not produce a value for θ(t) satisfying (8) (e.g., because of

running out of available time), then θ(t) = θ(t − 1) can be

used instead to preserve the state convergence.

C. Dealing with large number of constraints

The number of constraints in (5) or (6) grows with T
and can complicate on-line optimization if T is large. As in

the reference governor case [6], the use of a simple off-line

functional characterization of a subset, M ⊂ OT , in place

of OT provides an alternative. If

M = {(θ, x) : V (x, θ) ≤ 0} ⊂ OT ,

then multiple inequalities in (5) or (6) can be replaced by

a single inequality, V (x(t), θ(t)) ≤ 0. As in the reference
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governor case, the methods to construct V can be based

on parameter-dependent closed-loop Lyapunov functions or

classification/pattern recognition techniques. When M is

used in place OT , a situation may occasionally arise that no

feasible θ ∈ Θ exists for a time instant t, i.e., V (x(t), θ) > 0
for all θ ∈ Θ. In this case, as in [6], θ(t) is set equal to

θ(t − 1). This procedure, under the same assumptions as in

Section II-A, guarantees that the constraints are satisfied and

x(t) → 0.

D. The use of less frequent updates

Further, the updates of θ can be less frequent than

at every time instant, for example, at every t ∈ Iu =
{0, n, 2n, 3n, · · · ;n ∈ Z+, n > 1}. Whenever t �∈ Iu,

θ(t) can be kept constant, θ(t) = θ(t − 1), while the on-

line optimization is performed only for t ∈ Iu. The time

interval, k · n ≤ t < (k + 1) · n, provides n sampling

periods to calculate the optimal value of θ((k + 1)n) which

is useful in case these computations cannot be completed

within a single sampling period. Note that the value of

x((k + 1)n) = φθ(kn)(n, x(kn)) can be predicted via on-

line simulations assuming that θ(t) = θ(kn) for kn ≤ t ≤
(k+1)n. The drawback of less frequent parameter updates is

in lost opportunities for transient performance improvements

and, in practice, potentially degraded performance due to

unmodelled disturbances.

In a common situation when (1), (2) represent a discrete-

time approximation of a continuous-time system and ∆ is

the physical time period between two subsequent parameter

updates, it is usually the underlying continuous-time dynam-

ics that dictate an acceptable value for T · ∆. In particular,

selecting larger ∆ (i.e., using less frequent parameter up-

dates) can lead to smaller T and reduce complexity of the on-

line optimization problem. The drawback of using large ∆ is

cruder enforcement of constraints for the original continuous-

time system. This drawback can be addressed by enforcing

constraints on a finer time grid wherein (5) is replaced by

φθ(t)(nδ, x(t)) ∈ C, n = 0 · · · , N,

where φθ(t)(nδ, x(t)) is the predicted state of the continuous-

time system at time nδ, where δ < ∆ and Nδ > T∆.

If the approach of Section II-C, with M ⊂ OT , and V is

used, the number of constraints in the resulting optimization

problem may not necessarily be large. Note also that the

computational effort to simulate the continuous-time model

to a desired level of accuracy does not decrease with larger

∆.

E. The use of terminal set and terminal penalty conditions

As an alternative to constraining the horizon, T , based on

our assumptions terminal set and terminal penalty conditions

may also be used. In this case, a terminal penalty function

term, F (φθ(t)(T, x(t))), where F (0) = 0, is added to (4)

and a terminal set condition φθ(t)(T, x(t)) ∈ Γ is imposed.

The terminal set Γ should be positively invariant for all θ ∈
Θ (i.e., φθ(t, x) ∈ Γ if x ∈ Γ) and constraint-admissible

(i.e., (θ, φθ(t, x)) ∈ C for all x ∈ Γ, θ ∈ Θ and t ∈ Z+);

the terminal penalty function F must satisfy F (φθ(1, x)) −
F (x) ≤ −Q(φθ(1, x), θ) for all x ∈ Γ, θ ∈ Θ.

F. Explicit implementation of the gain governor

An explicit implementation of the gain governor provides

another mechanism for reducing the computational burden.

In the explicit implementation, the optimal values of θ =
θ∗(x) are first pre-computed off-line for different x and

then they are used to develop a functional approximation,

θ̄∗(x) of θ∗(x). The θ̄∗(x) can be applied during the on-

line operation of the system thereby eliminating the need for

on-line optimization.

Suppose that such an explicit solution is available for x ∈
Π where Π is a set (referred to as a patch) such that 0 ∈ intΠ.

As long as x(t) ∈ Π, θ̄∗(x(t)) is defined. If the trajectory of

x starts in Π but exits Π at some time t, then θ̄∗(x(t)) is not

defined but θ(t) can be set to the value of θ(t̃) = θ∗(x(t̃)),
where t̃ < t is the last time instant for which x(t̃) ∈ Π.

This procedure guarantees that the constraints are satisfied,

because if T is selected consistently with the assumptions in

[9], x(t̃) ∈ Π implies (θ∗(t), φθ∗(t)(k, x(t))) ∈ C for all k ∈
Z+. The procedure also preserves, under the assumptions

of [9], the cost non-increase condition J(x(t + 1), θ∗(t +
1)) ≤ J(x(t), θ∗(t)) and thus the convergence of x(t) to 0.

Even if x(t) exits Π at a time instant t, the condition 0 ∈
intΠ and asymptotic stability of (1), (2) with θ(t) maintained

constant guarantee that x(t) must re-enter Π in finite-time

where θ̄∗(x(t)) can again be applied.

The appropriate selection of the set Π over which the

functional approximation to the explicit solution is developed

and deployed provides a mechanism for decreasing the com-

plexity of this functional approximation and for improving

its accuracy. We note that this simple mechanism may not

be available with more general MPC schemes since for them

the explicit implementation typically retains the information

only about the first element of the optimal control sequence

and discards the rest of this sequence.

III. DOUBLE INTEGRATOR EXAMPLE

We consider an application of a gain governor to the

double integrator system, ẋ1 = x2, ẋ2 = u, under an input

saturation constraint, |u| ≤ 1. The nominal control law has

the form, u = −ω2
n(x1 − r) − 2ζωnx2, where ζ = 0.5 and

ωn = ωn,0 + θ, ωn,0 = 10. The continuous-time system

is discretized assuming the sampling period of ∆T = 0.01
sec.

We consider two cases. In the first case, θ(t) is selected

from a continuous interval, Θ = [−9, 0.5]. In the second

case, θ(t) is selected from a discrete set,

Θ = {−9,−8, · · · ,−1, 0, 0.1, 0.2, 0.3, 0.4, 0.5}.
The cost is (4) with Ψθ = 10−4 and Q = 10 · (x1)2 + 0.1 ·
(x2)2. The negative values in Θ provide a mechanism to

slow down the response while the positive values can speed

up the response. The set C in (3) reflects the input constraint,

and additional constraints, − 1 ≤ x1 ≤ 1, − 2 ≤ x2 ≤ 2,

were added to make it compact. The numerical procedure
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described in Section II-A was used to estimate an adequate

horizon as T = 3.5
∆T .

Figure 1 shows the time response of x1 with and without

the gain governor. The response (a) of the nominal controller

with ωn(t) ≡ ωn,0 = 10 is very fast if there is no saturation,

but it behaves poorly with the saturation, see the response (b).

The use of a controller with a fixed lower gain ωn(t) ≡ 1.0
avoids control input saturation (see the response (c)) but

it significantly slows down the system thereby sacrificing

the performance. Finally, with the gain governor the system

avoids control constraint violation, and the response is much

faster than both (c) and (b), see responses (d) and (e) in

Figure 1. The response (d) with θ selected from the interval

is faster than the response (e) with θ selected from the

discrete set. However, the selection from a discrete set can

be implemented just using on-line model simulations.

Figure 2 illustrates the behavior of θ∗(t). Note that the

response of θ∗(t) is non-monotonic so that the system is

first slowed down to prevent violation of the input constraint,

and then made faster once close to the desired equilibrium;

ultimately, θ∗(t) settles to zero in finite time. Figure 3 shows

that the control constraints are satisfied by the gain governor.
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Fig. 1. Time response of x1 without the gain governor and with the gain
governor: (a) With high gain controller and no input saturation; (b) With
high gain controller and input saturation; (c) With low gain controller and
input saturation; (d) With the gain governor and θ taking values from an
interval; (e) With the gain governor and θ taking values from a discrete set.
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Fig. 2. Time response of θ(t) = θ∗(t) in the control law: (d) With θ
taking values from an interval; (e) With θ taking values from a discrete set.
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Fig. 3. Time history of the control input u with the gain governor: (d) With
θ taking values from an interval; (e) With θ taking values from a discrete
set.

The explicit implementation of the gain governor was

carried out next. The θ∗(x) was pre-computed off-line over

a mesh of the set (a patch) Π = [−0.5, 0.5] × [−0.5, 0.5],
see Figure 4. Note that the area of this patch is only one

eighth of that allowed by the constraints. Two functional

approximations were developed. A refined approximation

was implemented using a 50 × 50 look-up table. Then a

coarse approximation was implemented using a 10×10 look-

up table. The look-up tables utilized linear interpolation in-

between the mesh points. The responses of the explicitly

implemented gain governor are shown and compared to the

response of the on-line optimization-based gain governor

in Figures 5-7. Both refined approximation and coarse ap-

proximation come very close to fully enforcing the input

constraints and the response of x1 is only mildly affected by

the approximation errors. The constraint violation may be

avoided even though the approximation errors are present

if the gain governor is redesigned by assuming that the

constraints are slightly tighter than they really are.

−0.5

0

0.5

−0.5

0

0.5
−10

−8

−6

−4

−2

0

2

x
p1

x
p2

θ*

Fig. 4. The function θ∗(x) pre-computed off-line and used in explicit
implementation of the gain governor.

IV. A HIGHER ORDER EXAMPLE

In this section we consider a more elaborate example of

the gain governor application application to a model arising

in engine control. In the engine which we consider, an
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Fig. 5. The time history of u(t) with (a) the on-line optimization-based
θ; (b) with explicit implementation based on the refined approximation; (c)
with explicit implementation based on the coarse approximation.
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Fig. 6. The time history of θ(t) with (a) the on-line optimization-
based θ determination; (b) with explicit implementation based on the
refined approximation; (c) with explicit implementation based on the coarse
approximation.

electronic throttle is used to control the flow of air into the

engine while the adjustment of cam phasing is used to reduce

residuals at low loads (to improve combustion stability) and

to increase residuals at medium loads in order to reduce

oxides of nitrogen emissions. Since the residuals displace

fresh air charge in the cylinders, the cam phasing transitions

can influence the transient cylinder air flow behavior and

the engine torque response. In particular, if the cam phasing

transitions occur too fast, the cylinder flow and the engine

torque may undershoot; if this transition is too slow, the

cylinder flow and the engine torque may overshoot. See

Figure 8. While spark timing can, in principle, help mitigate

the overshoot or undershoot in the engine torque, the spark

timing authority is limited and using spark timing may

degrade fuel economy. To ensure the monotonic cylinder flow

response, an on-line selection procedure for the cam phasing

transition rate has been developed in [10]. Here we approach

this problem using the gain governor and synergistically treat

both the electronic throttle and cam phasing actuation.

The engine breathing dynamics, in simplified form as

compared to [10], have the following form in continuous

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.1
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0.1
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0.4
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x p1

(a)

(b) (c)

Fig. 7. The time history of x1(t) with (a) the on-line optimization-
based θ determination; (b) with explicit implementation based on the
refined approximation; (c) with explicit implementation based on the coarse
approximation.

time:

ṗ = cm

(
k1 · uth ·

√
p − p2 − W

)
,

W = k2 · p · (1 − α

90
)
,

α̇ = −τ(α − αe),
üth = −2ζωnu̇th − ω2

n(uth − uth,e),

where p is the intake manifold pressure, uth is the throttle

angle, W is the cylinder flow, α is the cam phasing angle, and

the subscript e signifies the equilibrium value of a variable.

Note that

pe = 1

1+

(
k2· 1− αe

90
k1uth,e

)2 , We = k2 · pe ·
(
1 − αe

90

)
.

The constants are cm = 0.0414, k1 = 4.0, k2 = 30.0, ωn =
24.5. The governed parameters are τ and ζ so that τ = 8+θ1,
ζ = 1.2+θ2, where θ ∈ Θ = [−7.54, 25.33]×[−1, 0.8]. They

determine, respectively, the speed of cam phasing transitions

and the damping ratio in the throttle position response. These

parameters are updated every ∆T = 0.05 sec by the gain

governor. The incremental cost function Q in the form of

(4) is

Q = q1·(W−We)2+q2·(α−αe)2+q3·(uth−uth,e)2+q4·u̇2
th,

where q1 = 100, q2 = 0.01, q3 = 10−4, q4 = 10−4 while

Ψθ = diag(0.001, 0.001). The cost emphasizes the cylinder

flow response to provide better engine responsiveness and

drivability.

Assuming the command is to increase the cylinder flow,

the constraint which ensures the monotonic cylinder flow

response is Ẇ (t) ≥ 0. Strictly speaking, the theory in [9]

does not permit the treatment of constraints in this form

because the equilibrium is on the boundary of the feasible

set. We therefore relax the constraint to Ẇ (t) ≥ −0.1.

Figure 8 demonstrates that the gain governor is able to

coordinate throttle and cam phasing to produce a monotonic

cylinder flow response. Figures 9-10 indicate that the gain

governor creates an initial overshoot in throttle response

(by decreasing the damping ratio) to increase air flow and
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mitigate the increase in the residuals. It initially adjusts the

cam phasing position slowly and then speeds it up.
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Fig. 8. Time history of cylinder flow with (a) slow cam phasing
transition and nominal throttle transition; (b) fast cam phasing transition and
nominal throttle transition; (c) cam phasing transition and throttle transition
controlled by the gain governor.
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Fig. 9. Time histories of θ1(t) = τ(t) (trajectory (a)) and θ2(t) = ζ(t)
(trajectory (b)) prescribed by the gain governor.

V. CONCLUDING REMARKS

The paper discussed several approaches to the implemen-

tation of the gain governors. The gain governors use receding

horizon optimization for on-line adjustment of parameters in

nominal control laws so that to avoid violation of pointwise-

in-time state and input constraints, and to improve transient

performance. The adjustable parameters remain constant

over the prediction horizon. Thus the dimensionality of the

optimization problem being solved does not depend on the

horizon and is equal to the number of parameters. The

paper has demonstrated that a large degree of flexibility

exists in accommodating the on-line optimization required

to implement the gain governor. For example, the exact

minimizer is not required or need not be computed at every

sample time instant. Key results hold even if the parameter

values are restricted to a finite set; in this case the optimiza-

tion reduces to a finite number of on-line simulations. In

addition, an explicit implementation (wherein the solution to
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Fig. 10. Time histories of uth (upper subplot) and α (lower subplot) with
(a) slow cam phasing transition and nominal throttle transition; (b) fast cam
phasing transition and nominal throttle transition; (c) cam phasing transition
and throttle transition controlled by the gain governor.

the receding horizon optimization problem is pre-computed

off-line and its functional approximation is applied on-line)

can be generated for a subset of the state space and then

extended in a simple way beyond this subset while preserving

the state convergence. The modest computational effort may

make gain governors and more general parameter governors

[9] practical embedded optimization controllers for systems

with fast dynamics and limited computational resources.

REFERENCES

[1] Bemporad, A., (1998). Reference governor for constrained nonlinear
systems, IEEE Transactions on Automatic Control, vol. 43, no. 3,
pp. 415-419.

[2] Bemporad, A., Casavola, A., and Mosca, E., (1996). A nonlinear
command governor for constrained control systems, Proceedings of
13th IFAC World Congress, San Francisco, pp. 473-478.

[3] Bemporad, A., Casavola, A., and Mosca, E., (1997). Nonlinear control
of constrained linear systems via predictive reference management,
IEEE Transactions on Automatic Control, vol. 42, no. 3, pp. 340-349.

[4] Gilbert, E., Kolmanovsky, I., and Tan, K.T., (1995). Discrete time
reference governors and the nonlinear control of systems with state
and control constraints, International Journal of Robust and Nonlinear
Control, vol. 5, pp. 487-504.

[5] Gilbert, E.G., and Kolmanovsky, I., (1999). Fast reference governors
for systems with state and control constraints and disturbance inputs,
International Journal of Robust and Nonlinear Control, vol. 9, no. 15,
pp. 1117-1141.

[6] Gilbert, E., and Kolmanovsky, I., (2002). Nonlinear tracking control in
the presence of state and control constraints: A generalized reference
governor, Automatica, vol. 38, no. 12, pp. 2063-2073.

[7] Kolmanovsky, I., and Gilbert, E., (1997). Multimode regulator for
systems with state and control constraints and disturbance inputs,
in Control Using Logic-Based Switching, edited by Morse, A.S.,
Springer-Verlag, pp. 104-117.

[8] Kolmanovsky, I., and Gilbert, E., (1998). Theory and computation of
disturbance invariant sets for discrete-time linear systems, Mathemat-
ical Problems in Engineering, vol. 4, pp. 317-367.

[9] Kolmanovsky, I., and Sun, J., (2004). Parameter governors for discrete-
time nonlinear systems with pointwise-in-time state and control con-
straints, Proceedings of 2004 American Control Conference, Boston,
MA, pp. 3075-3081, June.

[10] Stefanopoulou, A., and Kolmanovsky, I., (1999). Analysis and control
of transient torque response in engines with internal exhaust gas
recirculation, IEEE Transactions on Control Systems Technology, vol.
7, no. 5, pp. 555-566.

7569


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




