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Abstract— This paper introduces a mathematical model of
the behavior of a group of agents and their interactions in
a shared environment. We represent environmental spatial
constraints that allow us to model range-limited sensing, mo-
tion, and communication capabilities of the agents. We derive
general sensing, coordination, and motion conditions on the
agents that guarantee that an “ideal free distribution” (IFD)
of the group of agents will emerge across the environment. We
show the impact of group size on the distribution of agents,
and consider the emergent distribution for different classes of
environments. Finally, we show how this theory is useful in
solving a multivehicle cooperative surveillance problem.

I. INTRODUCTION

The ideal free distribution concept from ecology character-

izes how animals optimally distribute themselves across habi-

tats [1], [2]. The word “ideal” refers to the assumption that

animals have perfect sensing capabilities for simultaneously

determining habitat “suitability” (assumed to be a correlate of

Darwinian fitness) in each of a finite number of habitats. The

ideal assumption also supposes that each animal will move to

maximize its fitness (i.e., it moves to the habitat that is best

for it). “Free” indicates that animals can move at no cost

and instantaneously from any habitat directly to any other

habitat at any time. The IFD pattern results from perfectly

informed unconstrained local decisions by multiple animals.

If an animal perceives one habitat as more suitable, via some

correlate of fitness such as the rate of arrival of nutrients, it

can move to it. This movement will, however, reduce the

new habitat’s suitability, both to itself and other animals in

that habitat. The IFD is an equilibrium distribution where no

animal can increase its fitness by unilateral deviation from

one habitat to another; hence at the IFD all animals achieve

equal fitness and the IFD is a Nash equilibrium.

Many extensions of the IFD have been developed [3].

An important extension to the model takes into account that

individuals differ in competitive ability, as in [4],[5]. Other

work that focuses on competitiveness can be found in [6],[7].

The author in [7] introduces the concept of interference as the

direct effect caused by the presence of several competitors

in the same habitat. The IFD model we introduce here

is different from any existing ones in the literature. It is
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built on a directed graph. We use a generic terminology for

IFD concepts around this graph, one that is appropriate for

biology and engineering. We refer to habitats, food sources,

resource sites, etc. as nodes. Each node is characterized by

its suitability, which represents how profitable or suitable

the node appears to an agent. It could be that suitability

represents a task input rate to a node, where there is a

certain value to having an agent process each of these tasks.

For an animal, suitability could represent the consumption

rate achieved at a habitat, or the probability of finding a

mate or shelter there. The graph topology defines the graph’s

interconnections between nodes via a set of directed arcs.

Hence, the graph topology allows us to represent removal of

both the ideal and free restrictions to the original IFD model.

We do require, however, minimal restrictions on the graph

topology to ensure that an IFD can be achieved.

Our model focuses on the individual agents’ motion dy-

namics across the graph that drive the behavior of the group

as a whole. We consider a general class of habitat suitability

functions. We show how an “invariant set” can represent

the IFD. Theorems 1 and 2 give properties of this invariant

set in terms of the agent group size and connectedness of

the habitats. We then use Lyapunov stability analysis of the

invariant set to illustrate that there is a wide class of agent

strategies (i.e., “proximate” decision-making mechanisms),

and resulting agent movement trajectories across nodes, that

still achieve the desired distribution. In particular, Theorem

3 shows that the IFD is asymptotically stable in the large for

any graph topology with a large enough agent population

size. Theorem 4 shows that the IFD is asymptotically stable

in the large for any population size and a fully connected

graph topology (e.g., an environment where agents can sense

and move to any part of the environment regardless of

their current location). Next, in Theorem 5 we show that

if we constrain the level of asynchronicity in agent decision-

making, the IFD is exponentially stable in the large and the

rate at which the IFD is achieved can be quantified in terms

of characteristics of the connectedness of the habitats. The

results extend the existing theory of the IFD by showing the

impact of a class of suitability functions, agent perceptual

constraints, travel constraints, movement trajectories, and

agent decision-making strategies on achievement of the IFD.

Our analysis shows how a global distribution pattern can

emerge from poorly informed and constrained individual

decision-making, something that is of significant interest in

biology (e.g., see [4]).
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In cooperative control, there is a significant amount of

current research actively focused on how to allocate vehicles

to tasks in order to minimize a performance metric. Such

work includes the study of distributed load balancing [8],

“persistent area denial (PAD)” [9], [10], and applications of

the m-person Dynamic Traveling Repairperson Problem (m-

DTRP) to cooperative control [11]. Here, we show how to

use the IFD concept and our theoretical extensions to solve

a type of cooperative surveillance problem. We show how

an individual IFD-based decision-making strategy is useful

for coordinating the distribution of multiple vehicles over an

environment with random pop up targets. In particular, the

environment is divided into different regions and vehicles

distribute themselves to achieve a similar target service rate

in all regions.

It is, however, the general idea behind strategies for IFD

achievement that is most important to the area of cooperative

control. In most of the studies cited above (e.g., [9], [10], [11]

and many others) there is a coupling between assignment of

spatially distributed tasks and spatial position of all vehicles.

When a vehicle is assigned an area to perform tasks, the

benefit of assigning this area to all other vehicles decreases.

The IFD strategies show a way to untangle this space and

time dependent “multi-vehicle to multi-area (-task)” coupling

to provide good cooperative behavior.

II. AGENTS AND ENVIRONMENT

A. Habitat Suitability

Assume that there are N habitats (nodes). Define the

suitability of node i as si(xi), where xi ≥ εp is a scalar that

represents the amount of agents at node i, i = 1, 2, . . . , N
(converting xi to the density of agents at habitat i is achieved

via linearly scaling xi), and εp ≥ 0 is the minimum amount

of agents allowed at any node. Assume the following:

• Fixed agent population: Let
∑N

i=1 xi = P , where P >
Nεp is a constant so there are a fixed amount of agents

in the environment.
• Suitability decreases with an increasing amount of

agents: Assume that the si, i = 1, . . . , N , satisfy

si(yi) − si(zi)

yi − zi
≤ −c < 0 (1)

for any yi, zi ∈ [εp, P ], yi �= zi. Thus, si(xi) is a

strictly monotone decreasing function in xi. We also

assume that limxi→∞ si(xi) = 0 for all i = 1, . . . , N .
• Suitability changes are related to changes in the amount

of agents: We assume that all suitability functions
si(xi), i = 1, . . . , N , satisfy a Lipschitz condition on
[εp, P ]; that is, for every node i there exists a constant
Ki > 0 such that

|si(yi) − si(zi)|
|yi − zi| ≤ Ki (2)

for any yi, zi ∈ [εp, P ], yi �= zi. This eliminates

the possibility that a very small change in the amount

of agents at a habitat can result in a large change in

suitability.

• Strictly positive suitability: We assume that the func-

tions si(xi) > 0 for all i = 1, . . . , N , and all xi ∈
[εp, P ].

B. Environmental Constraints on Agent Sensing and Motion

We will consider a general graph topology to model inter-

connections between nodes. The nodes are H = {1, ..., N}.

The interconnection of nodes is described by a directed

graph, (H,A), where A ⊂ H × H . If (i, j) ∈ A, then this

represents that an agent at node i can sense node j and can

move from i to j. For agents at node i, where (i, j) ∈ A,

“sensing node j” implies that agents at node i know sj(xj)
and xj . If the function sj were known by agents at node

i and invertible it would be sufficient to sense the value

of sj(xj) only. For every i ∈ H , there must exist some

j ∈ H , i �= j, such that (i, j) ∈ A and there exists a path

between any two nodes, in order to ensure that every node

is connected to the graph. We also assume that if (i, j) ∈ A
then (j, i) ∈ A so that if an agent is at i and can move to j
(sense the suitability at j), agents at j can also move from j
to i (sense the suitability at i, respectively). An agent at node

i can only directly move to node j if (i, j) ∈ A. However,

if (i, j) /∈ A it may in some situations be possible for an

agent to (indirectly) move to j by passing through a series

of other nodes. If (i, j) ∈ A, then i �= j; however, agents at

i know the value of si(xi), are assumed to know xi, and are

already at i so they do not need to move to get to it.

We use the distributed discrete event system model-

ing methodology from [12]. Let R≥εp
= [εp,∞) and

∆ =
{

x ∈ R
N
≥εp

:
∑N

i=1 xi = P
}

be the simplex over which

the xi dynamics evolve. Constraints on our model below will

ensure that x(k) ∈ ∆ for all k ≥ 0. Let X = ∆ be the set

of states. Let x(k) = [x1(k), x2(k), ..., xN (k)]� ∈ X be

the state vector, with xi(k) the amount of agents at node

i at time index k ≥ 0. Here we assume that there is a

high number of agents so that xi is accurately represented

as a continuous variable, a common approach in theoretical

ecology. Let I(x) = {i ∈ H : xi > εp, x ∈ ∆} represent the

set of nodes that are occupied (inhabited) by more than εp

agents, and let U(x) = H − I(x) represent the set of nodes

that are uninhabited for state x. The size of the set I(x) is

denoted by NI . Figure 1 shows an example of a system with

N = 3 nodes. Note that any horizontal line crossing at least

one si curve represents an IFD state for some P .

C. Agent Sensing, Coordination, and Motion Requirements

To illustrate individual agent sensing, coordination, and

motion requirements we assume that the agent population

size P can be expressed as P = nεx, where n is an

arbitrarily large number which represents the total number
of agents of “size” εx > 0. We do not assume that an agent

has a fixed size εx. The size of an agent εx is arbitrarily

small and is only defined to approximate the concept of an

individual agent for a continuous model. This allows us to

discuss coordination at two different levels: by coordination

at the “agent level” we mean information sharing, agent

conditions, and agreement strategies between agents that are
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Fig. 1. Suitability functions si(xi) for three fully connected nodes. The
IFD distribution is reached when all agents have exactly the same suitability
in the habitats they are in. After the IFD is reached there is no movement
of agents between nodes. For the example shown in the plot, while agents
distribute themselves over nodes 1 and 2, node 3 remains without agents
since its suitability s3 is too low to be chosen by any agent.

located at the same node (e.g., between those individuals

sharing the same habitat). By coordination at the “node

level” we mean node conditions that may be satisfied with

respect to neighboring nodes. In general, coordination at

the node level is achieved via coordination at the agent

level (unless there was some physical mechanism to provide

for node-level coordination). While we assume that every

agent can communicate, share information, and coordinate

with every other agent within the same node (at the agent

level), coordination strategies at the node level depend on the

topology of the graph (H,A). We now specify the discrete

event model and define agent sensing, coordination, and

motion requirements at this level.

Let E be a set of events and let e
i,p(i)
α(i) represent the

event that one or more agents move from node i ∈ H to

neighboring nodes m ∈ p(i), where p(i) = {j : (i, j) ∈ A}.

Movement of agents from node i to neighboring nodes

decreases xi. Let αm(i) denote the quantity of agents that

move from node i ∈ H to node m ∈ p(i). Let the list α(i) =
(αj(i), αj′(i), . . . , αj′′(i)) such that j < j′ < · · · < j′′ and

j, j′, . . . , j′′ ∈ p(i) and αj ≥ 0 for all j ∈ p(i); the size

of the list α(i) is |p(i)|. For convenience, we will denote

this list by α(i) = (αj(i) : j ∈ p(i)). Let {ei,p(i)
α(i) } denote

the set of all possible combinations of how agents can move

between nodes (i.e., α(i) ∈ R
|p(i)|
≤P , where R≤P = [0, P ]).

Let the set of events be described by E = P({ei,p(i)
α(i) })−{∅}

(P(·) denotes the power set). Notice that each event e(k) ∈ E
is defined as a set, with each element of e(k) representing

the transition of possibly multiple agents among neighboring

nodes in the graph. Multiple elements in e(k) represent the

simultaneous movements of agents, i.e., migrations out of

multiple nodes.

An event e(k) may only occur if it is in the set defined

by an “enable function,” g : X −→ P(E) − {∅}. State

transitions are defined by the operators fe : X −→ X ,
where e ∈ E . Let γij ∈ (0, 1) for (i, j) ∈ A represent

the proportion of imbalance in nodes’ suitability that is

sometimes guaranteed to be reduced when agents move from

node i to node j. We now specify g and fe for e(k) ∈
g(x(k)), which define the agents’ sensing and motion:

• If for a node i ∈ H , si(xi) ≥ sj(xj) for all (i, j) ∈ A,

then e
i,p(i)
α(i) ∈ e(k) such that α(i) = (0, . . . , 0) is the

only enabled event. Hence, agents at the most suitable

node that they know of do not move. Note also that this

does not then allow for a “swap” of equal number of

agents between two nodes i and j, (i, j) ∈ A such that

si(xi) = sj(xj).
• If for node i ∈ H , si(xi) < sj(xj) for some j such

that (i, j) ∈ A, then the only e
i,p(i)
α(i) ∈ e(k), are ones

with α(i) = (αj(i) : j ∈ p(i)), such that:

(i) xi −
∑

m∈p(i)

αm(i) ≥ εp,

(ii) si

⎛
⎝xi −

∑
m∈p(i)

αm(i)

⎞
⎠ ≤ sj∗ (xj∗ + αj∗(i))

for some j∗ ∈ {j : sj(xj) ≥ sm(xm),

for all m ∈ p(i)}, and
(iii) sj∗ (xj∗ + αj∗(i))

≤ sj∗(xj∗) − γij∗(sj∗(xj∗) − si(xi))

for some j∗ ∈ {j : sj(xj) ≥ sm(xm),

for all m ∈ p(i)}
Condition (i) guarantees that at any node there are at

least εp agents. It is required so that conditions (ii) and

(iii) are well defined at all times. Conditions (ii) and

(iii) constrain how agents can move in terms of node

suitabilities. Condition (ii) relaxes to a certain extent

the “ideal” part of the IFD assumptions, since node

i becoming better than some of its neighbors means

that some agents moved from node i to neighboring

nodes that might have seemed promising, but resulted

in lower suitabilities than node i (e.g., because many

agents might have simultaneously decided to leave node

i). Condition (iii) also lifts to a certain extent the

“ideal” part of the IFD assumptions, since it allows

some agents to move to nodes that do not necessarily

correspond to a best suitability choice, as long as at

least some individuals do. Condition (ii) together with

condition (iii) guarantees that the highest suitability

node is strictly monotone decreasing over time.

• If e(k) ∈ g(x(k)), e
i,p(i)
α(i) ∈ e(k), then x(k + 1) =

fe(k)(x(k)), so that xi(k + 1) equals xi(k) plus
∑

{j: i∈p(j) , e
j,p(j)
α(j) ∈e(k)}

αi(j) −
∑

{j: j∈p(i), e
i,p(i)
α(i) ∈e(k)}

αj(i)

Note that the definition of fe(k)(x(k)) implies conser-

vation of the number of agents so that if x(0) ∈ ∆,

x(k) ∈ ∆, k ≥ 0 (i.e., ∆ is invariant).

Specifying g and fe for e(k) ∈ g(x(k)) at the node level

allows for a wide class of interagent coordination strategies

at the agent level. Moreover, different nodes may even have

different coordination strategies at the agent level. In general,

if there is no coordination at the agent level at all, then the

above conditions may not be satisfied. Deciding where to go

is not a decision made by an agent based on its own assess-

ment of the neighboring nodes only, but it must consider how

the other agents at the same node behave. In other words,
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agents must know (e.g., communicate, coordinate with) how

other agents at the same node plan to move. Note that

communication between agents must not necessarily mean

true signaling and information transfer between agents. It

may also be based on “cues” in the environment (i.e., if an

agent intending to leave a node observes another agents that

intend to leave the node as well, it may wait to see how

their migration affects the suitabilities of the neighboring

nodes before deciding on where to go). Therefore, an agent’s

decision on where to go must be made relative to where other

agents at the same node decide to go.

Let EN denote the set of all infinite sequences of events

in E . Let Ev ⊂ EN be the set of valid event trajectories

for the model (i.e., ones that are physically possible). Event

e(k) ∈ g(x(k)) is composed of a set of what we will call

“partial events.” Define a partial event of type i to represent

the movement of α(i) agents from node i ∈ H to its

neighbors p(i) so that conditions (i) - (iii) are satisfied.

A partial event of type i will be denoted by ei,p(i) and the

occurrence of ei,p(i) indicates that some agents located at

node i ∈ H move to other nodes. Partial events must occur

according to the “allowed” event trajectories. The allowed

event trajectories define the degree of asynchronicity of the

model at the node level. We define two possibilities for the

allowed event trajectories:

(i) For allowed event trajectories Ei ⊂ Ev , assume that

each type of partial event occurs infinitely often on

each event trajectory E ∈ Ei. The assumption is met

if at each node all agents do not ever stop trying to

move (e.g., if each agent persistently tries to move to

neighboring nodes). This corresponds to assuming “total

asynchronism” [13].

(ii) For allowed event trajectories EB ⊂ Ev , assume that

there exists B > 0, such that for every event trajectory

E ∈ EB , in every substring e(k′), e(k′ + 1), e(k′ +
2), . . . , e(k′ + (B − 1)) of E there is the occurrence

of every type of partial event (i.e., for every i ∈ H ,

the partial event ei,p(i) ∈ e(k), for some k, k′ ≤ k ≤
k′ + B − 1). This corresponds to assuming “partial

asynchronism” [13]. Loosely speaking, the assumption

is met if agents try to move to neighboring nodes every

certain number of steps. It is by no means assumed

that the time index k is known to all agents. Instead, k
should be viewed as a time index seen by an external

observer holding a global clock. Each node and each

agent can be viewed as obeying its own local clock that

is not arbitrarily out of synch with the global clock. If

we assume that these node and agent level clocks can

neither be arbitrarily fast nor arbitrarily slow relative to

the global clock and that partial events occur at least

once during a time interval of finite length as measured

by a node’s clock, we can ensure the existence of B
[13]. Coordination strategies at the agent level in node

i must therefore guarantee the occurrence of a partial

event of type i at least once during a time interval of

finite length by its own clock to ensure that B will exist.

Finally, let Ek denote the sequence of events e(0), e(1), . . . ,
e(k − 1), and let the value of the function X(x(0), Ek, k)
denote the state reached at time k from the initial state x(0)
by application of the event sequence Ek.

III. EMERGENT AGENT DISTRIBUTIONS

The set

Xc = { x ∈ X : for all i ∈ H, either si(xi) = sj(xj)

for all j ∈ p(i) such that xj �= εp and si(xi) ≥ sj(xj)

for all j ∈ p(i) such that xj = εp, or xi = εp}
represents a distribution of agents. Any distribution x ∈ Xc

is such that for any i ∈ H either xi = εp, in which case node

i has the minimum amount of agents allowed at that node;

or if xi �= εp it must be the case that all neighboring nodes

j ∈ p(i) such that xj �= εp have the same suitability levels as

node i. In Xc, if xj = εp, for j ∈ p(i), then sj(xj) ≤ si(xi).
Notice that the only e(k) ∈ g(x(k)), when x(k) ∈ Xc, are

ones such that all e
i,p(i)
α(i) ∈ e(k) have α(i) = (0, 0, . . . , 0)

since conditions (i) − (iii) cannot be satisfied. Hence, if

x(k) ∈ Xc, x(k′) = x(k) for k′ ≥ k (i.e., when all motion

conditions are satisfied, Xc is an invariant set under the flow

of the system). Recall that for any x ∈ Xc there exists a

set of inhabited nodes we denote by I(x) ⊆ H . The size or

composition of I(x) and the achieved suitability levels in Xc

are not always known a priori or at any point before the set

Xc is reached. The set I(x) and the suitability levels emerge

while agents distribute themselves over the nodes.

A. Emergence of Habitat Patches

Note that according to the definition of Xc it is possible

for unconnected nodes (i.e., ones such that (i, j) /∈ A) in the

set I(x) to have different suitabilities when the distribution

is achieved. This could happen if two inhabited nodes with

high suitabilities are separated by an uninhabited node.

However, any two nodes that are linked according to the

graph (H,A) (i.e., ones such that (i, j) ∈ A) and belong

to the set I(x) must have the same suitability at the desired

distribution. Hence, depending on the graph’s connectivity,

there could be isolated “habitat patches” of inhabited nodes

where only nodes belonging to the same habitat patch have

equal suitability (i.e., forming an environment of different

habitat patches). Moreover, note that the formation of habitat

patches depends on the total number of agents, their initial

distribution x(0), and random events.

B. Agent Distribution Properties

Notice that in general there are many different agent

distributions such that x ∈ Xc. Indeed, for an arbitrary

environment, the number of potential IFDs, |Xc|, is in general

infinite, even for a fixed number of agents. We now restrict

our analysis to IFD distributions where one habitat patch may

emerge only. We first show some properties of the invariant

set that will be useful in the later analysis of the agents’

dynamics in Section IV.

Theorem 1 (No Truncation Case): Given (H,A) there

exists a constant P > Nεp, such that if the total amount
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of agents is at least P , then the invariant set Xc satisfies

|Xc| = 1, and all nodes are inhabited at the IFD so that

I(x) = H for x ∈ Xc.

(Due to space constraints we do not include any proofs

here. For detailed information about the proofs of any of the

theorems the reader should contact the authors.) Theorem 1

states that for a large enough group of agents, there are no

truncated nodes at the IFD. In other words, U(x) = ∅ for all

x ∈ Xc. Hence, every node must have the same suitability

at the IFD. Moreover, since |Xc| = 1, the agent distribution

at the IFD is unique. In other words, for any initial agent

distribution there exists only one distribution that belongs to

Xc and represents the IFD.

Next, let us assume that we have a fully connected graph

topology (i.e., every node connects to every other node). This

is consistent with the assumptions in [1], [2].

Theorem 2 (Truncation Case): For a fully connected

network (H,A) and any population size P , the invariant set

Xc satisfies |Xc| = 1.

Theorem 2 implies that for a fully connected graph topol-

ogy there is only one habitat patch of inhabited nodes inde-

pendent of the amount of agents P . The full connectedness

of the habitats leads to suitability equalization across all

inhabited nodes and the emergence in some cases of a set

of uninhabited nodes (e.g., if the population size P is not

large enough). Given the assumptions of Theorems 1 and 2

it may be possible for some cases to explicitly find x ∈ Xc.

Our analysis below, however, is not dependent on knowing

the explicit x ∈ Xc.

IV. STABILITY ANALYSIS: EMERGENT DISTRIBUTION

Section III studied the characteristics of the invariant set

that represents the IFD distribution for different population

sizes and connectedness characteristics of environments. We

now study how the group of agents approach this set.

A. Asymptotic Stability of the IFD

Let us consider again a general graph topology (H,A) and

assume that every node is connected to the graph, but not

every node connects to every other node.

Theorem 3 (Asymptotic Stability of the IFD): Given

(H,A), εp ≥ 0, and agent motion conditions (i)−(iii), there

exists a constant P > Nεp such that if the total amount of

agents is at least P , then the invariant set Xc is asymptotically

stable in the large with respect to Ei.

Since Xc is asymptotically stable in the large, there is

only one equilibrium distribution for each population of at

least P agents. Thus, for any initial agent distribution this

equilibrium will be achieved. Note that this result provides

general sufficient conditions on when an IFD is achieved.

Moreover, our analysis considers all environments which

can be modeled by a wide class of suitability functions.

It includes functions which have been found to be useful

in biology, like the one originally used to introduce the

IFD concept in [1], and the one in [5] which introduced

the interference model, among others. We also extend the

existing IFD theory by considering a general interconnection

topology, which allows us to consider less restrictive agent

sensing and motion abilities. Theorem 3 is an extension of

the load balancing [13] theorems in [14], [12] to the case

when the “virtual load” is a nonlinear function of the state.

B. Emergence of Uninhabited Habitats

Let us now consider an unconstrained environment and an

arbitrary number of agents.

Theorem 4 (Asymptotic Stability of the IFD, Emergence
of Uninhabited Habitats): For a fully connected network

(H,A), εp > 0, any population size P , and agent motion

conditions (i) − (iii), the invariant set Xc is asymptotically

stable in the large with respect to Ei.

Notice that Theorem 4 requires εp > 0 because if

εp = 0 at a truncated node i, then si(xi) equals infinity

for certain suitability functions (e.g., si(xi) = ai

xi
). The

proof of Theorem 4 considers the emergence of different

habitat patches when the environment is modeled by a

fully connected topology. Habitat patches emerge as agents

distribute themselves over the nodes, and the total population

size is small enough. The dynamic emergence of habitat

patches is considered in the proof of Theorem 4, and is

something that had not been analyzed in the literature before.

C. Rate of Convergence to the IFD

We now assume more restrictive sensing and motion

conditions in order to study the rate of convergence to the

desired distribution. In particular, let us assume that the

allowed event trajectories are EB so that agents at any node

will try to move to neighboring nodes at least every B steps.

We consider again a general graph topology (H,A) and

assume that every node is connected to the graph, but not

every node connects to every other node.

Theorem 5 (Exponential Stability of the IFD): Given

(H,A), εp ≥ 0, and agent motion conditions (i)−(iii), there

exists a constant P > Nεp such that if the total number of

agents is at least P , then the invariant set Xc is exponentially

stable in the large with respect to EB .

Note that Xc is not exponentially stable with respect to

Ei; the guarantee of occurrence of partial events with B
is critical. Exponential stability of an invariant set means

that all agents are guaranteed to converge to Xc at a certain

rate. In particular, as B increases the rate of convergence

to Xc decreases, since agents are only guaranteed to move

at a slower migration rate. Furthermore, following [13], let

R = maxi{|p(i)|} be the maximum number of neighboring

nodes for any node i ∈ H . Then, if we assume a fully

connected graph topology, the proof of Theorem 5 shows that

the highest suitability of all nodes must decrease every RB
steps. Note also that according to Equation (1), the constant

c > 0 represents an intrinsic characteristic of the class of

suitability functions being considered. In particular, a large

value of c classifies a set of functions whose suitabilities

decrease quickly with an increasing amount of agents. Note

that a larger value of c guarantees, in general, a faster

converge to Xc.
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V. APPLICATION: COOPERATIVE SURVEILLANCE

Here, we assume that there are P = 16 vehicles (with

εx = 1), which must cover an environment defined by

a square area of 100 km2 (hence xi is not a continuous

variable). We assume that the environment is divided into

four equally sized regions. Every node i ∈ H represents a

region. Let us assume that every four seconds a new pop

up target randomly appears anywhere in the environment.

We also assume that vehicles can move from any region

to any other region and consider therefore a fully connected

graph (H,A). Moreover, vehicles have complete information

about the environment and may even share information with

vehicles that are not necessarily in the same region. In

particular, we assume that the location of targets which

have appeared in the environment is known to every vehicle

(e.g., via satellite information). Suitability functions for every

region are defined as the overall rate of appearance of

unattended targets. In particular, the suitability of node i is

defined as the number of targets present in that region that

are not being or have not been visited by any vehicle in a

time window divided by the length of that window (hence

this is an approximation of the overall rate of appearance of

unattended targets). If a vehicle approaches a target located

in region i, this will decrease the suitability in that region

and increase the overall target service rate. Our goal is to

achieve similar overall target service rates in all regions.

In order to evaluate different vehicle strategies, we define

the mission performance measure as the time needed for the

difference between any two suitability levels to reach and

settle within a given range (here 4%). We denote the settling

time for a given mission by ts. We will first compare the

performance of the IFD-based agent strategy to a greedy

strategy. The left plot in Figure 2 shows how suitability levels

change over time during the first 200 seconds of a mission.

It represents the case when vehicles violate the proposed

conditions (i) − (iii), and simply approach the region that

seems to be the most suitable for them (e.g., the one with

the highest rate of appearance of unattended targets). Note

that the suitabilities levels do not converge to any particular

any value. On the other hand, the right side plot in Figure 2

represents the case when vehicles distribute themselves over

the environment while satisfying conditions (i)−(iii). Here,

we assume that γij ≈ 0 for all (i, j) ∈ A so that condition

(iii) can easily be satisfied by any single vehicle. Note that

the suitability levels converge and the settling time in this

case is approximately ts = 100 seconds. Moreover, for any

time t ≥ ts the overall rate of appearance of unattended

targets in all regions differs by less than 4%.

Next, we perform Monte Carlo runs to compare different

vehicle strategies at the agent level. In particular, we want

to show the effect of different cooperation levels between

vehicles. Here, we assume that vehicles cooperate by sharing

information about where to go. Figure 3 shows how the

mean settling time decreases with the number of vehicles

any vehicle may cooperate with. It is interesting to note that

for lower numbers of cooperating vehicles the settling times
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Fig. 2. Suitability levels; greedy strategy(left), cooperative strategy(right).

do not vary much; however, as the number of cooperating

vehicles increases, the effect of adding an additional coop-

erating vehicle is more noticeable.
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Fig. 3. Settling time for different coordination strategies at the agent level.
Every data point represents 60 simulation runs with varying target pop up
locations. The error bars are standard deviations for these runs.
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