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Abstract— The problem of distributed Kalman filtering
(DKF) for sensor networks is one of the most fundamental
distributed estimation problems for scalable sensor fusion. This
paper addresses the DKF problem by reducing it to two
separate dynamic consensus problems in terms of weighted
measurements and inverse-covariance matrices. These to data
fusion problems are solved is a distributed way using low-
pass and band-pass consensus filters. Consensus filters are dis-
tributed algorithms that allow calculation of average-consensus
of time-varying signals. The stability properties of consensus
filters is discussed in a companion CDC ’05 paper [24]. We
show that a central Kalman filter for sensor networks can
be decomposed into n micro-Kalman filters with inputs that
are provided by two types of consensus filters. This network
of micro-Kalman filters collectively are capable to provide an
estimate of the state of the process (under observation) that
is identical to the estimate obtained by a central Kalman
filter given that all nodes agree on two central sums. Later,
we demonstrate that our consensus filters can approximate
these sums and that gives an approximate distributed Kalman
filtering algorithm. A detailed account of the computational
and communication architecture of the algorithm is provided.
Simulation results are presented for a sensor network with 200
nodes and more than 1000 links.

Index Terms— sensor networks, distributed Kalman filter,
sensor fusion, consensus filters, dynamic average-consensus,
networked embedded systems, random networks

I. INTRODUCTION

Sensor networks and intelligent arrays of micro-sensors
have broad range of applications including information gath-
ering and data fusion for modeling an environment, surveil-
lance, active monitoring of forests & agricultural lands,
health-care applications, collaborative information process-
ing, and control of smart materials with embedded sensors
[7], [13], [16], [4], [1], [9], [5], [19], [15], [3], [33], [22],
[8].

The most fundamental distributed estimation problem for
sensor networks is to develop a distributed algorithm [14] for
Kalman filtering [2]. A scheme for approximate distributed
Kalman filtering (DKF) was proposed in [30] based on reach-
ing an average-consensus [23], [27], [21]. The work in [30]
only suggests a scalable scheme to tackle the DKF problem
in a special case of full-information and does not contain
the sufficient analytical results and distributed algorithms
necessary to implement a distributed Kalman filter.

This paper provides the essential distributed algorithms
and analytical guarantees necessary to establish: a) The DKF
problem can be reduced to two dynamic consensus problems

regarding fusion of the measurements and covariance infor-
mation and b) Solving the two dynamic consensus problems
requires appropriate consensus filters (i.e. a low-pass filter
and a band-pass filter). A detailed discussion of consensus
filters that solve dynamic consensus problems and their
stability properties is provided in [24], [29]. In particular,
the low-pass consensus filter in [24] plays a crucial role in
both data fusion problems in part b).

The problem of decentralized Kalman filtering was first
solved by Speyer [31]1in 1979. It was independently resolved
by Rao, Durrant-Whyte, and Sheen in [25]. Both methods
require a complete network with all-to-all links. This so-
lution is not scalable for large-scale sensor networks due
to its O(n2) communication complexity (n is the number
of sensors/nodes). Thus, decentralized Kalman filtering and
distributed Kalman filtering are two separate problems. In
the latter one, each node only is allowed to communicate
with its neighbors on a graph G that is connected but rather
sparse.

Consensus problems [23], [27] and their special cases have
been the subject of intensive studies by several researchers
[17], [21], [12], [18], [26], [32], [33] in the context of forma-
tion control, self-alignment, and flocking [20] in networked
dynamic systems.

An in-depth comparison between the distributed Kalman
filter introduced here and the existing decentralized sensor
fusion algorithms both with and without fusion centers in
[34], [28], [6], [11] is the subject of ongoing investigation.

An outline of the paper is as follows: Section II provides
some background on the information form of Kalman filter.
Section III contains our first main result on decomposition
of a Kalman filter into n collaborative micro-Kalman filters
with local communication. Consensus filters are described
in Section IV. Simulation results for a sensor network with
200 nodes and over 1000 links are presented in Section V.
Finally, concluding remarks are made in Section VI.

II. KALMAN FILTER: INFORMATION FORM

Consider a sensor network with n sensors that are in-
terconnected via an overlay network G (e.g. a connected
undirected graph as shown in Fig. 1).

1The original work by Speyer was brought up to the attention of the author
by J. Shamma and has partially influenced the choice of the information
form of the Kalman filter as well as the notation used in the paper.
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Fig. 1. A sensor network with n = 200 nodes and l = 1074 links.

This section describes the so-called information form of
the Kalman filter (IKF) according to [2], [31].

Let us describe the model of a process (e.g. a physical
phenomenon or a moving object) and the sensing model of
the IKF as follows:

xk+1 = Akxk + Bkwk; x0

zk = Hkxk + vk
(1)

where zk ∈ R
np represents the vector of p-dimensional

measurements obtained via n sensors, wk and vk are white
Gaussian noise (WGN), and x0 ∈ R

m denotes the initial
state of the process that is a Gaussian random variable. Here
is the information regarding the statistics of these variables:

E(wkw′
l) = Qkδkl, E(vkv′l) = Rkδkl (2)

x0 = N (x̄0, P0). (3)

Given the measurements Zk = {z0, z1, . . . , zk}, the state
estimates can be expressed as

x̂k = E(xk|Zk), x̄k = E(xk|Zk−1), (4)

Pk = Σk|k−1,Mk = Σk|k (5)

where Σk|k−1 and Σk|k−1 denote the state covariance matri-
ces and their inverses are known as the information matrices.
Note that Σ0|−1 = P0. Here are the Kalman filter iterations
in the information form:

M−1
k = P−1

k + H ′
kR−1

k Hk (6)

Kk = MkH ′
kR−1

k (7)

x̂k = x̄k + Kk(zk − Hkx̄k) (8)

Pk+1 = AkMkA′
k + BkQkB′

k (9)

x̄k+1 = Akx̂k (10)

III. DISTRIBUTED KALMAN FILTER AND MICRO-KFS

Our first objective is to show how the information form
of a central Kalman filter for a sensor network observing a
process of dimension m with an np-dimensional measure-
ment vector zk can be equivalently expressed in consensus
form using n micro-Kalman filters (µKF) with p-dimensional
measurement vectors which are embedded in each sensor so

that the network of micro-Kalman filters collectively in a
distributed way calculate the same state estimate x̂ obtained
via application of a central Kalman filter located at a sink
node (e.g. for a moving object in a plane p = 2,m = 4 and
n � 1).

Let us assume that there are n sensors with p × m
measurement matrices Hi and sensing model:

zi(k) = Hix(k) + vi(k)

Thus, defining the central measurement, observation noise,
and observation matrix as

zc = col(z1, z2, . . . , zn), (11)

vc = col(v1, . . . , vn), (12)

Hc = [H1; H2; · · · ; Hn], (13)

where Hc is a column block matrix. We get

zc(k) = Hcx(k) + vc(k) (14)

where the subscript “c” means “central”. Let

Rc = diag(R1, R2, . . . , Rn)

denote the covariance of vc (i.e. we assume vi’s are uncor-
related). We have2

M = (P + H ′
cR

−1
c Hc)−1

and
Kc = MH ′

cR
−1
c .

Thus, the state propagation equation can be expressed as

x̂ = x̄ + Kc(zc − Hcx̄) (15)

= x̄ + M(H ′
cR

−1
c zc − H ′

cR
−1
c Hcx̄) (16)

Defining the following m × m average inverse-covariance
matrix

S =
1
n

H ′
cR

−1
c Hc =

1
n

n∑
i=1

H ′
iR

−1
i Hi (17)

and the m-vector of average measurements

yi = H ′
iR

−1
i zi, y =

1
n

n∑
i=1

yi, (18)

one gets the Kalman state update equation of a µKF as

x̂ = x̄ + Mµ(y − Sx̄) (19)

with a micro-Kalman gain of Mµ = nM , measurement
consensus y, and inverse-covariance consensus value of S.
The expression for Mµ can be stated as follows:

Mµ = nM = ((nP )−1 + S)−1. (20)

Denoting Pµ = nP and Qµ = nQ, we obtain an update
equation of dimension m × m for a µKF:

P+
µ = AMµA′ + BQµB′. (21)

2The iteration numbers are dropped whenever no confusions occur.
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Based on the above argument, we have the following
decomposition theorem for Kalman filtering in sensor net-
works:

Theorem 1. (distributed Kalman filter) Consider a sensor
network with n sensors and topology G that is a connected
graph observing a process of dimension m using p ≤ m
sensor measurements. Assume the nodes of the network solve
two consensus problems that allow them to calculate average
inverse-covariance S and average measurements y at every
iteration k. Then, every node of the network can calculate
the state estimate x̂ at iteration k using the update equations
of its micro-Kalman filter (or µKF iterations)

Mµ = (P−1
µ + S)−1, (22)

x̂ = x̄ + Mµ(y − Sx̄), (23)

P+
µ = AMµA′ + BQµB′, (24)

x̄+ = Ax̂. (25)

This gives an estimate identical to the one obtained via a
central Kalman filter.

Remark 1. The gain Mµ of the micro-Kalman filter has
O(m2) elements, whereas the Kalman gain K of the central
Kalman filter has O(m2n) elements. Thus, the calculations
of the central KF require manipulation of large matrices
which is not computationally feasible.

Remark 2. We assume all nodes know n or solve a consensus
problem to calculate n. This is necessary for calculation of
Qµ = nQ.

Considering that both S and y are time-varying quantities,
one need to solve two dynamic consensus problems that
allow asymptotic tracking of the values of S(k) and y(k)
[30]. The nature of these two dynamic consensus problem
differ in nature. Consensus in y(k) requires sensor fusion
for noisy measurements yi that can be solved using a newly
found distributed low-pass consensus filter given in [24].
The consensus regarding the inverse-covariance matrices for
calculation of S requires a band-pass consensus filter that
will be described in the next section. Neither problems can
be solved using a high-pass consensus filter alone.

Based on the results in [24], the nodes of a network that
uses a consensus filter only reach an ε-consensus (for non-
static cases). Meaning that all agents reach a state that is
in a closed-ball of radius ε � 1 around the group decision
value [24]. This means that practically every node calculates
its approximate consensus values Ŝi and ŷi that all belong
to small neighborhoods around S and y, respectively. This
gives the following state and covariance update equations for
the ith µKF:

Mi = (P−1
i + Ŝi)−1, (26)

x̂ = x̄ + Mi(ŷi − Ŝix̄), (27)

P+
i = AMiA

′ + BQµB′, (28)

x̄+ = Ax̂, (29)

with Pi = nP . This is the perturbed version of the exact
iterations of the µKF equation in Theorem 1. The conver-

gence analysis of the collective dynamics of the perturbed
µKF equations is the subject of future research.

IV. CONSENSUS FILTERS

Theorem 1 does not amount to the solution of the DKF
problem. So far, we have only managed to show that if
two dynamic consensus problems in S and y are solved,
then a distributed algorithm for Kalman filtering in sensor
networks exists. The crucial part of solving the DKF problem
is solving its required dynamic consensus problems which
have been addressed in [24] and partially in [29].

We state the distributed algorithms for three consensus
filters: a low-pass filter, a high-pass filter, and a resulting
band-pass filter. Let us denote the adjacency and Laplacian
matrix [10] of G by A and L = diag(A1)−A, respectively.

• Low-Pass Consensus Filter (CFlp, [24]): Let qi denote
the m-dimensional state of node i and ui denote the
m-dimensional input of node i. Then, the following
dynamic consensus algorithm

q̇i =
∑
j∈Ni

(qj − qi) +
∑

j∈Ni∪{i}
(uj − qi) (30)

that can be equivalently expressed as

q̇ = −L̂q − L̂u + (In + Â)(u − x) (31)

with q = col(q1, . . . , qn), Â = A⊗Im and L̂ = L⊗Im

gives a low-pass consensus filter with a MIMO transfer
function

Hlp(s) = [(s + 1)In + Â + L̂)−1(In + Â) (32)

from input u to output x.
This filter is used for fusion of the measurements that
calculates ŷi by applying the algorithm to H ′

iR
−1
i zi as

the input of node i.

• High-Pass Consensus Filter (CFhp, [24], [29]): Let pi

denote the m-dimensional state of node i and ui denote
the m-dimensional input of node i. Then, the following
dynamic consensus algorithm

ṗi =
∑
j∈Ni

(pj − pi) + u̇i (33)

that can be equivalently expressed as

ė = −L̂e − L̂ui (34)

p = e + u (35)

with L̂ = L ⊗ Im. This gives a high-pass consensus
filter with an improper MIMO transfer function

Hhp(s) = (sIn + L̂)−1s (36)

from input u to output x that becomes In as s → ∞.
This filter apparently propagates high-frequency noise
and by itself is inadequate for sensor fusion.

• Band-Pass Consensus Filter (CFbp): This distributed
filter can be defined as

Hbp(s) = Hlp(s)Hhp(s) (37)
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that can be equivalently stated in the form of a dynamic
consensus algorithm

ėi = −L̂ei − L̂ui, (38)

pi = ei + ui, (39)

q̇i =
∑
j∈Ni

(qj − qi) +
∑

j∈Ni∪{i}
(pj − qi) (40)

with a state (ei, qi) ∈ R
2m, input ui, and output qi.

This filter is used for inverse-covariance consensus that
calculates Ŝi column-wise for node i by applying the
filter on columns of H ′

iR
−1
i Hi as the inputs of node i.

The matrix version of this filter can take H ′
iR

−1
i Hi as

the input.

Fig. 2 shows the architecture of each node of the sensor
network for distributed Kalman filtering. Note that consensus
filtering is performed with the same frequency as Kalman fil-
tering. This is a unique feature that completely distinguishes
our algorithm with some related work in [30], [33].

V. SIMULATION RESULTS

In this section, we use our consensus filters jointly with
the update equation of the micro-Kalman filter of each node
to obtain an estimate of the position of a moving object in
R

2 that (approximately) goes in circles. The output matrix
is Hi = I2 and the state of the process dynamics is 2-
dimensional corresponding to the continuous-time system

ẋ = A0x + B0w

with

A0 =
[

0 −1
1 0

]
, B0 = I2

The network has n = 200 sensors with a topology shown
in Fig. 1. We use the following data:

Ri = 100(i
1
2 )I2, Q = 25, P0 = I2, x0 = (15,−10)′.

with a step-time of T = 0.02 (sec). Figs 3 and 4 and show
the estimate obtained by nodes i = 100, 25. Apparently,
the distributed and central Kalman filters provide almost
identical estimates. Of course, the difference is in scalability
of the DKF. In Fig. 5, the consecutive snapshots of estimates
of all nodes are shown. The estimates appear as a cohesive
set of particles that move around the location of the object.

VI. CONCLUSIONS

The importance of distributed Kalman filtering (DKF)
for sensor networks was discussed. We addressed the DKF
problem by reducing it to two separate dynamic consensus
problems in terms of weighted measurements and inverse-
covariance matrices that can be viewed as two data fusion
problems with different natures. Both data fusion problems
were solved is a distributed way using consensus filters. Con-
sensus filters are distributed algorithms that allow calculation
of average-consensus of time-varying signals. We employed
a low-pass consensus filter for fusion of the measurements
and a band-pass consensus filter for fusion of the inverse-
covariance matrices. Note that the stability properties of

Sensor
Data

Covariance
Data

Low-Pass
Consensus Filter

Band-Pass
Consensus Filter

Micro
Kalman

Filter
(µµKF)

Node i

x̂

(a)

(b)

Fig. 2. Node and network architecture for distributed Kalman filtering: (a)
architecture of consensus filters and µKF of a node and (b) communication
patterns between low-pass/band-pass consensus filters of neighboring nodes.

consensus filters is discussed in a companion paper [24]. We
established that a central Kalman filter for sensor networks
can be decomposed into n micro-Kalman filters with inputs
that are provided by two consensus filters. This network of
micro-Kalman filters was able to collaboratively provide an
estimate of the state of the observed process. This estimate is
identical to the estimate obtained by a central Kalman filter
given that all nodes agree on two central sums. Consensus
filters can approximate these sums and that gives an ap-
proximate distributed Kalman filtering algorithm for sensor
networks. Computational and communication architecture of
the algorithm was discussed. Simulation results are presented
for a sensor network with 200 nodes and 1074 links.
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Fig. 3. Distributed position estimation for a moving object by node i =
100: (a) DKF vs. KF (DKF is the smooth curve in red) and (b) Distributed
Kalman filter estimate (in red) vs. the actual position of the object (in blue).
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