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Abstract— In this paper, a nonparametric method based on
quadratic programming (QP) for identification of nonlinear
autoregressive systems with exogenous inputs (NARX systems)
is presented. We consider a mixed parametric/nonparametric
model structure. The output is assumed to be the sum of a
parametric linear part and a nonparametric Lipschitz contin-
uous part. The consistency of the estimator is shown assuming
only that an upper bound on the true Lipschitz constant is
given. In addition, different types of prior knowledge about
the system can easily be incorporated. Examples show that the
method can give accurate estimates also for small data sets and
that the estimate of the linear part sometimes can be improved
compared to the linear least squares estimate.

I. INTRODUCTION

Nonlinear autoregressive systems with exogenous inputs
(NARX systems) [14] are a straightforward generalization of
linear ARX systems that has been used in many applications.
For an NARX system, the optimal one step ahead predictor
is a nonlinear function of a finite number of past output
and input components. Using a version of the prediction-
error method [8], we will here simultaneously estimate
both a nonparametric NARX model and a parametric ARX
model such that their sum give an as good prediction of
the output as possible. Related model structures have been
used in semiparametric or partially linear models (see, for
example, [7], [3]).

It is interesting to consider nonparametric methods for
nonlinear system identification since the assumptions about
the true system are usually weaker for such methods than
for parametric methods. For a nonlinear system, it can be
hard to tell in advance whether a specific assumption about,
for example, the shape of the nonlinearities is reasonable or
not. In this paper, the only assumption about the true NARX
system is that its nonlinearities are Lipschitz continuous.

This assumption makes it possible to use an approach
where the identification problem is formulated as a quadratic
programming (QP) problem. By solving this problem, both
the parameters of the linear ARX model and the nonpara-
metric NARX model can be estimated at the same time. A
version of this idea, without the linear, parametric part, has
previously been used for nonparametric regression and for
maximum likelihood estimation of unknown parameters in
probability density functions [1]. Other methods for non-
parametric regression can be found in, for example, [5].

Lipschitz conditions are a common way to guarantee that
a function, or some of its derivatives, will be smooth. For
example, functions with a Lipschitz continuous gradient can
be identified using local modeling such that the worst-case
mean-square error is minimized [12].

A small nonlinear system component can have a large
influence on an estimated linear approximation of the system
if standard methods for linear identification are used [9],
[4]. In some cases, this behavior can be understood if the
nonlinear contribution to the system output is viewed as
a nonlinear disturbance [11], [13]. The method presented
in this paper will make the estimate of the linear model
more robust against nonlinearities in the system since the
nonparametric NARX model can compensate for some of the
nonlinear effects. A related concept is the notion of unknown
but bounded noise and set membership identification [6],
since a bounded nonlinearity might affect the system output
in a similar way as such a noise term.

II. NARX IDENTIFICATION

Consider an NARX system with input u(t) and output y(t)
that can be written

y(t) = θT
0 ϕ(t) + r0(ϕ(t)) + e(t), (1)

where

ϕ(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−y(t − 1)
...

−y(t − na)
u(t − nk)

...
u(t − nk − nb)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2)

is a regression vector and where e(t) is white noise. The
constant vector θ0 defines a linear ARX part of the system
while the function r0 can be nonlinear. Assume that e(t)
and ϕ(t) are independent for all t and that r0 is a Lipschitz
continuous function with Lipschitz constant L0, i.e., that

|r0(ϕ1) − r0(ϕ2)| ≤ L0‖ϕ1 − ϕ2‖2, ∀ϕ1, ϕ2 ∈ R
n, (3)

where n = na + nb + 1. Furthermore, assume that a
dataset (ϕ(t), y(t))N

t=1 consisting of N measurements of the
regression vector and the system output is available.
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Using this dataset, estimates θ̂N and r̂N of θ0 and r0,
respectively, can be obtained by solving the QP problem

minimize
θN ,ρN

1
N

∑N
t=1(y(t) − θT

Nϕ(t) − ρN (t))2

subject to ρN (t) − ρN (s) ≤ L‖ϕ(t) − ϕ(s)‖2

∀s, t ∈ {1, 2, . . . , N}.
(4)

In this problem, ρN is a vector with N elements ρN (t) which
can be viewed as estimates of r0(ϕ(t)). The constraints on
the variables ρN (t) imply that these variables will satisfy

|ρN (t) − ρN (s)| ≤ L‖ϕ(t) − ϕ(s)‖2

for all s, t ∈ {1, 2, . . . , N}. If the variables ρN (t) are viewed
as samples from some function, this implies that a Lipschitz
condition holds for the sample points (ϕ(t))N

t=1. Note that
N of the constraints in (4) are trivial (0 ≤ 0) and present
in (4) only for notational convenience. These constraints can
be removed without changing the solution of the problem.

An optimal solution (θ̂N , ρ̂N ) to the problem (4) can be
used to construct one step ahead predictions

ŷN (ϕ(t)) = θ̂T
Nϕ(t) + ρ̂N (t) (5)

of the system output for the observed regression vectors
(ϕ(t))N

t=1. In order to obtain a predictor which can be used
for an arbitrary regression vector, the nonparametric function
estimate ρ̂N has to be interpolated.

When ϕ(t) is a scalar, linear interpolation is probably the
most natural type of interpolation. However, for ϕ(t) ∈ R

n

with n > 1, linear interpolation of the variables ρ̂N (t) will
in general not result in a function that satisfies the Lipschitz
condition for the choice of L used in (4). Instead, for n > 1,
an estimate r̂N of r0 can be defined as

r̂N (ϕ) =
1

2
max

1≤t≤N
(ρ̂N (t) − L‖ϕ − ϕ(t)‖2)

+
1

2
min

1≤t≤N
(ρ̂N (t) + L‖ϕ − ϕ(t)‖2) (6)

using a similar construction as in [1]. The function r̂N is
Lipschitz continuous since it is the mean of two Lipschitz
continuous functions. Using θ̂N and r̂N , a general one step
ahead predictor

ŷN (ϕ) = θ̂T
Nϕ + r̂N (ϕ) (7)

can be constructed. At first sight, it might seem that the
N + n variables used in the problem (4) and for the
construction of the model (7) are too many since there are
only N measurements. However, thanks to the randomness of
the disturbance e(t) in (1), the constraints in (4) will impose
an averaging effect on the nonparametric function estimate.

Without these constraints, one optimal solution to (4) is
θN = 0, ρN (t) = y(t) for t = 1, 2, . . . , N . Of course,
since the measurements of the output are noisy, such a
solution does not give a good model of the true system.
By adding constraints like in (4), two variables ρN (t) and
ρN (s) are allowed to differ only marginally from each other
if the distance ‖ϕ(t) − ϕ(s)‖2 between the corresponding
regression vectors is small. In this way, the ρ variables are

imposed to have similar properties as samples from the true
Lipschitz continuous function r0. If the set of regression
vectors gets more dense when N increases, θ̂T

Nϕ(t)+ ρ̂N (t)
will approach θT

0 ϕ(t) + r0(ϕ(t)). For an intuitive under-
standing of this convergence, consider a small region in R

n

which contains many regression vectors. The corresponding
ρ variables will with a high probability be close to the mean
of y(t) − θ̂T

Nϕ(t) since the constraints in (4) implies that
the ρ variables should have values close to each other. The
consistency of the predictor function estimator (7) will be
discussed in Section III.

Several types of extensions can be made to the identi-
fication method presented here. For example, if any prior
knowledge about the true system can be written as linear
constraints on θN and ρN , this knowledge can easily be
incorporated in the QP problem (4). Examples of such prior
knowledge are:

• Bounds on the function r0 are known in a subset of its
domain.

• Different Lipschitz constants can be used in different
parts of the domain of r0.

• The function r0 is known to be odd or even.
• An expression for the function r0 is known in a subset

of its domain.

Sometimes it could also be interesting to consider the
case when only a Lipschitz continuous function should be
estimated (setting θN = θ0 = 0 in (1) and (4)). Analogously
to (4), we can handle this case by solving a QP

minimize
ρN

1
N

∑N
t=1(y(t) − ρN (t))2

subject to ρN (t) − ρN (s) ≤ L‖ϕ(t) − ϕ(s)‖2

∀s, t ∈ {1, 2, . . . , N}.
(8)

The construction of r̂N using the interpolation method (6)
can be used also in this case. In the next section, the
consistency of both presented nonparametric identification
methods will be shown.

III. CONSISTENCY

Before we consider the consistency of the approaches, let
us study the behavior of the mean of the predicted outputs at
(ϕ(t))N

t=1. As the following lemmas show, it is quite simple
to show consistency for these.

Lemma 1: The optimum of (4) satisfies

1

N

N∑
t=1

(
θ̂T

Nϕ(t) + ρ̂N (t)
)

=
1

N

N∑
t=1

y(t), (9)

and, for NFIR systems,

E

[
1

N

N∑
t=1

(
θ̂T

Nϕ(t) + ρ̂N (t)
) ∣∣∣∣(ϕ(t))N

t=1

]

=
1

N

N∑
t=1

θT
0 ϕ(t) + r0(ϕ(t)). (10)
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Proof: The Lagrangian of (4) (see [2]) can be written

L(θN ,ρN ;λ) =
1

N

N∑
t=1

(y(t) − θT
Nϕ(t) − ρN (t))2 (11)

−
N∑

i=1

N∑
j=1

λij (L‖ϕ(i) − ϕ(j)‖2 − ρN (i) + ρN (j)) .

The optimum should satisfy ∂L
∂ρN (k) = 0 for k = 1, . . . , N :

− 2

N
(y(k)− θ̂T

Nϕ(k)− ρ̂N (k)) +

N∑
i=1

(λ̂ki − λ̂ik) = 0. (12)

Summing (12) over k gives (9). Taking expectations over
both sides of (9) then gives (10).

Lemma 2: The optimum of (8) satisfies

1

N

N∑
t=1

ρ̂N (t) =
1

N

N∑
t=1

y(t), (13)

and, for NFIR systems,

E

[
1

N

N∑
t=1

ρ̂N (t)

∣∣∣∣(ϕ(t))N
t=1

]
=

1

N

N∑
t=1

r0(ϕ(t)). (14)

Proof: As for Lemma 1.
As it now turns out, the identification methods given by

(4) and (8), respectively, have fairly attractive properties. Let
us start by considering the estimates we get by using (8)
together with (6). (A related result was shown in [1]. Here
we give an alternative proof.)

Theorem 1: Let

y(t) = r0(ϕ(t)) + e(t), (15)

where e(t) is a stationary white noise process with zero mean
and bounded variance σ2. Let ρ̂N (t) be the optimal solution
to (8). Suppose that

1) ϕ(t) ∈ Φ, where Φ is a compact set such that for any
ε > 0, Φ can be partitioned

Φ =
d⋃

i=1

Φi, (16)

where ϕ1, ϕ2 ∈ Φi ⇒ ‖ϕ1 − ϕ2‖2 ≤ ε and P (ϕ(t) ∈
Φi) > 0 for all i = 1, 2, . . . , d,

2) the stochastic process ϕ(t) is such that Ni → ∞ when
N → ∞ w.p.1 for all i in any ε-partitioning (16) where

Ni = card(Ti) and Ti = {t|ϕ(t) ∈ Φi, t ≤ N},
(17)

3) e(t) and ϕ(t) are independent, but ϕ(t) may depend
on past e(s),

4) |r0(ϕ1) − r0(ϕ2)| ≤ L0‖ϕ1 − ϕ2‖2 ∀ϕ1, ϕ2 ∈ Φ,
5) L0 ≤ L.

Then

lim
N→∞

1

N

N∑
t=1

(ρ̂N (t) − r0(ϕ(t))2 = 0 w.p.1. (18)

Proof: Take an arbitrary ε > 0 and consider an ε-
partitioning such that assumption 1 is satisfied. Consider

arbitrary realizations of the processes ϕ(t) and e(t). With
probability one, these realizations are such that Ni → ∞ as
N → ∞ and that

lim
Ni→∞

1

Ni

∑
t∈Ti

e(t) = 0, (19a)

lim
Ni→∞

1

Ni

∑
t∈Ti

|e(t)| ≤ C, (19b)

lim
N→∞

1

N

N∑
t=1

e(t)2 = σ2 (19c)

for some constant C and for all i. (The limits (19) follow
since {e(t), t ∈ Ti} is a sequence of independent random
variables such that the law of large numbers can be applied.)
For two fixed such realizations of ϕ(t) and e(t), we can thus
find an N ′(ε) such that for N > N ′(ε)∣∣∣∣∣ 1

Ni

∑
t∈Ti

e(t)

∣∣∣∣∣ ≤ ε ∀i, (20a)

1

Ni

∑
t∈Ti

|e(t)| ≤ 2C ∀i, (20b)

1

N

N∑
t=1

e(t)2 ≤ 2σ2. (20c)

This follows since the partitioning is finite for any ε.
Since rN (t) = r0(ϕ(t)) is a feasible choice in the

minimization problem, we have

1

N

N∑
t=1

(y(t) − ρ̂N (t))2 ≤ 1

N

N∑
t=1

(y(t) − r0(ϕ(t))2

=
1

N

N∑
t=1

e(t)2, (21)

which means that

1

N

N∑
t=1

(r0(ϕ(t)) − ρ̂N (t))2

≤
∣∣∣∣∣ 2

N

N∑
t=1

e(t)(r0(ϕ(t)) − ρ̂N (t))

∣∣∣∣∣ .

Note first that, by applying Cauchy-Schwarz’ inequality to
the right hand side, we find that

1

N

N∑
t=1

(r0(ϕ(t)) − ρ̂N (t))2 ≤ 4

N

N∑
t=1

e(t)2.

Since r0 is bounded (let Cr0
= supϕ∈Φ |r0(ϕ)|), so must

r̂N (ϕ) as defined by (6) be. (Recall that r̂N is Lipschitz-
continuous over a compact set, so if one value tends to
infinity, all values will tend to infinity.) Hence, we can
choose a constant Cr̂, such that for N > N ′(ε) we have
Cr̂ > supϕ∈Φ |r̂N (ϕ)|. Now, choose t∗i ∈ Ti and let

ri = r0(ϕ(t∗i )), and r̂i = ρ̂N (t∗i ).

This means that for t ∈ Ti

|r0(ϕ(t)) − ri| ≤ L0ε and |ρ̂N (t) − r̂i| ≤ Lε.
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Inserting this into the expression above gives

1

N

N∑
t=1

(r0(ϕ(t)) − ρ̂N (t))2

≤
∣∣∣∣∣ 2

N

N∑
t=1

e(t)(r0(ϕ(t)) − ρ̂N (t))

∣∣∣∣∣
=

∣∣∣∣∣ 2

N

d∑
i=1

∑
t∈Ti

e(t)(r0(ϕ(t)) − ri + ri − ρ̂N (t) + r̂i − r̂i)

∣∣∣∣∣
=

∣∣∣∣∣ 2

N

d∑
i=1

Ni

( [
1

Ni

∑
t∈Ti

e(t)

]
[ri − r̂i]

+

[
1

Ni

∑
t∈Ti

e(t)(r0(ϕ(t)) − ri − ρ̂N (t) + r̂i)

] )∣∣∣∣∣
≤ 1

N

d∑
i=1

Ni

[
ε max

i
|ri − r̂i| + 1

Ni

∑
t∈Ti

|e(t)|2Lε

]

≤ C ′ε for N > N ′(ε),

where C ′ is Cr0
+ Cr̂ + 4LC. Since ε and the realizations

are arbitrary, (18) has been proven.

Remark 1: The theorem is still true if {e(t)} is a mixing
process, independent of the process {ϕ(t)}, since the only
thing that matters is that (19) holds.

Now, using the Lipschitz continuity of r̂ and r0, it is easy
to prove the consistency of the method, summarized in the
following corollary.

Corollary 1: Let ϕ(t), y(t), and ρ̂N (t) satisfy the condi-
tions of Theorem 1, and let r̂N (ϕ) be defined by (6). Then,
with probability one, r̂N converges uniformly to r0 on Φ as
N → ∞.

For identifying systems in the form (1) by using (4),
consistency is a bit harder. If using a too large Lipschitz
constant, the separation of the system into a linear and a Lip-
schitz continuous part is obviously not uniquely determined.
However, we can show that the one step ahead predictor
converges uniformly to the true one.

Theorem 2: Let (ϕ(t), y(t))N
t=1 be generated from

y(t) = θT
0 ϕ(t) + r0(ϕ(t)) + e(t), (22)

where r0, e(t) and ϕ(t) satisfy the conditions of Theorem 1,
and where ‖θ0‖2 ≤ Mθ for some known constant Mθ. Let
θ̂N and r̂N be estimates of θ0 and r0 on Φ, obtained by
(4) with the extra requirement ‖θN‖2 ≤ Mθ, and by (6)
with Lipschitz constant L ≥ L0. Then, with probability one,
ŷN (ϕ) as defined in (7) converges uniformly to θT

0 ϕ+r0(ϕ)
as N → ∞.

Proof: Analogous to Theorem 1 and Corollary 1.

IV. EXAMPLES

The previously presented method for combined parametric
and nonparametric estimation of NARX systems has been
used in a couple of numerical examples. The first example
concerns identification of a static nonlinearity.

−10 −5 0 5 10
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−8

−6

−4

−2

0

2

4

6

8

10

Fig. 1. The values of y(t) plotted against u(t) for the dataset with 40
measurements used in Example 1.

Example 1: Consider the system

y(t) = 0.4u(t) + r0(u(t)) + e(t), (23)

where both u(t) and e(t) are white noise processes and
independent of each other. The input u(t) has uniform
distribution on the interval [−10, 10] while the noise e(t)
is normally distributed such that its mean is zero and its
variance is 25. The nonlinearity in this system is

r0(u(t)) =
40

5 + |u(t)|
(

u(t)

1 + |u(t)| −
u(t) − 3

1 + |u(t) − 3|
− u(t) + 6

1 + |u(t) + 6| +
3

28

)
. (24)

This function is Lipschitz continuous with L0 = 7.4 and
bounded since |r′0(x)| < 7.4 and |r0(x)| < 3.1, for all x ∈ R.

A small dataset consisting of 40 realizations of the input
and output in (23) has been generated and is shown in
Figure 1. Note that the shape of the nonlinear function is not
obvious in this figure. The method (4) with L = 7.4 has been
used with this dataset and linear interpolation has been used
to construct r̂N . The resulting predictor function ŷN (ϕ) is
shown in Figure 2. From this figure, it seems that the function
estimate has managed to pick up some key features of the
true function, despite the small number of measurements.

In this case, the L value used in the method is equal to L0.
In a more realistic example, the true Lipschitz constant would
typically be unknown. An alternative would then be to divide
the dataset into estimation data and validation data and try
different values of L. By evaluating the predictor (7) on the
validation data for different choices of Lipschitz constant, it
would be possible to find a good choice of L.

A larger dataset consisting of 500 realizations of the input
and output in (23) has also been generated and a couple of
models have been estimated using an extended version of (4)
where bounds ±ρN (t) ≤ 4 have been added. One model was
estimated using L = 15 and the resulting predictor function
is shown in Figure 3(a). The choices L = 7.4 and L = 4 gave
the results shown in Figure 3(b) and 3(c), respectively. From
these figures, it seems that the function estimates contain
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Fig. 2. The predictor function estimated from 40 measurements (dashed)
and the true predictor function (solid) from Example 1.

no significant systematic errors and that a larger value of L
gives more variations. Note that for L = 4, the true function
r0 is not a feasible solution to the identification problem.
However, the obtained function estimate gives a rather good
approximation of r0 anyway.

In the case with L = 15, the obtained estimate of the linear
regression parameter θ0 = 0.4 was θ̂N = 0.31 while L = 7.4
gave θ̂N = 0.33 and L = 4 gave θ̂N = 0.39. Using the same
dataset but with a completely linear model, the least-squares
method gave an estimate θ̂LS = 0.23. Hence, it seems that
including a bounded nonlinear Lipschitz continuous term in
the model sometimes can improve the estimate of the linear
part. �

The method (4) combined with the interpolation (6) has
also been used on a NARX system where the regression
vector consists of two past output components and one input
component. The results of this numerical experiment are
described in the following example.

Example 2: Consider the following NARX system:

y(t) = −y(t − 1) − 0.2y(t − 2) + u(t − 1) (25)

+ arctan(u(t − 1) + y(t − 1)) + sin(y(t − 2)) + e(t).

This system can be viewed as being composed by a linear
part θT

0 ϕ(t) (with θ0 = (1 0.2 1)T ) and a nonlinear
part r0(t) with Lipschitz constant L0 =

√
3. Furthermore,

|r0(t)| ≤ π/2+1. The noise terms are independent, normally
distributed variables with unit variance.

The system has been estimated using an estimation dataset
of 500 samples generated from u(t) ∈ N(0, 4). Three
Lipschitz constants have been tried: L = 4, L =

√
3

and L = 1.4, together with the upper bound on r0(t).
The obtained models have been evaluated on a validation
dataset of 500 samples generated under the same conditions
as the estimation data. As quality measure, the fit has been
calculated according to(

1 −
√∑

t(y(t) − ŷN (ϕ(t)))2∑
t(y(t) − ȳ)2

)
· 100%, (26)

−10 −5 0 5 10
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(a) L = 15
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(b) L = 7.4
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(c) L = 4

Fig. 3. The predictor function estimated from 500 measurements for
three choices of L (dashed) and the true predictor function (solid) from
Example 1.

where ŷN (ϕ(t)) is the output value predicted by the model
and ȳ is the arithmetic mean of (y(t))N

t=1.
The results are given in Table I. As comparison, a linear

ARX model has also been identified. Furthermore, the fit
has been calculated for a one step ahead predictor using the
true parameter values and nonlinearities. Clearly, the NARX
models outperform the linear ARX model. They also get
rather close in performance to the true model. Note that the
NARX model with a “too small” Lipschitz constant performs
best. The reason for this is that in the region where data
is available, we can decrease the Lipschitz constant of the
nonlinear part by “tilting it” and properly adjust the linear
part of the model. �

TABLE I

FITS FOR THE ESTIMATED MODELS IN EXAMPLE 2.

Model Fit (validation data)
NARX, L = 1.4 69.625
NARX, L =

√
3 69.050

NARX, L = 4 66.231
ARX 63.743

True model 72.039
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V. DISCUSSION

As mentioned previously, it is easy to incorporate various
kinds of prior knowledge into the identification problem.
In fact, we can regard the presented approach as a special
instance of the more general identification problem

minimize
θN ,ρN

1
N

∑N
t=1(y(t) − θT

Nϕ(t) − ρN (t))2

subject to A

(
ρN

θ

)
� b,

(27)

where � denotes component-wise inequality. This is still a
convex QP problem. An interesting special case of (27) is

minimize
θN ,ρN

1
N

∑N
t=1(y(t) − θT

Nϕ(t) − ρN (t))2

subject to |ρN (t)| ≤ M
∀t ∈ {1, 2, . . . , N}.

(28)

It turns out that minimizing (28) gives exactly the same linear
part as using an ε-insensitive norm for identification of ARX
models, i.e.,

minimize
θN

1

N

N∑
t=1

∣∣y(t) − θT
Nϕ(t)

∣∣k
ε

(29)

with

|x|ε =

{
0 |x| ≤ ε

|x| − ε |x| > ε

and with k = 2 and ε = M . This norm (or the corresponding
norm with k = 1) is often used in support vector machines
[15], and similar approaches are also used in robust adaptive
control [10]. To see the equivalence between (28) and (29),
define

r̄(t, θ) =

⎧⎪⎨
⎪⎩

M y(t) − θT ϕ(t) > M,

y(t) − θT ϕ(t) −M ≤ y(t) − θT ϕ(t) ≤ M,

−M y(t) − θT ϕ(t) < −M.

Then we can write (29) as

minimize
θN

1

N

N∑
t=1

∣∣y(t) − (θT
Nϕ(t) + r̄(t, θN ))

∣∣k .

On the other hand it is easy to see that, for a given θ, the
minimum of (28) is obtained precisely when ρN (t) = r̄(t, θ).
Since r̄(t, θ) automatically has a magnitude not greater than
M , the desired equivalences follow.

The advantage with using the formulation (28) instead of
(29) is that the explicit representation of ρN again makes it
possible to combine different types of requirements on the
nonlinearity, just as was done in Example 2.

Instead of assuming a nonlinearity in the system, we can
also interpret the terms ρ̂N as estimates of deterministic noise
terms ρ0. These could for instance be bounded (unknown but
bounded noise) like in (28) or satisfy a Lipschitz condition
as in (4). Another option would be that their variation over
time could be bounded, i.e.,

|ρN (t + 1) − ρN (t)| ≤ Lt.

VI. CONCLUSIONS

In this paper, NARX systems that can be written as
the sum of a linear ARX part and a nonlinear, Lipschitz
continuous, NARX part have been studied. It has been shown
that a model with a linear, parametric ARX part and a
nonparametric NARX part of such an NARX system can
be estimated by solving a quadratic programming problem.
A novel proof of the consistency of this method has been
presented. It should be noted that the consistency does not
rely on knowledge of the true Lipschitz constant L0. In fact,
the only knowledge necessary is an upper bound of L0. The
tighter the upper bound, however, the faster convergence to
the true function we can expect. The examples indicate that
the method is fairly robust to incorrect values of L.

The examples also show that the introduction of a nonlin-
ear term in the model sometimes can improve the estimate
of the linear ARX term. Furthermore, the described method
can produce NARX models that can predict the output in
a validation dataset much better than an ARX model. The
method can be useful also when the dataset is relatively
small.
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