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Abstract— The paper deals with the realization theory of
bilinear switched systems. Necessary and sufficient conditions
are formulated for a family of input-output maps to be
realizable by a bilinear switched system. Characterization of
minimal realizations is presented. The paper treats two types
of bilinear switched systems. The first one is when all switching
sequences are allowed. The second one is when only a subset of
switching sequences is admissible, but within this restricted set
the switching times are arbitrary. The paper uses the theory of
formal power series to derive the results on realization theory.
Partial realization theory is also discussed in the paper.

I. INTRODUCTION

Switched systems are one of the best studied subclasses of
hybrid systems. A vast literature is available on various issues
concerning switched systems, for a comprehensive survey see
[7]. Yet, to the author’s knowledge, the only works available
on the realization theory of switched systems are [8], [9],
which develop realization theory for linear switched systems.
Most of the material of the current paper together with the
proofs can be found in [11].

The current paper develops realization theory for bilin-
ear switched systems. More specifically, the paper presents
solutions to the following problems.
(i) If Φ is a subset of input-output maps generated by

a bilinear switched system, then find a minimal bilinear
switched system generating the input-output maps of Φ,
(ii) Find necessary and sufficient condition for the

existence of a bilinear switched system realizing a given set
of input-output maps,
(iii) Find conditions, under which a realization of a set

of input output maps can be constructed from finite data.
(iv) Find sufficient and necessary conditions for the

existence of a bilinear switched system realizing Φ under
the following conditions. Assume that a set of admissible
switching sequences is defined. Assume that the switching
times of the admissible switching sequences are arbitrary.
The input-output maps from Φ are defined only for the
admissible sequences.

The motivation of this problem is the following. Assume
that the switching is controlled by a finite automaton, which
is specified in advance, and the discrete modes are the states
of this automaton. Assume that discrete-state transitions can
be triggered only by discrete control input signals, which can
be generated at any time. Then the traces of this automaton
combined with the switching times ( which are arbitrary )

give us the admissible switching sequences. If we can solve
the realization problem for the case of restricted switching,
then we can solve the realization problem for the hybrid
system described above.

The following results are proved in the paper.

• A bilinear switched system realization is minimal if and
only if it is observable and semi-reachable. Minimal
bilinear switched system which realize a given set
of input-output maps are isomorphic. Each bilinear
switched system realization can be transformed to a
minimal one.

• A set of input/output maps is realizable by a bilinear
switched system if and only if it has generalized Fliess-
series expansion and the rank of its Hankel-matrix is
finite. There is a procedure to construct the realiza-
tion from the columns of the Hankel-matrix, and this
procedure yields a minimal realization. Under certain
conditions, similar to those for bilinear systems ([4]), a
bilinear switched system realization can be constructed
from finite data.

• Consider a set of input-output maps Φ defined on some
subset of switching sequences. Assume that the switch-
ing sequences of this subset have arbitrary switching
times and that their discrete mode parts form a regular
language L. Then Φ has a realization by a bilinear
switched system if and only if it has a generalized
Fliess-series expansion and its Hankel-matrix is of finite
rank. Again, there exists a procedure to construct a
realization from the columns of the Hankel-matrix.
The procedure yields an observable and semi-reachable
realization of Φ. But this realization need not to be
the realization with the smallest state-space dimension
possible.

The main tool used in the paper is the theory of rational
formal power series. Rational formal power series were used
in systems theory earlier, for application of rational formal
power series, see [6], [5], [3], [1]. There are a number
of definitions for representation of rational formal power
series, see [2], [14], [13], [12]. All the cited works deal with
representations of a single formal power series. In this paper,
we will look at representations of families of formal power
series instead. This requires a slight but straightforward
extension of the existing theory, see [9], [11], [10] for details.
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The outline of the paper is the following. Section II
introduces the notation and describes some properties and
concepts related to bilinear switched systems. Section III
contains the necessary results on formal power series. Section
IV presents the notion of generalized Fliess-series expansion
and gives a characterization of input-output maps generated
by bilinear switched systems. Section V presents realization
theory of bilinear switched systems.

II. BILINEAR SWITCHED SYSTEMS

For sets A,B, denote by PC(A,B) the class of piecewise-
continuous maps from A to B. For a set Σ denote by Σ∗ the
set of finite strings of elements of Σ. For w = a1a2 · · · ak ∈
Σ∗ the length of w is denoted by |w|, i.e. |w| = k. The
empty sequence is denoted by ε. The length of ε is zero:
|ε| = 0. Let Σ+ = Σ∗ \ {ε}. The concatenation of two
strings v = v1 · · · vk, w = w1 · · ·wm ∈ Σ∗ is the string
vw = v1 · · · vkw1 · · ·wm. If w ∈ Q+ then wk denotes
the word ww · · ·w︸ ︷︷ ︸

k−times

. The word w0 is just the empty word

ε. Denote by T the set [0,+∞) ⊆ R. Denote by N the set of
natural numbers including 0. Denote by F (A,B) the set of
all functions from the set A to the set B. By abuse of notation
we will denote any constant function f : T → A by its value.
That is, if f(t) = a ∈ A for all t ∈ T , then f will be denoted
by a. For any function f the range of f will be denoted by
Imf . If A,B are two sets, then the set (A × B)∗ will be
identified with the set {(u,w) ∈ A∗ × B∗ | |u| = |w|}. For
any two sets J,X the surjective function A : J → X is called
an indexed subset of X or simply an indexed set. It will be
denoted by A = {aj ∈ X | j ∈ J}. Let T = [0,+∞)
and let f, g ∈ PC(T,A) for some suitable set A. Define
for any τ ∈ T the concatenation f#τg ∈ PC(T, A) of f

and g by f#τg(t) =
{

f(t) if t ≤ τ
g(t) if t > τ

. If f : T → A,

then for each τ ∈ T define Shiftτ (f) : T → A by
Shiftτ (f)(t) = f(t + τ).

A switched ( control ) system is a tuple

Σ = (X,U ,Y, Q, {fq | q ∈ Q, u ∈ U}, {hq | q ∈ Q})
where X = R

n is the state-space, Y = R
p is the output-

space, U = R
m is the input-space, Q is the finite set of

discrete modes, fq(x, u), is a smooth function and globally
Lipschitz in x for each q ∈ Q, hσ : X → Y is smooth map
for each σ ∈ Q.

Elements of the set (Q × T )+ are called switching se-
quences. The inputs of the switched system Σ are functions
from PC(T,U) and sequences from (Q × T )+. That is,
the switching sequences are part of the input, they are
specified externally and we allow any switching sequence to
occur. The state space evolution of a switched system takes
place as follows. Between two switches the state trajectory
is a solution to the differential equation corresponding to
the current discrete mode. The solution of the differential
equation is taken with an initial condition which coincides
with the value of the state trajectory at the moment when
the switch took place.

Let u ∈ PC(T,U) and w = (q1, t2)(q2, t2) · · · (qk, tk) ∈
(Q×T )+. The inputs u and w steer the system Σ from state
x0 to the state xΣ(x0, u, w) given by

xΣ(x0, u, w) = F (qk,ShiftPk−1
1 ti

(u), tk) ◦
◦F (qk−1,ShiftPk−2

1 ti
(u), tk−1) ◦ · · · ◦ F (q1, u, t1)(x0)

where F (q, u, t) : X → X and for each x ∈ X
the function F (q, u, t, x) : t �→ F (q, u, t)(x) is the
solution of the differential equation d

dtF (q, u, t, x) =
fq(F (q, u, t, x), u(t)), F (q, u, 0, x) = x. The empty se-
quence ε ∈ (Q × T )∗ leaves the state intact: xΣ(x0, u, ε) =
x0. The reachable set of a system Σ from a set of initial
states X0 is defined by Reach(Σ,X0) = {xΣ(x0, u, w) ∈
X | u ∈ PC(T,U), w ∈ (Q × T )∗, x0 ∈ X0}. Σ is said
to be reachable from X0 if Reach(Σ,X0) = X holds. Σ is
semi-reachable from X0 if X is the smallest vector space
containing Reach(Σ,X0), that is, X = Span{z ∈ X | z ∈
Reach(Σ,X0)}. Define the function yΣ : X × PC(T,U) ×
(Q × T )+ → Y by yΣ(x, u, w) = hqk

(xΣ(x, u, w)), ∀x ∈
X , u ∈ PC(T, U), w = (q1, t1)(q2, t2) · · · (qk, tk) ∈ (Q ×
T )+. For each x ∈ X define the input-output map of Σ in-
duced by x as yΣ(x, ., .) : PC(T,U)×(Q×T )+ 	 (u,w) �→
yΣ(x, u, w) ∈ Y . Two states x1 
= x2 ∈ X of the switched
system Σ are indistinguishable if yΣ(x1, ., .) = yΣ(x2, ., ).
Σ is called observable if it has no pair of indistinguishable
states. A set Φ ⊆ F (PC(T,U)× (Q×T )+,Y) is said to be
realized by a switched system Σ = (X,U ,Y, Q, {fq | q ∈
Q, u ∈ U}, {hq | q ∈ Q}) if there exists µ : Φ → X such
that yΣ(µ(f), ., .) = f . By abuse of terminology, both Σ and
(Σ, µ) will be called a realization of Φ. That is, Σ realizes
Φ if and only if for each f ∈ Φ there exists a state x ∈ X
such that yΣ(x, ., .) = f . Denote by dim Σ := dimX the
dimension of the state space of the switched system Σ. Let
Φ ⊆ F (PC(T,U)× (Q× T )+,Y). A switched system Σ is
a minimal realization of Φ if Σ is a realization of Φ and for
each switched system Σ1 such that Σ1 is a realization of Φ
it holds that dim Σ ≤ dim Σ1. For any L ⊆ Q+ define the
subset of admissible switching sequences TL ⊆ (Q × T )+

by TL := {(w, τ) ∈ (Q × T )+ | w ∈ L, τ ∈ T |w|}. That is,
TL is the set of all those switching sequences, for which the
sequence of discrete modes belongs to L and the sequence
of times is arbitrary. Notice that if L = Q+ then TL =
(Q × T )+. Let Φ ⊆ F (PC(T,U) × TL,Y). The system
Σ = (X,U ,Y, Q, {fq | q ∈ Q, u ∈ U}, {hq | q ∈ Q})
realizes Φ with constraint L if there exists µ : Φ → X such
that yΣ(µ(f), u, w) = f(u,w) for each u ∈ PC(T,U) and
w ∈ TL. We will call both (Σ, µ) and Σ a realization of Φ.
Notice that if L = Q+ then Σ realizes Φ with constraint L
if and only if Σ realizes Φ. If Σ is a switched system, then
we say that the realization (Σ, µ) is semi-reachable , if Σ is
semi-reachable from Imµ.

A switched system Σ = (X,U ,Y, Q, {fq | q ∈
Q, u ∈ U}, {hq | q ∈ Q}) is called bilinear if for
each q ∈ Q there exist linear mappings Aq : X → X ,
Bq,j : X → X , j = 1, 2, . . . , m , Cq : X → Y such
that fq(x, u) = Aqx +

∑m
j=1 ujBq,jx and hq = Cqx,
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∀x ∈ X , u = (u1, . . . , um)T ∈ U = R
m, q ∈ Q. We will use

the notation Σ = (X,U ,Y, Q, {(Aq, {Bq,j}j=1,2,...,m, Cq) |
q ∈ Q}) to denote bilinear switched systems. Similarly
to bilinear systems, the state- and output trajectories of
switched bilinear systems can be expressed by series of
iterated integrals. For each u = (u1, . . . , uk) ∈ U denote
dζj [u] = uj , j = 1, 2, . . . ,m, dζ0[u] = 1. Denote the set
{0, 1, . . . ,m} by Zm. For each j1 · · · jk ∈ Z∗

m, j1, . . . , jk ∈
Zm, k ≥ 0, t ∈ T , u ∈ PC(T,U) define Vj1···jk

[u](t) ={
1 k = 0∫ t

0
dζjk

[u(τ)]Vj1,...,jk−1 [u](τ)dτ k > 1
. For

each w1, . . . , wk ∈ Z∗
m, (t1, · · · , tk) ∈ T k,

u ∈ PC(T,U) define Vw1,...,wk
[u](t1, . . . , tk) =

Vw1(t1)[u]Vw2(t2)[Shift1(u)] · · ·Vwk
[Shiftk−1(u)](tk).

where Shifti(u) = ShiftPi
1 ti

(u), i = 1, 2, . . . , k − 1. For
each q ∈ Q and w = j1 · · · jk, k ≥ 0, j1, . . . , jk ∈ Zm let
us introduce the following notation Bq,0 := Aq, Bq,ε :=
IdX , , Bq,w := Bq,jk

Bq,jk−1 · · ·Bq,j1 , where IdX is the
identity map on X . From the well-known result on iterated
integral series expansion of state trajectories of bilinear
systems it follows by induction that

xΣ(x0, u, s) =
∑

w1,...,wk∈Z∗
m

Bqk,wk
· · ·Bq1,w1x0×

× Vw1,...,wk
[u](t1, . . . , tk)

yΣ(x0, u, s) =
∑

w1,...,wk∈Z∗
m

Cqk
Bqk,wk

· · ·Bq1,w1x0×

× Vw1,...,wk
[u](t1, . . . , tk)

x0 ∈ X , u ∈ PC(T,U) and s = (q1, t1) · · · (qk, tk) ∈ (Q ×
T )∗. Reachability and observability properties of bilinear
switched systems can be easily derived from the formulas
above. Let Σ = (X,U ,Y, Q, {(Aq, {Bq,j}j=1,2,...,m, Cq) |
q ∈ Q}) be a bilinear switched system. The following holds.

Proposition 1: (i) Let W (X0) = Span{z ∈ X | z ∈
Reach(X0,Σ)}. Then

W (X0) = Span{Bqk,wk
· · ·Bq1,w1x0 | qk, . . . q1 ∈ Q,

k ≥ 0, wk, . . . , w1 ∈ Z∗
m, x0 ∈ X0}

(ii) Let

OΣ =
⋂

q1,...,qk∈Q,k≥0,w1,...,wk∈Z∗
m

ker Cqk
Bqk,wk

· · ·Bq1,w1

Then x1, x2 ∈ X are indistinguishable if and only if x1 −
x2 ∈ OΣ. Σ is observable if and only if OΣ = {0}.
Let Σ1 = (X1,U ,Y, Q, {(A1

q , {B1
q,j}j=1,2,...,m, C1

q ) | q ∈
Q}) and Σ2 = (X2,U ,Y, Q, {(A2

q , {B2
q,j}j=1,2,...,m, C2

q ) |
q ∈ Q}). A linear map T : X1 → X2 is called a
homomorphism from Σ1 to Σ2, denoted by T : Σ1 → Σ2, if
for each q ∈ Q, j = 1, . . . , m the following holds:

TA1
q = A2

qT C1
q = C2

q T TB1
q,j = B2

q,j ,

If T is a linear isomorphism then Σ1 and Σ2 are said to be
isomorphic or algebraically similar. By abuse of terminology
T is said to be a bilinear switched system morphism from
(Σ, µ) to (Σ

′
, µ

′
), denoted by T : (Σ, µ) → (Σ

′
, µ

′
), if

T : Σ → Σ
′

is a bilinear switched system morphism and
T ◦ µ = µ

′
.

Note that switched systems defined above can be viewed as
general non-linear systems with discrete inputs. In particular,
bilinear switched systems can be viewed as ordinary bilinear
systems with particular inputs. Thus, the realization problem
for bilinear switched systems might be reduced to the real-
ization problem for the bilinear systems above. One could
attempt to develop realization theory of bilinear switched
systems relying on the realization theory for bilinear systems.
In this paper we will not pursue this approach. The reason for
that is the following First, dealing with restricted switching
would require dealing with the realization problem of bilinear
systems with input constraints. The author is not aware of
any work on this topic. Second, the author thinks that using
bilinear realization theory would not substantially simplify
the solution to realization problem for bilinear switched
systems. Notice however, that the equivalence of realization
problems mentioned above does explain the role of rational
formal power series in realization theory of bilinear switched
systems.

III. FORMAL POWER SERIES

The material of this section is based on the classical
theory of formal power series, see [14], [2]. A more detailed
discussion on the topic can be found in [11], [9]. Let X be
a finite alphabet. A formal power series S with coefficients
in R

p is a map S : X∗ → R
p. We denote by R

p � X∗ 
the set of all formal power series with coefficients in R

p.
An indexed set of formal power series Ψ = {Sj ∈ R

p �
X∗ | j ∈ J} is called rational if there exists a vector space
X over R, dimX < +∞, linear maps C : X → R

p, Aσ :
X → X , σ ∈ X and an indexed set B = {Bj ∈ X | j ∈ J}
of elements of X such that for all σ1, . . . , σk ∈ X, k ≥ 0,
Sj(σ1σ2 · · ·σk) = CAσk

Aσk−1 · · ·Aσ1Bj . The 4-tuple R =
(X , {Ax}x∈X , B, C) is called a representation of S. The
number dimX is called the dimension of R and it is denoted
by dim R. In the sequel the following short-hand notation
will be used Aw := Awk

Awk−1 · · ·Aw1 for w = w1 · · ·wk.
Aε is the identity map. A representation Rmin of Ψ is
called minimal if for each representation R of Ψ it holds
that dimRmin ≤ dimR. Let Ri = (Xi, {Ai,σ}σ∈X , Bi, Ci),
i = 1, 2 be two representations. A representation morphism
T : R1 → R2 is a linear map T : X1 → X2 such that
the following holds TA1,x = A2,xT,∀x ∈ X , TB1j =
B2j ,∀j ∈ J , C1 = C2T . The homomorphism T is
called surjective, injective, isomorphism if T is a surjective,
injective or isomorphism respectively. Let L ⊆ X∗. If L
is a regular language then the power series L̄ ∈ R �
X∗ , L̄(w) =

{
1 if w ∈ L
0 otherwise

is a rational power

series. Consider two power series S, T ∈ R
p � X∗ .

Define the Hadamard product S � T ∈ R
p � X∗  by

(S � T )i(w) = Si(w)Ti(w), i = 1, . . . , p. Let w ∈ X∗ and
define w ◦ S ∈ R

p � X∗  – the left shift of S by w by
∀v ∈ X∗ : w ◦ S(v) = S(wv). The following statements are
generalizations of the results on rational power series from
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[2]. Let Ψ = {Sj ∈ R
p � X∗ | j ∈ J}. Define WΨ =

Span{w ◦ Sj ∈ R
p � X∗ | j ∈ J,w ∈ X∗}. Define

the Hankel-matrix HΨ of Ψ as HΨ ∈ R
(X∗×I)×(X∗×J),

I = {1, 2, . . . , p} and (HΨ)(u,i)(v,j) = (Sj)i(vu). Notice
that ImHΨ is isomorphic to WΨ and thus WΨ = rank HΨ.

Theorem 1: Let Ψ = {Sj ∈ R
p � X∗ | j ∈ J}. Then

Ψ is rational if and only if dim WΨ = rank HΨ < +∞.
Lemma 1: Let Ψ = {Sj ∈ R

p � X∗ | j ∈ J} and
Θ = {Tj ∈ R

p � X∗ | j ∈ J} be rational indexed sets.
Then Ψ�Θ := {Sj�Tj | j ∈ J} is a rational set. Moreover,
rank HΨ�Θ ≤ rank HΨ · rank HΘ.
Let R = (X , {Aσ}σ∈X , B,C) be a representation of Ψ ⊆
R

p � X∗ . Define the following subspaces of X :
WR = Span{AwBj | w ∈ X∗, j ∈ J} and OR =⋂

w∈X∗ ker CAw. The representation R is called reachable if
dimWR = dimR and R is called observable if OR = {0}.
It can be shown, that if J is a finite set, then observability and
reachability of representations can be checked by a numerical
algorithm. Moreover, in this case R can be transformed to
a reachable and observable representation by a numerical
algorithm. See [10] on this issue.

Theorem 2 (Minimal representation): Let Ψ = {Sj ∈
R

p � X∗ | j ∈ J}. The following are equivalent.
(i) Rmin = (X , {Amin

σ }σ∈X , Bmin, Cmin) is a minimal
representation of Ψ, (ii) Rmin is reachable and observable.
(iii) rank HΨ = dim WΨ = dimRmin, (iv) If R is a
reachable representation of Ψ, then there exists a surjective
representation morphism T : R → Rmin. In particular, all
minimal representations of R are isomorphic.
Note that if Ψ is rational, one can construct a minimal
representation of Ψ over the space of column vectors of
HΨ. Without loss of generality we can always assume that
X = R

n holds for any representation considered.
Below we will present conditions, under which a represen-

tation of Ψ can be constructed from finite data. The approach
is similar to [4]. A more detailed discussion can be found in
[10]. For each S ∈ R

p � X∗ define SN = S{w∈X∗,|w|≤N}.
Let HΨ,N,M ∈ R

IM×JN , IM = {(v, i) | v ∈ X∗, |v| ≤
M, i = 1, . . . , p}, JN = {(u, j) | j ∈ J, u ∈ X∗, |u| ≤ N}
and (HΨ,N,M )(v,i),(u,j) = (Sj(uv))i. Notice that HΨ,N,M is
a finite matrix, if J is finite. Define WΨ,N,M = {(w◦Sj)M |
w ∈ X∗, |w| ≤ N, j ∈ J}. Notice that rank HΨ,N,M =
dimWΨ,N,M .

Theorem 3 (Partial representation): (i) If R is a represen-
tation of Ψ, dimR ≤ N , then rank HΨ = rank HΨ,N,N ,
(ii) Assume that rank HΨ,N,N = rank HΨ,N,N+1 =
rank HΨ,N+1,N . Then there exists a representation RN =
(WΨ,N,N , {Ax}x∈X , C,B), such that Ax((w ◦ Sj)N ) =
(wx ◦ Sj)N , C(T ) = T (ε), Bj = (Sj)|N , j ∈ J and for
which the following holds. If Ψ has a representation R such
that N ≥ dimR, then RN is a minimal representation of Ψ.

IV. INPUT/OUTPUT MAPS OF BILINEAR SWITCHED

SYSTEMS

Let L ⊆ Q+. Let Γ̃ = Q × Z∗
m. Let JL =

{(q1, w1) · · · (qk, wk) ∈ Γ̃∗ | (q1, w1) . . . , (qk, wk) ∈ Γ̃, k ≥

0, q1 · · · qk ∈ L}. Define the relation R ⊆ Γ̃∗× Γ̃∗ by requir-
ing that (q, w1)(q, w2)R(q, w1w2), and (q, ε)(q

′
, w)R(q

′
, w)

hold for any q ∈ Q, (q
′
, w) ∈ Γ̃, (q, w1), (q, w2) ∈ Γ̃ Let R∗

be smallest congruence relation containing R. That is, R∗ is
the smallest relation such that R ⊆ R∗, R∗ is symmetric,
reflexive, transitive and (v, v

′
) ∈ R∗ implies (wvu,wv

′
u) ∈

R∗, for each w, u ∈ Γ̃∗. A c : JL → Y is called a generating
convergent series on JL if (1) (w, v) ∈ R∗, w, v ∈ JL =⇒
c(w) = c(v), (2) There exists K,M > 0 such that for
each (q1, w1) · · · (qk, wk) ∈ JL, (q1, w1) . . . (qk, wk) ∈ Γ̃:
c((q1, w1) · · · (qk, wk)) < KM |w1| · · ·M |wk|. The notion of
generating convergent series is an extension of the notion of
convergent power series from [6].

Let c : JL → Y be a generating conver-
gent series. For each u ∈ PC(T,U) and s =
(q1, t1) · · · (qk, tk) ∈ TL define the convergent series
Fc(u, s) =

∑
w1,...,wk∈Z∗

m
c((q1, w1) · · · (qk, wk)) ×

× Vw1,...,wk
[u](t1, . . . , tk). By induction, using the well-

known result for classical Fliess-series expansion, one can
show that the series above are absolutely convergent. In fact
we can define a function Fc ∈ F (PC(T,U) × TL,Y) by
Fc : (u,w) �→ Fc(u,w). It can be shown that Fc is uniquely
determined by c. That is, if d, c : JL → Y are two convergent
generating series, then Fc = Fd ⇐⇒ c = d. Now we
are ready to define the concept of generalized Fliess-series
representation of a set of input/output maps. The set of input-
output maps Φ ⊆ F (PC(T,U) × TL,Y) is said to admit a
generalized Fliess-series expansion if for each f ∈ Φ there
exists a generating convergent series cf : JL → Y such
that Fcf

= f . The following proposition gives a description
of the Fliess-series expansion of Φ in the case when Φ is
realized by a bilinear switched system.

Proposition 2: (Σ, µ) is a bilinear switched system re-
alization of Φ with constraint L if and only if Φ has a
generalized Fliess-series expansion such that for each f ∈
Φ, (q1, w1) · · · (qk, wk) ∈ JL

cf ((q1, w1) · · · (qk, wk)) = Cqk
Bqk,wk

· · ·Bq1,w1µ(f)

V. REALIZATION THEORY FOR BILINEAR SWITCHED

SYSTEMS

In this section realization theory for bilinear switched
systems will be developed. We start with the case when
the input/output maps are defined over all the switching
sequences. Let Φ ⊆ F (PC(T,U)×(Q×T )+,Y) and assume
that Φ has a generalized Fliess-series expansion. As in the
case of linear switched systems [11], [9], we will associate
with Φ an indexed set of formal power series ΨΦ. It turns
out that every representation of ΨΦ determines a realization
of Φ and vice versa. We will use the theory of formal power
series to derive the results on realization theory. The proofs
of the theorems of this section can be found in [11].

Let Γ = {(q, j) | q ∈ Q, j ∈ Zm}. Define φ : Γ̃ → Γ∗ by
φ((q, j1 · · · jk)) = (q, j1) · · · (q, jk), φ((q, ε)) = ε where
j1, . . . , jk ∈ Zm, k ≥ 0. The map φ determines a semigroup
morphism φ : Γ̃∗ → Γ∗ given by φ((q1, w1) · · · (qk, wk)) =
φ((q1, w1)) · · ·φ((qk, wk)) for each (q1, w1), . . . , (qk, wk) ∈
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Γ̃, k ≥ 0 and φ(ε) = ε. It is also clear that any el-
ement of Γ can be thought of as an element of Γ̃, i.e.
we can define the monoid morphism i : Γ∗ → Γ̃∗ by
i(ε) = ε and i((q1, j1) · · · (qk, jk)) = (q1, j1) · · · (qk, jk),
(q1, j1), . . . , (qk, jk) ∈ Γ ⊆ Γ̃. It is also easy to see that
φ(i(w)) = w,∀w ∈ Γ∗ and w(q, ε)R∗i(φ(w))(q, ε).

For each f ∈ Φ, q ∈ Q define formal power series Sf,q ∈
R

p � Γ∗  as follows:

Sf,q(s) = cf (i(s)(q, ε)),∀s ∈ Γ∗

It is easy to see that in fact cf (v(q, ε)) = Sf,q(φ(v)) =
cf (i(φ(v))(q, ε)), since (v(q, ε), i(φ(v))(q, ε)) ∈ R∗. As-
sume that Q = {q1, . . . , qN}. Define the formal power series
Sf ∈ R

Np � Γ∗  by

Sf = [ST
f,q1

, . . . , ST
f,qN

]T

Define the set of formal power series ΨΦ associated with Φ
by

ΨΦ = {Sf ∈ R
Np � Γ∗ | f ∈ Φ}

Define the Hankel-matrix HΦ of Φ as the Hankel-
matrix of ΨΦ. i.e. HΦ = HΨΦ . Let Σ =
(X,U ,Y, Q, {(Aq, {Bq,j}j=1,2,...,m, Cq) | q ∈ Q}). Define
the representation RΣ,µ associated with the realization
(Σ, µ) of Φ by

RΣ = (X , {B(q,j)}(q,j)∈Γ, C̃, I)

where B(q,j) = Bq,j , Bq,0 = Aq, q ∈ Q, j = 1, . . . , m,

C̃ =
[
CT

q1
. . . CT

qN

]T
and If = µ(f). Let

R = (X , {M(q,j)}(q,j)∈Γ, C̃, I) be a representation
such that I = {If ∈ X | f ∈ Φ}. Define the realization
(ΣR, µR) associated with R by

ΣR = (X,U ,Y, Q, {(Aq, {Bq,j}j=1,2,...,m, Cq) | q ∈ Q})
where µR(f) = If , f ∈ Φ, Bq,j = M(q,j), Aq = M(q,0), q ∈
Q, j = 1, . . . , m, and C̃ =

[
CT

q1
. . . CT

qN

]T
. It is easy to

see that RΣR,µR
= R. Assume that Φ admits a generalized

Fliess-series expansion. Then, (a) (Σ, µ) realization of Φ if
and only if RΣ,µ is a representation of ΨΦ, (b) Conversely,
R is a representation of ΨΦ if and only if (ΣR, µR) is a
realization of Φ. From the discussion above using Theorem
1 one gets the following characterization of realizability. Let
Φ ⊆ F (PC(T,U) × (Q × T )+,Y).

Theorem 4 (Existence of a realization): The following
are equivalent (i) Φ has a realization by a bilinear switched
system, (ii) Φ has a generalized Fliess-series expansion
and ΨΦ is rational, (iii) Φ has a generalized Fliess-series
expansion and rank HΦ < +∞
Assume that (Σ, µ) is a realization of Φ. Let R = RΣ,µ.
Then it is easy to see that (Σ, µ) is observable if and only if
R is observable, and (Σ, µ) is semi-reachable from Im µ if
and only if R is reachable. It is also easy to see that dim Σ =
dimRΣ,µ and dim R = dim ΣR. In fact, if R is a minimal
representation of ΨΦ then (ΣR, µR) is a minimal realization
of Φ. Conversely, if (Σ, µ) is a minimal realization of Φ,
then RΣ,µ is a minimal representation of ΨΦ. Moreover, T :

(Σ, µ) → (Σ
′
, µ

′
) is a bilinear switched system morphism if

and only if T : RΣ,µ → RΣ′ ,µ′ is a representation morphism.
Using the theory of ration formal power series presented in
Section III we get the following. Let Φ ⊆ F (PC(T,U) ×
(Q × T )+,Y).

Theorem 5 (Minimal realization): The following are
equivalent (i) (Σmin, µmin) is a minimal realization of Φ
by a bilinear switched system, (ii) (Σmin, µmin) is semi-
reachable and it is observable , (iii) dim Σmin = rank HΦ,
(iv) For any bilinear switched system realization (Σ, µ)
of Φ, such that (Σ, µ) is semi-reachable , there exist a
surjective homomorphism T : (Σ, µ) → (Σmin, µmin). In
particular, all minimal bilinear switched system realizations
of Φ are isomorphic.
In fact, it is easy to see that if R is a minimal representation
ΨΦ, then (ΣR, µR) is a minimal realization of Φ. By the
remark in Section III, it means that we can construct a
realization of Φ on the column space of HΦ. From any
(Σ, µ) bilinear realization of Φ we can construct a minimal
realization of Φ, by constructing from RΣ,µ a minimal
representation R of Ψ and then constructing (ΣR, µR). The
discussion in Section III yields that R is computable from
RΣ,µ if Φ is finite, and thus (ΣR, µR) is computable from
(Σ, µ) if Φ is finite. The theory of rational formal power
series also enables us to formulate partial realization theory
for bilinear switched systems. With the notation of Theorem
3 the following holds.

Theorem 6 (Partial realization): Let Φ ⊆
F (PC(T,U) × (Q × T )+,Y). Assume that
rank HΨΦ,N,N = rank HΨΦ,N+1,N = rank HΨΦ,N,N+1.
Let RN be the representation from Theorem 3. Let
(ΣN , µN ) = (ΣRN

, µRN
). If Φ has a realization (Σ, µ)

such that N ≥ dim Σ, then (ΣN , µN ) is a minimal
realization of Φ.
The theorem above implies that if it is known that Φ has
a realization by a bilinear switched system of dimension at
most N , then a minimal realization of Φ can be computed
from finitely many data.

The case of restricted switching is slightly more involved.
As in the case of arbitrary switching, we will associate a
set ΨΦ of formal power series with the set of input-output
maps Φ ⊆ F (PC(T,U) × TL,Y). If L is regular then
there is a correspondence between realizations of Φ and
representations of ΨΦ. However, minimal representations of
ΨΦ need not yield realizations of Φ of the smallest possible
dimension.

Recall the definition of the relation R∗ ⊆ Γ̃∗ × Γ̃∗ from
Subsection IV. Define the set J̃L ⊆ Γ̃∗ by J̃L = {s ∈ Γ̃∗ |
∃w ∈ JL : (w, s) ∈ R∗}. In fact, J̃L contains all those
sequences in Γ̃∗ for which we can derive some information
based on the values of a convergent generating series for
the sequences from JL. More precisely, if c : JL → Y
is a generating convergent series, then c can be extended
to a generating convergent series c̃ : J̃L → Y by defining
c̃(s) = c(w) for each s ∈ J̃L, w ∈ JL, (s, w) ∈ R∗. By
abuse of notation we will denote c̃ simply by c. For each
q ∈ Q define JLq = {v(q, w) ∈ J̃L | v ∈ Γ̃∗, (q, w) ∈ Γ̃}.
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Let Lq = {w ∈ Γ∗ | ∃v ∈ JLq : φ(v) = w}. Notice that w ∈
Lq ⇐⇒ i(w)(q, ε) ∈ JLq . Let Φ ⊆ F (PC(T,U)×TL,Y).
For each q ∈ Q, f ∈ Φ define Tf,q ∈ R

p � Γ∗  by

Tf,q(s) =
{

cf (i(s)(q, ε)) if s ∈ Lq

0 otherwise

Notice that for each s ∈ Lq there exists a w = u(q, v) ∈ JL
such that (w, i(s)(q, ε)) ∈ R∗, which implies that Tf,q(s) =
cf (w) for some w ∈ JL. Assume that Q = {q1, . . . , qN}.
Define the formal power series Tf ∈ R

Np � Γ∗  by

Tf = [TT
f,q1

, . . . , TT
f,qN

]T

Define the set of formal power series ΨΦ associated with Φ
as

ΨΦ = {Tf ∈ R
Np � Γ∗ | f ∈ Φ}

Define the Hankel-matrix HΦ of Φ as the Hankel-matrix
of ΨΦ, that is, HΦ = HΨΦ . Define Zq ∈ R

p � Γ∗ 
by Zq(w) =

{
(1, 1, . . . , 1)T if w ∈ Lq

0 otherwise
. Define Z ∈

R
Np � Γ  by Z =

[
ZT

q1
· · · ZT

qN

]T
, and let Ω be the

indexed set {Z | f ∈ Φ}, i.e Ω : Φ → R
Np � Γ∗  and

Ω(f) = Z, f ∈ Φ. Define the set comp(L) = {w1 · · ·wk ∈
Q∗ | ∀v ∈ Q∗ : vwk /∈ L,w1, . . . , wk ∈ Q}.

Lemma 2: Assume (Σ, µ) is a bilinear switched system
realization of Φ with constraint L. Let Φ

′
= {yΣ(µ(f), ., .) ∈

F (PC(T,U) × (Q × T )+,Y) | f ∈ Φ} and let Ψ
′
Φ be the

set of formal power series associated with Φ
′

as defined
for the case of arbitrary switching. That is, ΨΦ′ = {Sg ∈
R

Np � Γ∗ | g ∈ Φ
′}. Let Sf = SyΣ(µ(f),.,.) and let

Θ = {Sf | f ∈ Φ}. Then ΨΦ = Θ � Ω.
Theorem 7: If Φ has a generalized Fliess-series expansion

and R is a representation of ΨΦ, then (ΣR, µR) is a real-
ization of Φ with constraint L. Moreover, for each f ∈ Φ,
w ∈ T (comp(L)), ∀u ∈ PC(T,U) : yΣ(µ(f), u, w) = 0.
We see that rationality of ΨΦ, i.e. the condition rank HΦ <
+∞, is a sufficient condition for realizability of Φ. It turns
out that if L is regular, this is also a necessary condition,
since then Ω is a rational indexed set.

Theorem 8: Assume that L is regular. Then the following
are equivalent. (i) Φ has a realization with constraint L by
a bilinear switched system , (ii) Φ has a generalized Fliess-
series expansion and rank HΦ < +∞, (iii) There exists a
realization with constraint L of Φ by a bilinear switched
system (Σ, µ) such that Σ is observable and semi-reachable
and ∀f ∈ Φ : yΣ(µ(f), ., .)|PC(T,U)×T (compl(L)) = 0 and
for any (Σ

′
, µ

′
) bilinear switched system realization of Φ it

holds that dim Σ ≤ rank HΩ dim Σ
′
.

The following example demonstrates existence of a semi-
reachable and observable realization of Φ, which is non-
minimal.

Example Let Q = {1, 2}, L = {qk
1q2 | k > 0},

Y = U = R. Define the generating series c : J̃L → R by
c((q1, w1)(q2, w2)) = 2k, where w2 = 0j0z1 · · · zl0jl , k =∑l

i=0 jl, zi ∈ {1}∗, i = 1, . . . , l. Let Φ = {Fc}. Define the
system Σ1 = (R, R, R, Q, {(Aq, Bq,1Cq) | q ∈ {q1, q2}}) by
Aq1 = 1, Bq1,1 = 1, Cq1 = 1 and Aq2 = 2, Bq2,1 = 1, Cq2 =

1 . Define the system Σ2 = (R2, R, R, Q, {(Ãq, B̃q,1, C̃q) |
q ∈ Q}) by

Ãq1 =
[
1 0
0 0

]
B̃q1,1 =

[
1 0
0 0

]
C̃q1 =

[
0 0

]
Ãq2 =

[
0 0
2 2

]
B̃q2,1 =

[
0 0
1 1

]
C̃q2 =

[
1 1

]
Let µ1 : Fc �→ 1 and µ2 : Fc �→ (1, 0)T ∈ R

2. Both
(Σ1, µ1) and (Σ2, µ2) are semi-reachable from Imµ1 and
Imµ2 respectively and they are observable, therefore they are
the minimal realizations of yΣ1(1, ., .) and yΣ2((1, 0)T , ., .).
Moreover, it is easy to see that (Σi, µi), i = 1, 2 are both
realizations of Φ with constraint L. Yet, dim Σ1 = 1 and
dim Σ2 = 2. In fact, Σ2 can be obtained by constructing the
minimal representation of ΨΦ, i.e., Σ2 is a realization of Fc

satisfying part (iii) of Theorem 8.

VI. CONCLUSIONS

Solution to the realization problem for bilinear switched
systems was presented. The realization problem considered
is to find a realization of a family of input-output maps.
Moreover, it is allowed to restrict the input-output maps
to some subsets of switching sequences. Topics of further
research include realization theory for piecewise-affine sys-
tems, switched systems with switching controlled by an
automaton or a timed automaton and non-linear switched
systems.
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