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Ab ract – MFIC (Model-Free Intelligent Control) is a
technique, based on Reinforcement Learning, previously
proposed by the authors to control processes without needing a 
precalculated model. In standard reinforcement learning
algorithms (including MFIC), the interaction between an agent
and the environment is based on a fixed time scale: during
learning, the agent can select several primitive actions
depending on the system state. This creates the problem of 
selecting a suitable fixed time scale to select control actions, to 
trade off accuracy in control against learning complexity and 
flexibility. A novel solution to this problem is presented in this 
paper: Macro-actions, that incorporate a general closed-loop
policy and temporal extended actions. The application of macro 
actions on a laboratory plant of pH process shows that the
proposed MFIC learns to control adequately the neutralization
process, with reduced computational effort. 

st

I. INTRODUCTION 
Reinforcement Learning (RL) algorithms are based on 

online learning directly from the closed-loop behavior of the
system. The main idea behind these algorithms is ‘learning
what to do by doing’, i.e. how to map perceptions of process 
states to control actions, so as to maximize an externally
provided scalar reward signal.

In standard RL frameworks, a learning agent interacts
with an environment at some discrete time scale 
(t=1,2,3,etc). At each time step, t, the environment is in
some state, st. In current state, st, the agent selects an action,
at, and executes it, the environment responses to the action
and presents to the agent the state transition, st+1, and the
reward, rt+1 (See Figure 1). State transitions depend on the
preceding state and action, also may depend on it in a
stochastic fashion. The mapping from state to action (called
policy) is to learn to maximize the discounted return (a 
weighted sum of rewards). Details of the algorithms were
proposed in [1] and an application by the authors to pH
process was first presented in [2].
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Although RL Algorithms has been proved successfully in 
areas like robotics or games, standard reinforcement
learning algorithms, like Q-learning, are not simple to
implement in process control problems, as shown by the
small number of published applications in this area [3,4,5]:
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Fig. 1. Components of reinforcement learning algorithms

First, it is necessary to transform adequately the control
requirements to the definition of states, actions and
rewards, for the different problems found in Process 
Control (command tracking, disturbance rejection),
taking into account issues like robustness or reduced 
control efforts that are specific of Process Control 
problems. In previous works [2,6] the authors proposed
simple methods to carry out this transformation: the
algorithm MFIC, based on the control structure in
Figure 2, which will be used in this paper, which is to
introduce extended actions.
Second, these algorithms scale very badly with
increasing problem size, granularity of states or control
actions. One intuitive reason for this, among others, is 
that the number of decisions from the initial state to the
goal state increases exponentially with the number of 
states and actions. Unfortunately for most real process 
control problems the number of possible states and
actions is rather big, which makes it difficult to
implement these algorithms using inexpensive
hardware. This paper proposes to solve this problem by
using Macro-actions, as will be described later. 

Compared to other control techniques based on learning,
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the reinforcement learning approach to model-free control 
design has some clear advantages: 
o It can optimize control signal over choosing action 

during the online interactions between an agent and an 
environment.

o It is possible to put in the design of the controller 
previous knowledge of the system 

o The control algorithm is quite simple from a 
computational point of view, so it is feasible to 
implement using low-cost hardware. 

o It is possible to derive and obtain a feedback control 
law from an optimal control point of view based on 
actual experience rather than a process model, which 
makes it attractive for Control and Plant Engineers. 

According to the problem size, to keep tractable the 
number of decision to be taken to reach the goal state, 
hierarchical approaches based on temporal abstraction have 
been proposed. Temporal abstraction can be defined as an 
explicit representation of extended actions, as policies 
together with a termination condition [7]. The original one-
step action is called primitive action. Semi Markov Decision 
Processes (SMDPs) is the theory used to deal with temporal 
abstraction as a minimal extension of reinforcement learning 
framework. SMDPs is a Markov Decision Processes (MDP) 
appropriate for modeling continuous-time discrete-event 
systems. 

Several reinforcement learning algorithms resorting to 
hierarchical temporal abstraction approaches have been 
recently proposed: Hierarchy of Abstract Machine (HAM) 
[8]; MaxQ [9] and Multi-step actions (MSA) [10]. The first 
two methods are based on the notion that the whole task is 
decomposed into subtasks each of which corresponds to a 
subgoal. MSA is a method that the agent learns to 
implement multiple-fixed-time-scale, for example for m-
time-step termination condition [6, 10]. The macro-actions
use in this paper are similar to the temporal extended actions 
proposed on [11], where it was called Options. Options may 
be either multiple step policies or primitive actions while 
macro-actions are restricted to temporally extended actions 
[12].  

The macro-actions enable a learning agent to learn a 
control policy by using multiple time scales until the system 
reaches termination conditions. Those, we think for applying 
the macro-actions algorithms to allow the agent learns the 
environment more flexibility and speed up learning and 
planning to achieve the goal of the controller. This makes 
possible to apply MFIC to process control problems where 
the number of states might be big and simplify its 
implementation in microcontrollers, to simplify its 
implementation  in industrial process control problems.  

II. MACRO-ACTIONS

In this paper the concept of macro actions [12] is applied 
to process control because it is suited for systems where no 

decomposition in subproblems is known in advance. As in 
the general framework defined on [11], macro-actions are a 
special type of semi-Markov option. A Markov option 
would require a state-dependent termination condition. 
Macro-actions algorithm is a closed loop policy with  
termination conditions. When the macro-actions completes a 
new primitive or macro-actions can be selected. Macro-
actions are often use in robotics; macro-operators are also 
well known as an aid to state-space search in artificial 
intelligent systems.  

The macro-actions can be chosen at the same level as 
primitive actions. Macro-actions commit the learning agent 
to act in particular, purposeful way for a sustained period of 
time. Also, macro-actions may either accelerate or retard 
learning, depending on the appropriateness of the macro-
actions to the particular task [13]. The macro-actions method 
is a method enabling an intelligent control to learn a control 
policy by using multiple time scales until the system reaches 
termination conditions.  

Action in macro-actions is extended in time for more than 
one time step. This could be to reduce the number of states 
of underlying MDP to states connected by macro-actions. 
Therefore, application of macro-actions in complex problem 
can speed learning and training compared to a 
nonhierarchical system and can obtain solution to harder 
problem than can be solved using only primitive action. Due 
to the agent selects macro actions and complete it when the 
system reaches termination conditions, the macro-actions 
algorithm is possible to increase responsiveness and add 
flexibility to the controller behavior. Thus, we think that the 
algorithm can be extended to complex and highly nonlinear 
problem, such as pH control problem. 

The MFIC based on macro-actions can address many of 
weaknesses inherent in traditional PID or other advanced 
control methods. For example PID is basically linear and 
time-invariant and cannot effectively control complex 
processes that are nonlinear, time variant, coupled, and have 
large time delays, major disturbance and uncertainties. 
While,  model predictive control is designed using empirical 
model of the plant, so this controller cannot be used for 
general acid-base systems because each model  only 
represents the specific process. 

III. Q-LEARNING WITH MACRO-ACTIONS

This paper proposes the application of the macro-actions 
algorithm for process control. The advantages of MFIC 
based on macro-action are the flexibility the agent selects 
the optimal action and performs the control signal, no 
precise quantitative knowledge of the process is available, 
no process identification mechanism (identifier is included 
in the system, which is an online learning), no controlled 
design for a specific process is needed, simple manual 
tuning of controller parameter is required and stability 
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analysis criteria are available to guarantee the closed-loop
system stability.

Macro-actions are policies with termination conditions.
Each macro-action is specified by a closed-loop policy,
which determines the primitive action when the macro
actions are in force, and by a completion function, which
determines when the macro-action ends. On each time step, 
the agent can choose either a macro-action or a primitive
action, unless it is already executing a macro-action. Once 
the agent has chosen a macro-action, it selects the primitive
actions in accordance with the macro-action’s policy until 
the macro-action’s termination condition is satisfied.

To provide for learning when to select macro-actions, the
notion of optimal action-value function is extended to Q*, to
include macro-actions. This extended action-value function
can be defined as Q*(s, m) for each state s and macro-action
m, as the maximal expected return given that the agent start 
macro-actions m in state s. This definition naturally leads to
update rule: upon each termination of a macro-action, its
value is updated using the cumulative discounted reward
received while executing the macro-action and the 
maximum value at the resulting state. More precisely, after a 
multi-step transition from state st to state sn using macro
action m, the approximate action value Q(sn, m) is updated
by:

mtsQansQ
Aa

nrmsQmsQ tt ,,max,,     (1.) 

where the max is taken over both action and macro-actions,
 is positive step size parameter and the total reward is

calculated as follows:

nt
n

tt rrrr 1
21

where  is a discount factor that increases the effect of short-
term rewards with respect to long-term ones. 

Then, the basic MFIC algorithm with macro actions is as
follows:

1. Read the state st

2. Select either primitive or macro-actions
3. If macro action is selected apply the selected one 

until termination condition 
4. Update Q-value using Equation (1) 

Compared to standard reinforcement learning, this 
modified Q-learning algorithm is proposed for process 
control problems because it can extract more training 
examples from the same number of experiments (that in the
proposed macro-actions approach consists on applying an 
action until the termination condition is reached). If the 
macro actions are selected, the agent executes a primitive
action and applies it for multiple time steps until termination
conditions.

Reinforcement learning based on macro-actions seems to
be a promising approach to process control problems
because the control law can easily adapt to varying scenarios
by online learning. By applying a sequence of actions or 
macro actions, the agent can speed up learning and planning
to maintain the process in the desired pH value. In order to
explore the set of possible actions and acquire experience
through the reinforcement signals, the actions are selected
using an exploration/exploitation policy. In this study -
greedy policy is applied to select one of the available actions
in visited state and experience it for a multiple time steps of

the plant. The -greedy policy has been selected because, 
based on previous experiments, it gives better performance
for pH process than softmax policy [2].
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Fig. 3. Implementation of macro action and definition of termination
conditions.

The termination condition for this application is where the
process reaches the goal band (condition 1) or pass the goal
band (condition 2) or goes far away from the goal state
(condition 3). The idea is shown in Figure 3. Therefore, in
this application there are 3 termination conditions
introduced.

This macro action can be understood as following, for 
example, when the process is in state 4, the agent can either 
to select macro actions or primitive action. It is introduced 
10% probability to select macro actions. If the agent selects
macro actions, the agent will execute it until termination
conditions are reached. The idea is if the system is in state 4 
the agent selects macro actions (according to macro actions, 
the agent selects a primitive action) and makes transition to
the next state and receive reward. If next state is goal state 
(condition 1) the macro actions are terminated or if the next
state is over goal state (condition 2), for example the next
state is state 7, the macro actions are terminated, or if the 
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next state goes far away from goal state (condition 3), for
example next state is state 3, the macro actions are 
terminated. Whereas, if the next state is neither goal state
nor pass goal state, nor far away from goal state, the agent
continues executing macro actions, which is a previous
action that the agent has chosen.

Due to a simple state action definition, this paper is to
check the feasibility of application macro-actions to a simple
defined problem, that previously it has been applied to pH
process [2,6]. Of course this small simple problem presented
in this paper is not really necessary to use macro actions
unless definition of state and action are growth very big.
Even thought, this proposed method can be extended to a
big state action definition of pH processes in order to speed 
up learning and planning. For higher dimensional problem
with plenty of states and/or actions, macro actions will be
necessary to implement RL.

IV. APPLICATION TO A NEUTRALIZATION 
PROCESS

This section describes the implementation of the macro-
actions approach on a pH neutralization process. This
problem was selected, because control of pH in 
neutralization processes is a ubiquitous problem encountered
in chemical and biotechnological industries. In most pH 
neutralization processes the control of pH is not only a
control problem but also the chemical equilibrium, kinetic,
thermodynamic and mixing problems must also be 
considered [14]. These characteristics make it difficult to
control pH process. Another problem is the process buffer 
capacity, which is unknown and dramatically changes
process gain. It could be difficult for control design.

Also, due to the nonlinear dependence of the pH value on
the amount of titrated agent the process will be inherently 
nonlinear. Moreover, variations of the buffering effects
could make the process time-varying. Therefore, it is
difficult to develop an appropriate mathematical model of
the pH process for designing proper controller. The unique
pH process characteristic is difficult to control the process
even using complex linear or nonlinear system. All of these 
make the pH process difficult to control using classical
process control techniques [15].

Several control strategies have been previously applied
for neutralization processes; for instance, Fuzzy Control
[16], Fuzzy Internal Model Control [17], Fuzzy Predictive
Control [18], and Neural Networks [15]. Unfortunately, in
these approaches there are some weaknesses, such as: 
o complexity of the control structures (which could be

difficult to implement on existing control systems),
o conservativeness (the controllers take a long time to

reject disturbances and to reach the desired setpoint), 
o difficulty of tuning, which makes it a time-consuming

task (these controllers have many tuning parameters, or
require many experiments before its application to a real

industrial process). 

A. States and Reward
The most important decision when applying MFIC is to

give an adequate characterization of the states in the system
(“situation” in Figure 4). For pH control problems, in a
previous work [6] it was shown that selecting the states
based solely on the main measured output (pH) was enough
to get adequate performance. Of course for more complex
control systems it might be necessary to include additional
information to define the states: other outputs, the control
signals, etc. However this definition of states makes possible
to derive simple termination conditions for macro-actions, as
it is shown later. 

As the main control objective is to maintain the pH inside
a band of  around the desired setpoint (the width of this
band is defined by measurement noise in the process and
allowed tolerance), this band is defined as the goal state. 
The rest of the states were defined corresponding to values
of the pH outside this band, as depicted in Figure 1. 

In this work, 11 states where selected, where the goal 
state is 6 (corresponds to the desired pH band). Each state
has 5 possible actions, except in the goal state that has only
1 action, which is called wait action (that corresponds to
keeping the control signal constant). This number of states
was selected purely by experience [6].

The probability that the system moves to a new state
from the current state depends on the system behavior
following the execution of the chosen action.

To define the reward, only positive reward is given if the
system is in the goal state. That is, the reward function is: 
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Fig. 4.  Control objective and definition of states.
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B. Control Actions
As in all reinforcement learning algorithm, once the agent 

has selected an action (based on the Policy, see Figure 2), it
must be applied to the system and receive the next reward, 
so that the Critic can evaluate the action. For process control
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problems this means that the action selected must be
transformed into a control signal (The “Calculate U” block
in Figure 2). In MFIC the control signal, ut, is calculated
incrementing (or decrementing) the previous control signal
by an amount calculated from the difference from the
selected action to the wait action. That is,

twtt aakuu 1     (3.) 

where at is the optimal action chosen by the agent from
those available actions in visited state, and aw is wait action
where there is no variation of the previous control signal.
The controller gain, k, is a tuning parameter that can be 
selected to weigh how much to increase or decrease
previous control signal over the action chosen (that can be
tuned by the operator as in classical process control) . 

V. EXPERIMENTAL RESULTS AND DISCUSSION

The experimental results section describes and discusses
the application of MFIC of macro actions approach based on
reinforcement learning to control a pH process laboratory
plant.

A. Description of the Experimental Setup
The experimental setup consists of a continuous stirred

tank reactor (CSTR) where a process stream (sodium
acetate) is titrated with solution of hydrochloric acid (HCl), 
and the effluent is to be maintained at certain pH value by

manipulation titrating flow.
The control variable ut is the flowrate of the titrating

stream (normalized to the maximum value). The output
variable, yt, is the logarithmic hydrogen ion concentration
(pH) in the reactor. It is assumed that the mixing is
homogeneous, therefore the concentration in the effluent
stream is similar to the concentration in the reactor. The
plant is controlled and monitored from a personal computer,
using Matlab and the Real-Time Toolbox for online control.

B. Parameters Selection
For the experimental process,  the zero initialized Q-value

is used. The value of the meta – parameter for the agent are
selected to be: discount factor, =0.98 and learning rate,

=0.1, which were determined to be a good values from
previous work [2].

In MFIC, the -greedy policy is applied for choosing an 
action in every visited state of the pH process. Parameter
used in the -greedy policy is selected to be =0.1. The wait 
action is chosen to be 22, which is no manipulation of
previous control signal. The gain of MFIC is chosen to be
2x10-5. This gain gave good performances [2].

C. Experimental Results and Discussion
Application of the proposed MFIC based on macro-

actions to the laboratory plant shows good results. The
responses of the plant for some changes in setpoint
controller can be seen in Figure 5 for the sodium acetate – 
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hydrochloride acid system. The responses of the plant show
that the proposed MFIC of macro-actions controller based 
on reinforcement learning algorithms lay close to the
references and reach the reference after the environment
change than the responses using PID controller. This PID 
controller was tuned based on operating condition at pH=5,
where correction gain and proportional gain are chosen 0.01
and 0.001 respectively.

The control signal (Figure 6) shows that the proposed 
MFIC of reinforcement learning based on macro-actions
controller manipulates the actuator smoothly. Since MFIC
allows a tolerance error of the process whenever the pH is 
within the control band, the control signal is smoother when 
the process is closer or within the pH band.

To check the improvement of exploration time, it is
possible to see in Figure 7, for example at time 2000. 
During 800 sample time, for standard RL, every sample time
the agent learns to explores n actions and executes them.
Whereas using this proposed macro-actions the agent does 
not explore at all, these 800 sample times, as there is a clear
selection for the control signal. From this, it is clear that the
controller exploration time is greatly reduced.  Also, Figure
7 clearly shows that the agent is either to select a primitive
action or a macro actions more flexible.

VI. CONCLUSIONS

A modification of the Model-Free Intelligent Control
(MFIC) algorithm has been proposed, based on macro-
actions. This makes possible to reduce computational effort,
as in most sample times, it is only necessary to check the
termination condition, making it feasible to implement in
inexpensive hardware.

The technique has been applied on a pH control problem
at laboratory scale, for sodium acetate – hydrochloride acid. 
It has been shown that the behavior of the pH control with
application of macro-actions gives good performance, with
reduced computational effort. It is noteworthy the
smoothness of the resulting control signal. Thus, the
proposed technique is promising for process control
problems.
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