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Abstract— The topic of this paper is the analysis of stability
for a class of switched linear systems, modeled by hybrid au-
tomata. In each location of the hybrid automaton the dynamics
is assumed to be linear and asymptotically stable; the guards
on the transitions are hyperplanes in the state space. For each
location an estimate is made of the gain via a Lyapunov function
for the dynamics in that location, given a pair of ingoing and
outgoing transitions. It is shown how to obtain the best possible
estimate by optimizing the Lyapunov function.

The estimated gains are used in defining a so-called gain
automaton that forms the basis of an algorithmic criterion
for the stability of the hybrid automaton. The associated gain
automaton provides a systematic tool to detect potential sources
of instability as well as an indication on to how to stabilize
the hybrid systems by requiring appropriate delays for specific
transitions.

I. INTRODUCTION

The hybrid automata model [2], [7] can be seen as
an extension of the timed automata model [3]. A hybrid
automaton is an automaton with locations and transitions (or
switches) between the transitions, together with continuous
dynamics in the locations, usually described by differential
equations, and constraints on both locations and transitions.
This model is a prominent model for the study of hybrid
systems [19].

An important and interesting problem is that of the sta-
bility of a hybrid system. Even in the case of switched
linear systems with asymptotically stable dynamics in each
location, it is possible that the global behavior of the system
is unstable (see e.g. [4]). For an overview of results on
hybrid stability see [6], [12], [14]. Some results assume
arbitrary switching between locations [14], [20]; it is then
possible to look for a Lyapunov function common to all
locations [1], [12]. The arbitrary switching assumption would
be unsuitable in general for hybrid automata, since there
the possible switchings are restricted by the guards of the
transitions and the invariants of the locations.

Another stability criterion is that of multiple Lyapunov
functions [4], [5], [12]. Each location is assumed to have a
Lyapunov function. Now all behaviors of the system should
satisfy the so-called non-increasing sequence property: if a
location is visited again, the value of the Lyapunov function
should be less than what it was at the previous time the

location was visited. This is a sufficient condition for the
stability of a hybrid automaton. In general checking the non-
increasing sequence property may be difficult, as checking
all possible behaviors of a hybrid system is clearly not an
option.

Another approach is the construction of Lyapunov func-
tions that are either piecewise linear [11] or piecewise
quadratic [10], [15], [17]. In the latter case the piecewise
quadratic function should be continuous on the switching
boundaries, which can be checked efficiently by solving a
linear matrix inequality. The approach has originally been
formulated for piecewise affine systems, where the state
space is divided into regions, and to each region corresponds
a dynamics. It is not so easy to adapt the approach to the
more general model of hybrid automata.

In this paper we present an alternative approach that still
makes use of the existence of a Lyapunov function in each
location, but in addition incorporates the underlying automa-
ton structure of the system model. Moreover, we demonstrate
how a potentially unstable system may be stabilized by
introducing appropriate transition delays.

The remainder of the paper is organized as follows.
Section II gives basic definitions about hybrid automata and
stability, and defines the class of hybrid automata used in this
paper. Section III shows how to calculate an estimate of the
gain using Lyapunov functions. It is shown how an optimal
Lyapunov function can be chosen. Section IV shows how to
use gain estimates in constructing an automaton that is used
in an algorithm that detects non-contractive cycles in hybrid
automata. The absence of such non-contractive cycles is a
sufficient condition for the stability of the hybrid automaton.
The occurrence, however, of non-contractive cycles does not
imply instability of the hybrid system, rather it indicates
that no simple guarantees for stability can be given. Due to
the complex interaction between discrete switching between
locations and continuous dynamics within location, a hybrid
system having non-contractive cycles may be considered
unsafe if stability is crucial. Section V describes how a
cycle that is detected to be non-contractive may be stabi-
lized by sufficiently delaying transitions belonging to that
cycle. Then, in Section VI we introduce the notion of gain
automaton. This is an automaton that is associated to the
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hybrid system under consideration and is used to detect, in
a systematic way, non-contractive cycles. We present two
algorithms: a passive detection algorithm, and an algorithm
that not only detects non-contractive cycles, but also has the
built-in option to determine how specific transitions in the
cycle should be delayed such that the delayed cycle becomes
contractive. Finally, in Section VII, we give conclusions and
directions for future research. For basic notions of systems
theory used in this paper we refer to [18].

II. HYBRID AUTOMATA AND STABILITY

The hybrid automaton model [2], [7] extends the classical
notion of automaton by incorporating continuous dynamics
in the locations, together with constraints at both locations
and transitions.

Definition II.1. A hybrid automaton is a tuple H =
(X, L, Init, Inv, f, E, Guard, Assign,Σ) where:

• X ⊆ R
n is the continuous state space ranged over by

the state vector x.
• L is a finite set of locations.
• Init ⊆ L × R

n is a set of initial location state pairs.
• Inv : L → 2X assigns to each location � an invariant

to be satisfied by state x while in location �.
• f : L → (X → R

n) assigns to each location � a
continuous vector field f� such that the state x should
satisfy d

dtx = f�(x).
• E ⊆ L×L is the set of transitions, also called switches.
• Guard : E → 2X assigns to each transition a guard

that has to be satisfied by state x if the transition is
taken.

• Assign : E → (X → X) assigns to each transition an
assignment that may alter state x when the transition is
taken.

• Σ a set of transition labels. We assume a labeling
function lab : E → Σ and refer to transitions by their
labels (assuming uniqueness).

In this paper we make a few additional assumptions:

• We assume that Init = L′ × R
n for a set L′ ⊆ L of

initial locations, so that for a given initial location we
can start with any state (which is technically convenient
when studying stability).

• We assume that there are no invariants, i.e., Inv maps
each location to the trivial condition true. This means
that transitions are never forced, and it is possible to
remain in a location forever.

• we assume that the dynamics in each location is linear,
so d

dtx = f�(x) = Alx, A� ∈ R
n×n.

• We assume that for each transition e the guard is a
hyperplane defined by an equation of the form vT

e x = 0
for some ve ∈ R

n.
• We assume that the state is left unchanged by transitions

(also called continuous switching), so for each transition
e, Assigne(x) = x.

We call a hybrid automaton that satisfies these assumptions
a Linear Continuous Hyperplane (LCH) hybrid automaton.

Example II.2. Consider the hybrid automaton consist-
ing of four locations, �1, . . . , �4. The dynamics in lo-
cation �i is given by d

dtx = A�i
x, A�i

∈ R
2×2,

i = 1, . . . 4. The following events can occur: E =
{(�1, �2), (�1, �4), (�2, �1), (�2, �3), (�3, �4), (�4, �2)}, to
which correspond labels a to f respectively. To each event
there corresponds a switching line Lij . For instance if the
automaton is in location �2 there are two possible transitions:
to �1 and to �3. The transition to �1 is enabled if and only
if x ∈ L21, whereas the transition to �3 is possible when
x ∈ L23.

Definition II.3. A hybrid trace of an LCH hybrid au-
tomaton is a finite or infinite sequence of the form σ =
x1e1x2e2 . . . xm−1em−1xm, with an associated monotoni-
cally increasing timing sequence τ0τ1...τm (with τ0 = 0,
τi ∈ R ∪ {∞}), such that

• each ei is a transition from location �i to location �i+1

• each xi is a mapping from [τi−1, τi] to R
n satisfying

d
dtxi = A�i

xi

• initial and switching constraints and assignments are
respected, so (�1, x1(0)) ∈ Init, and for all 1 ≤ i ≤
m − 1: vT

ei
xi(τi) = 0 and xi(τi) = xi+1(τi).

Remark II.4. To avoid Zeno behavior we impose that
all transitions are delayed by a fixed minimal dwell time.
This implies in particular that for infinite traces there holds
lim

i→∞

τi = ∞.

Definition II.5. An LCH hybrid automaton is stable iff ∀ε >

0 ∃δ > 0 : ‖x0‖ < δ ⇒ for all hybrid traces x1e1x2e2 . . .

with x1(0) = x0 and ∀i∀t ∈ [τi−1, τi] : ‖xi(t)‖ < ε. An
automaton that is not stable is called unstable.

It is well known that even if for each location � the
dynamics is asymptotically stable, so the matrix A� is
Hurwitz (i.e., all eigenvalues have negative real part, see
[18]), still the hybrid automaton can be unstable (see e.g.
[4] for a simple example). We say that a hybrid automaton
has stable locations (with some abuse of terminology) if for
each location � the matrix A� is Hurwitz.

Now, our problem setting consists of two parts. Firstly,
find sufficient conditions for the stability of an LCH hybrid
automaton with stable locations. Secondly, if the sufficient
conditions are not met, then provide systematic and quanti-
fied guidelines as to which transitions should be delayed to
ensure stability.

III. ESTIMATE OF GAINS VIA LYAPUNOV FUNCTIONS

Suppose a location � is entered via a transition a with
a state vector xa and is left via a transition b with a state
vector xb. An indication as to how the location contributes
to the stability or instability is the ratio of the norm of
the outbound state and the inbound state. A ratio below
one is in favor of stability whereas a ratio above one
points at instability. Of course, since the ratio depends on
the actual trace and state trajectory it does not provide a
feasible stability indicator. Therefore we propose to use an
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Fig. 1. Switching lines in a location

upperbound that only depends on the particular location and
its corresponding inbound and outbound transitions.

Definition III.1. Consider an LCH hybrid automaton H

with Hurwitz locations. With each location � we associate
a symmetric positive definite matrix P� such that AT

� P� +
P�A� ≤ 0. Let ein represent a transition to � and eout a
transition from � and let Lin, given by vT

inx = 0, and Lout,
given by vT

outx = 0, denote the corresponding switching
hyperplanes. Define ellipsoids Ein and Eout as Ein = {x ∈
Lin | xTP�x = 1} and Eout = {x ∈ Lout | xTP�x = 1}.
The corresponding gain αin/out is defined as

αin/out = max
xi∈Ein,xo∈Eout

xT
o xo

xT
i xi

(1)

Obviously, since V (x) = xTP�x is a Lyapunov function
for d

dtx = A�x we have that any trajectory that enters the
location through Lin and leaves it through Lout has the
property that the ratio of the norms of outbound and inbound
states is upperbounded by √

αin/out.
Two questions arise. Firstly, given P� how can we calculate

αin/out? Secondly, it appears that the choice of P� affects
αin/out. How to choose P� such that αin/out is minimal?
The latter question is treated in Section III-B.

A. Calculation of the gains

Let us explain how the calculation for given P� works. For
ease of exposition we treat the two dimensional case first,
see Figure 1.

The switching lines are given by vT
inx = 0 and vT

outx = 0
respectively. Let ṽin and ṽout be orthogonal to vin and vout

respectively. Then it is not difficult to verify that

αin/out =
ṽT
outṽout

ṽT
inṽin

ṽT
inP�ṽin

ṽT
outP�ṽout

. (2)

If we choose ṽin and ṽout both on the same level curve, then
(2) reduces to ṽT

out
ṽout

ṽT

in
ṽin

.
For dimensions n > 2 the situation is a bit more compli-

cated since the maximization in (2) comes into play.

First notice that

αin/out =
maxxo∈Eout

xT
o xo

minxi∈Ein
xT

i xi
. (3)

Next, e.g., the numerator of (3) can easily be calculated as
follows. First assume that vout has norm one (otherwise nor-
malize), then determine an orthogonal matrix Vout such that
the first column of Vout is vout. Define Pout = V T

outP�Vout

and Ẽout = {z ∈ R
n | z1 = 0, zTPoutz = 1}. Then

max
x∈Eout

xTx = max
z∈Ẽout

zTz =
1

λmin(P̃out)
, (4)

where P̃out is obtained from Pout by deleting the first row
and and the first column. Furthermore λmin(P ) denotes
the smallest eigenvalue of matrix P . In a similar way the
denominator of (3) is obtained, resulting in

αin/out =
λmax(P̃in)

λmin(P̃out)
. (5)

Remark III.2. For n ≥ 3 two hyperplanes always inter-
sect and hence also the sets Eout and Ein intersect. As a
consequence the gain αin/out ≥ 1.

B. Optimizing the choice of Lyapunov function

The gains that provide a stability indicator obviously
depend on the Lyapunov functions in each location. Loosely,
the fit of the level curves with respect to the trajectories
determines the amount of conservatism. The better the fit, the
less conservative the gain. Since Lyapunov functions are not
unique, this suggests that we might be able to choose in each
location a Lyapunov function that is optimal with respect
to the switching planes. In this section we explain how
this can indeed be done. We confine ourselves to quadratic
Lyapunov functions. We show that for a given stable matrix
A the set of quadratic Lyapunov functions is convex and
compact. Furthermore the stability gain corresponding to A

and given switching hyperplanes depends continuously on
the Lyapunov function so that at least the optimum exists.
We illustrate the effectiveness of these results by means of
a two dimensional example.

Let A ∈ R
n×n be a stable matrix. We are interested in

the set of quadratic Lyapunov functions, or, more precisely,
the set of level curves corresponding to quadratic Lyapunov
functions. To enable the comparison of different Lyapunov
functions we choose a nonzero x0 ∈ R

n and define the set

Ωx0
= {P ∈ R

n×n | ATP + PA ≤ 0, xT
0 Px0 = 1}.

In fact, Ωx0
is a parametrization of the level curves corre-

sponding to quadratic Lyapunov functions and level unity.

Lemma III.3. Let A ∈ R
n×n and let x0 ∈ R be a nonzero

vector that does not belong to an A-invariant subspace of
dimension at most n − 1. Let U be an open neighborhood
of 0 ∈ R. Then span

t∈U
(exp(At))x0 = R

n.

Theorem III.4. Let A ∈ R
n×n be a stable matrix and let

x0 ∈ R be a nonzero vector. Define Ω = {P ∈ R
n×n |

AT P + PA ≤ 0 and xT
0 Px0 = 1}.
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1. If x0 does not belong to a proper A-invariant subspace
then Ω is compact.

2. Every P ∈ Ω is positive semi-definite.
3. Ω is convex.

Example III.5. Let the dynamics in a given location be given
by d

dtx = Ax with

A =

[
0 1
−2 −3

]

The switching lines are given by

Lin = λ

[
0
1

]
︸︷︷︸
ain

Lout = λ

[
1
0

]
︸︷︷︸
aout

(6)

As explained in Section III-A, for a given Lyapunov function
V (x) = xTPx the gain is defined as

αP =
aT
outaout

aT
inain

aT
inPain

aT
outPaout

=
p22

p11
(7)

The set Ωain
is depicted in Figure 2. To find the optimal

Ω

3

2

1

0
2 4 8 10 126

p11

p12

Fig. 2. The set Ωain
of all Lyapunov functions.

Lyapunov function we want to minimize αP over Ωain
.

For this example this amounts to the minimization of 1
p11

or, equivalently, the maximization of p11. Theorem III.4
guarantees the optimum exists. Using Maple we found two
extreme Lyapunov functions. One that minimizes αP and
one that maximizes αP :

Pmin =

[
12.70 2.59
2.59 1

]
Pmax =

[
.32 .41
.41 1

]
(8)

The corresponding minimum and maximum values of the
gains are

αmin ≈ 0.38 αmax ≈ 2.61 (9)

In Figure 3 the level curves of the two Lyapunov functions
are drawn together with the phase portrait of d

dtx = Ax.
This clearly shows the benefit of using the non-uniqueness
of Lyapunov function. The one that minimizes α is obviously
dramatically less conservative than the one that maximizes
α.

Remark III.6. In higher dimensions the minimization of the
gain may be cumbersome to perform. Indeed, the expression
in (5) is a non-convex function of P . Notice, however, that
λmax(P ) is convex and λmin(P ) is concave. A suboptimal
solution is therefore obtained by disregarding either the
numerator or the denominator in (5).

x2

x1

level curve of
worst case Lyapunov
function

level curve of
optimal Lyapunov
function

state
trajectory

Fig. 3. Level curves of the extreme Lyapunov functions

IV. NON-CONTRACTIVE CYCLES

Suppose we have a hybrid automaton with Hurwitz loca-
tions. If for each location that can be visited more than once
the estimated gain is ≤ 1, then it can be seen that the hybrid
automaton is stable: since the number of locations in a trace
that are visited only once (seen as a function of a trace) is
bounded, there is a bound to the gains corresponding to the
traces. However, such a condition is unnecessarily restrictive
as it does not take into account situations where a higher gain
in one location is compensated by a lower gain in another
location. So we need a more sophisticated condition.

Definition IV.1. Let H be a hybrid automaton, then a
contractive cycle of H is a sequence of transitions C =
e1e2 . . . em such that each ei is a transition from �i to �i+1,
with �1 = �m+1, and γC = αe1e2

· αe2e3
· . . . · αeme1

≤ 1.
The scalar γC is called the cycle gain.

Theorem IV.2. Let H be an LCH hybrid automaton with
Hurwitz locations. Then: H is unstable ⇒ H has a non-
contractive cycle.

V. STABILIZING NON-CONTRACTIVE CYCLES BY

DELAYING TRANSITIONS

If a cycle is non-contractive, that is, the product of the
gains exceeds one, then the cycle may still be stabilized by
appropriately delaying transitions. Indeed, since all locations
have asymptotically stable dynamics, sufficiently delaying
transitions reduce all separate gains to a value not exceeding
unity. This, however, is not necessary. It suffices to delay one
or more transitions in the cycle such that the cycle becomes
contractive, that is, such that the product of all gains does not
exceed one. How to exactly achieve this may be quantified
through the following lemma.

Lemma V.1. Let A be a Hurwitz matrix, Q = QT is
a positive definite matrix and let P satisfy the associated
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Lyapunov equation AT P +PA = −Q. Furthermore let x(t)
be the solution of d

dtx(t) = Ax(t) with x(0) = x0. Then

x(t)T Px(t) ≤ xT
0 Px0e

−λt, (10)

where λ = σmin(P−
1

2 QP−
1

2
).

Next we describe how to use Lemma V.1 to stabilize
a non-contractive cycle. Let C be a non-contractive cycle.
This means that the product of the estimated gains is larger
than one. Let α be an estimated gain corresponding to
location � belong to the cycle C. Denote the dynamics
in � by d

dtx = A�x and let AT P + PA = −Q be the
corresponding Lyapunov equation on the basis of which α

has been calculated. This may be the optimized P obtained
as described in Section III-B provided it is positive definite.
However if that P is positive semi-definite, then the gain
estimate has to be recalculated on the basis of positive
definite P followed by the calculation of the delay.

As noted, the interpretation of the transition gain α is that
it reflects an upper bound on the state gain corresponding to
the event ‘enter � followed by ‘leave �. The gain α is based
on level sets of the Lyapunov function xT Px only, time
evolution is not taken into account. In that sense α may be
somewhat conservative. On the other hand, it would be very
difficult to even estimate how long we stay in �. However, by
imposing a minimum delay it becomes feasible to estimate
the reduction in gain estimate.

More precisely: Let H be a hybrid automaton and let C be
cycle of H , i.e., a sequence of transitions e1e2 . . . em such
that each ei is a transition from �i to �i, with �1 = �m+1,
and let αe1e2

· αe2e3
· . . . · αeme1

be the corresponding gain
estimates. Denote by δei−1,ei

≥ 0 the delay corresponding
to the transition pair (ei−1, ei). The interpretation of δei−1ei

is that after transition ei−1 a delay of at least δei−1ei
has to

be respected before transition ei may be taken. In this way
δei−1ei

acts as a kind of guard. During the delay δei−1ei

location �i is active. The delayed cycle gain is now defined
as:

γC(δ) =

m+1∏
i=1

αie
−λiδei−1ei . (11)

It now suffices to choose the delays δei−1ei
s such that the

cycle gain becomes smaller than or equal to one.
The above is, of course, closely related to the concept

of dwell-time as introduced studied in [8], [16]. However,
there dwell times are defined in terms of the dynamics in
locations as isolated entities. In our context delays are studied
in relation to all transitions in a given cycle.

VI. GAIN AUTOMATA AND DETECTION OF

NON-CONTRACTIVE CYCLES

Theorem IV.2 together with the transition delays provides
us with a sufficient condition for stability, namely the ab-
sence of non-contractive cycles. In order to check for non-
contractive cycles we first transform a hybrid automaton into
what we call gain automaton.

�c

�b

�
a

�
d

�e

�f�αcb

�αca

�
αac

�αbf

�αad

�
αde

� αef

�

αfd
	

αfc

Fig. 4. Example of a gain automaton

Definition VI.1. A gain automaton is a tuple GA =
(S, S0, G) where

• S is the set of nodes,
• S0 is the set of initial nodes,
• G ⊆ S×R

+ ×S is the set of edges labeled with gains.

Definition VI.2. Let H be a hybrid automaton, then the gain
automaton for H is defined by GA(H) = (SH , S0

H , GH)
where

• The nodes of the gain automaton are the transitions of
H , so SH = E.

• The initial nodes S0
H are the transitions from an initial

location of H .
• For each pair of transitions e, e′ in H such that

e−→
l

e′

−→ there is an edge e
αee′−→ e′ in GH .

Example VI.3. Let H be the hybrid automata of Example
II.2, then the gain automaton GA(H) is given in Figure 4.

We define an algorithm on the gain automaton of a hybrid
automaton for the detection of non-contractive cycles. This
algorithm is inspired by the well-known algorithm for trans-
forming an automaton into an equivalent regular expression
(see e.g. [9], [13]). It works by successively deleting nodes
of the gain automaton, while transforming the edges. The
basic steps of the algorithm are:

• Node elimination: a node is eliminated. Each possible
pair of an incoming and outgoing edge of this node
leads to a new edge, labeled with the product of the
gains, as illustrated in Figure 5(a).

• Double edge elimination: if two edges have the same
initial and final node they are transformed into a sin-
gle edge, labeled with the maximum of the gains, as
illustrated in Figure 5(c).

• Loop edge analysis: it is possible that deleting a node
creates a loop edge, as illustrated in Figure 5(b). If
the gain of such a loop edge is > 1 (we call this a
non-contractive loop edge) the algorithm is terminated.
Otherwise, the loop edge is removed.

Algorithm VI.4. Input: a gain automaton GA.
check all loop edges;

if a non-contractive loop edge is found
then terminate;

remove all loop edges;
repeat

eliminate a state;
eliminate all resulting double edges;
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Fig. 5. Basic steps of the algorithm

analyze all resulting loop edges;
if a non-contractive loop edge is found

then terminate;
remove all loop edges

until there is only one state

Theorem VI.5. Let H be an LCH hybrid automaton with
Hurwitz locations. Then: Algorithm VI.4 detects a non-
contractive loop edge in GA(H) ⇔ H contains a non-
contractive cycle.

Of course, detecting a non-contractive cycle may not be
the end of the story. In case transition delay is feasible non-
contractive cycles may be stabilized by delay as detailed in
Section V. The algorithm VI.4 then becomes:

Algorithm VI.6. Input: a gain automaton GA.
check all loop edges;

if a non-contractive loop edge is found
then terminate;

remove all loop edges;
repeat

eliminate a state;
eliminate all resulting double edges;
analyze all resulting loop edges;
if a non-contractive loop edge is found

then stabilize by delay;
remove all loop edges

until there is only one state

Algorithm VI.6 provides a systematic means to detect
potential unstable cycles and subsequently stabilizing these.

The number of nodes in GA(H) is quadratic in the
number of nodes of H , and the complexity of Algorithm
VI.4 and VI.6 is linear in the number of nodes of GA,
so the complexity of Algorithm VI.4 and VI.6 is quadratic
in the number of nodes of H . This means we have a
computationally efficient way of checking the sufficiency
condition for stability, viz. the absence of non-contractive
cycles.

VII. CONCLUSIONS

We have derived a sufficient condition for the stability
of a hybrid automaton, viz. the absence of non-contractive
cycles, together with an algorithm for efficiently checking
this condition. In addition, we have proposed a systematic
method through which transition delays may be introduced

to stabilize potentially unstable cycles. In principle the incor-
poration of the delays could be part of the criterion according
to which the optimal Lyapunov function is constructed. At
this moment, however, this appears to yield an unfeasible
optimization problem.

We have made use of both systems theoretic concepts
(in calculating the estimated gains) and computer science
concepts (in checking the cycles in the gain automaton),
thereby doing justice to both the continuous and the discrete
aspects of hybrid systems.
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