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Abstract— We generalise the Gärtner-Ellis theorem of large
deviations theory. Our results allow us to derive large deviation
type results in stochastic optimal control from the convergence
of generalised logarithmic moment generating functions. They
rely on the characterisation of the uniqueness of the solutions of
max-plus linear equations. We give an illustration for a simple
investment model, in which logarithmic moment generating
functions represent risk-sensitive values.

I. INTRODUCTION

Let X, Y be two sets and R = R ∪ {±∞} denote the
extended real line. A Moreau conjugacy [1], associated to a
kernel b : X ×Y → R, is a map B : F → G , where F and
G are subsets of R

Y and R
X respectively, such that:

Bf(x) = sup{b(x, y) − f(y) | y ∈ Y }, ∀x ∈ X .

Here b(x, y)− f(y) is an abbreviation of b(x, y)+ (−f(y)),
with the convention that −∞ is absorbing for addition. An
example of Moreau conjugacy is the Legendre-Fenchel trans-
form. Moreau conjugacies are instrumental in nonconvex
duality, see [2, Chapter 11, Section E],[3]. The set R can
be equipped with the semiring structure of Rmax, in which
the addition is (a, b) �→ max(a, b) and the multiplication
is (a, b) �→ a + b, with the same convention as above. If
B : R

Y → R
X is a Moreau conjugacy, the map f �→

B(−f) is a max-plus linear operator with kernel. Max-plus
linear operators with kernel arise in deterministic optimal
control and asymptotics, and have been widely studied, see
in particular [4], [5], [6], [7], [8], [9].

Given a map g ∈ G and a Moreau conjugacy B : F → G ,
let us consider the problem:

(P) : Find f ∈ F such that Bf = g ,

and more generally:

(P ′) :
Find f ∈ F such that Bf ≤ g
and Bf(x) = g(x) for all x ∈ X ′ ,

where X ′ ⊂ X is given. In [10] we gave effective conditions
on g for the solution f of (P ′) to exist and be unique,
using generalised subdifferentials (associated to the Moreau
conjugacy B). We characterised the existence and uniqueness
of the solution of (P ′) in terms of coverings and minimal
coverings by sets which are inverses of subdifferentials of
g (we recall these results in Section II). These conditions
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extend, to the case of infinite sets X and Y , the characteri-
sations of the solutions of (P) in terms of “minimal resolvent
coverings” of X which were first shown by Vorobyev [11,
Theorem 2.6] and then developed by Zimmermann [12,
Chapter 3], when X and Y are finite.

When B is the Legendre-Fenchel transform, these results
show that essentially smooth convex functions have a unique
pre-image by the Legendre-Fenchel transform (see [10,
Corollary 6.4]), a fact which is the essence of the classical
Gärtner-Ellis theorem, see e.g. [13, Theorem 2.3.6,(c)] for a
general presentation. Indeed, as we shall see in Section V,
Problem (P ′) arises naturally when looking for the rate
function in large deviations.

Large deviation type asymptotics arise in optimal control
when studying the long-term behaviour of some controlled
stochastic process. For instance, assume that some real non-
negative controlled diffusion Xt, representing the wealth of
an investor, has an asymptotic growth rate, which means that
limt→+∞

log(Xt)
t exists almost surely, and assume that this

growth rate satisfies a large deviation principle with factor
1/t, which means in loose terms that for “good” subsets A of
R, − 1

t log P ( log(Xt)
t ∈ A) tends to I(A) := infx∈A I(x) for

some rate function I : R → [0, +∞). Then, one may want
to find a control minimising the rate I(A). This problem was
studied by Pham in [14], to which the reader is referred for
more information.

In the present paper, we show how the results of [10] yield
a characterisation of the rate function of a large deviation
principle, generalising the Gärtner-Ellis theorem (Section V).
We also study rate functions in optimal stochastic control,
such as the maximal long term growth rate of wealth
described above. To develop these results in a unified way,
we introduce (in Section III) the notion of quasi (max-
plus) linear form. It includes as special cases, possibly
up to a log-exp conjugacy: integrals with respect to finite
measures, suprema of such integrals and idempotent integrals
with respect to finite cost measures [8]. We then introduce
(in Section IV) the notion of weak convergence of quasi-
linear forms, which generalises the large deviation principle
of Varadhan. Finally, we illustrate the results on a simple
investment model (Section VI).

II. IMAGES AND PRE-IMAGES OF MOREAU CONJUGACIES

We briefly recall some of the results of [10].

A. Moreau conjugacies

Let X and Y be two Hausdorff topological spaces. Denote
by F the set of lower semicontinuous (l.s.c.) maps from Y
to R and by G the set R

X of all maps from X to R. The sets

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

ThC03.1

0-7803-9568-9/05/$20.00 ©2005 IEEE 7787



F and G are endowed with the partial ordering of functions,
for which they are complete lattices. Let b : X × Y → R be
a map which is lower semicontinuous in the second variable.
Then the maps B : F → G and B◦ : G → F defined by

Bf(x) = sup{b(x, y) − f(y) | y ∈ Y } ∀f ∈ F , x ∈ X ,

B◦g(y) = sup{b(x, y) − g(x) | x ∈ X} ∀g ∈ G , y ∈ Y

are Moreau conjugacies [1] and they are conjugate to each
other, or in duality, meaning that (B, B◦) is a dual Galois
connection (see [10, Theorem 2.1 and Example 2.7]). More-
over, by [10, Theorem 2.1], the map b is uniquely determined
by the Moreau conjugacy B. We call it the kernel of B. The
kernel of B◦ is necessarily equal to the symmetric map of
b, denoted by b◦: Y × X → R, (y, x) �→ b◦(y, x) = (x, y).
Taking two topological vector spaces X and Y in duality, and
b(x, y) = 〈x, y〉, we obtain the classical Legendre-Fenchel
transform Bf = f∗.

In the sequel we shall assume that b(x, y) ∈ R ∪ {−∞}
for all (x, y) ∈ X × Y , and that for all x ∈ X , there exists
y ∈ Y such that b(x, y) ∈ R, and symmetrically that for all
y ∈ Y , there exists x ∈ X such that b(x, y) ∈ R.

B. Existence of pre-images

We shall use the following notion of subdifferentials of
Moreau conjugacies (see [15], [16], [17], [18], [19]). Given
f ∈ F and y ∈ Y , the subdifferential of f at y with respect
to b (or B), denoted by ∂bf(y), or ∂f(y) for brevity, is the
set:

∂f(y) = {x ∈ X | b(x, y) ∈ R,

b(x, y′) − f(y′) ≤ b(x, y) − f(y) ∀y′ ∈ Y } .

For g ∈ G and x ∈ X , the subdifferential of g at x with
respect to b◦, ∂b◦g(x), will be denoted by ∂◦g(x) for brevity.
When b(x, y) = 〈x, y〉 we recover the classical definition of
subdifferentials.

We shall use the following covering notions. When Φ is a
map from a set Z to the set P(W ) of all subsets of some set
W , we set Φ−1(w) = {z ∈ Z | w ∈ Φ(z)}. If Z ′ ⊂ Z and
W ′ ⊂ W , {Φ(z)}z∈Z′ is a covering of W ′ if ∪z∈Z′Φ(z) ⊃
W ′. An element y ∈ Z ′ is algebraically essential with
respect to this covering if W ′ �⊂ ∪z∈Z′\{y}Φ(z). When Z
is a topological space, y is topologically essential if, for all
open neighbourhoods U of y in Z ′, W ′ �⊂ ∪z∈Z′\UΦ(z).
The covering of W ′ by {Φ(z)}z∈Z′ is algebraically (resp.
topologically) minimal if all elements of Z ′ are algebraically
(resp. topologically) essential.

The kernel b is said coercive if for all x ∈ X , and all
neighbourhoods V of x in X , the function

y ∈ Y �→ bx,V (y) = sup
z∈V

b(z, y) − b(x, y) (1)

has relatively compact finite sublevel sets, which means that
{y ∈ Y | bx,V (y) ≤ β} is relatively compact for all β ∈ R.
We also denote by Fc the set of all f ∈ F such that for
all x ∈ X , y �→ b(x, y) − f(y) has relatively compact finite
superlevel sets, which means that for all β ∈ R, the set
{y ∈ Y | b(x, y)−f(y) ≥ β} is relatively compact. For any

map g from a topological space Z to R, we set: ldom(g) :=
{z ∈ Z | g(z) < +∞}, udom(g) := {z ∈ Z | g(z) >
−∞}, dom(g) := ldom(g) ∩ udom(g) (the domain of g),
idom(g) = {z ∈ dom(g) | lim supz′→z g(z′) < +∞}.

We shall occasionally need the following assumptions:
(A1) Y is discrete;
(A1)′ b is continuous in the second variable, and

B◦g(y) > −∞ for all y ∈ Y ;
(A2) B◦g ∈ Fc;
(A2)′ b is coercive and X ′ ⊂ idom(g) ∪ g−1(−∞).
(A3) Conditions (A1) or (A1)′, and (A2) or (A2)′ hold.
Theorem 2.1 ([10, Theorem 3.5]): Let X ′ ⊂ X and g ∈

G . Consider the following statements:
(i) Problem (P ′) has a solution,
(ii) {(∂◦g)−1(y)}y∈ldom(B◦g) is a covering of X ′∩udom(g).
We have (ii)⇒(i). If (A3) is satisfied, then (i)⇔(ii).

C. Uniqueness of the pre-image

A map h from a topological space Z to R is quasi-
continuous [20] if for all open sets G of R, the set h−1(G)
is included in the closure of its interior. When h is l.s.c., this
is equivalent to the condition that h is the l.s.c. hull of the
upper semicontinuous (u.s.c.) hull of h.

Theorem 2.2 ([10, Theorem 4.6]): Let X ′ ⊂ X and g ∈
G . Assume that {(∂◦g)−1(y)}y∈ldom(B◦g) is a covering of
X ′ ∩ udom(g), and denote by Za (resp. Zt) the set of
algebraically (resp. topologically) essential elements with
respect to this covering. Let Z = Za∪int(Zt), where int(Zt)
denotes the interior of Zt relatively to dom(B◦g). Assume
that (A3) is satisfied and that B◦g is quasi-continuous on its
domain. Then Problem (P ′) has a solution, and any solution
f of (P ′) satisfies

f ≥ B◦g, and f(y) = B◦g(y) for all y ∈ Z .
Theorem 2.3 ([10, Theorem 4.7]): Let X ′ ⊂ X and g ∈

G . Consider the following statements:
(i) Problem (P ′) has a unique solution,
(ii) {(∂◦g)−1(y)}y∈ldom(B◦g) is a topologically minimal
covering of X ′ ∩ udom(g).
If (A3) is satisfied, then (i)⇒(ii). If in addition B◦g is quasi-
continuous on its domain, then (i)⇔(ii).

III. QUASI-LINEAR FORMS

We assume now that Y is a Polish (complete separable
metric) space. We denote by Rmax the subsemiring of Rmax

composed of the elements of R ∪ {−∞}. The set (Rmax)Y

is a sublattice of R
Y , which is conditionally complete. We

denote by sup or ∨ (resp. inf or ∧) the supremum (resp. infi-
mum) operation. The set (Rmax)Y can be endowed with the
semimodule structure in which the addition is (f, g) �→ f∨g,
and the scalar multiplication is (a, f) ∈ Rmax× (Rmax)Y �→
a+ f ∈ (Rmax)Y with (a+ f)(y) = a+ f(y) for all y ∈ Y .
(Semimodules and subsemimodules are defined as modules
and submodules over rings [21], [22]). We denote by bd(Y )
(resp. C (Y ), resp. lsc(Y ), resp. usc(Y )) the set of functions
from Y to Rmax that are bounded above by a constant (resp.
continuous, resp. l.s.c., resp. u.s.c.). We also use the notations
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Cb(Y ) := C (Y )∩bd(Y ) and uscb(Y ) := usc(Y )∩bd(Y ).
All these sets are subsemimodules of (Rmax)Y .

Definition 3.1: Let M be a subsemimodule of (Rmax)Y .
A map F : M → Rmax (or Rmax) is a quasi- (max-plus)
-linear form (on M ) if it is isotone, that is

ϕ ≤ ψ =⇒ F (ϕ) ≤ F (ψ) for all ϕ, ψ ∈ M , (2a)

if it is additively homogeneous, that is

F (λ + ϕ) = λ + F (ϕ) for all λ ∈ Rmax, ϕ ∈ M , (2b)

and if there exists α ∈ Rmax such that

F (ϕ ∨ ψ) ≤ α + F (ϕ) ∨ F (ψ) for all ϕ, ψ ∈ M . (2c)

A quasi-linear form F on M is continuous if it preserves
nondecreasing converging sequences.
We denote by ρ(F ) the infimum of the α satisfying (2c),
and by QL (M ) the set of continuous quasi-linear forms
from M to Rmax. When F takes at least one value in R,
ρ(F ) ≥ 0 and one can take α = ρ(F ) in (2c). Otherwise
ρ(F ) = −∞.

A map F : M → Rmax is a quasi-linear form such that
ρ(F ) ≤ 0 if, and only if, F is a max-plus linear form, that
is F satisfies (2b) and F (ϕ ∨ ψ) = F (ϕ) ∨ F (ψ) for all
ϕ, ψ ∈ M . We set L (M ) := {F ∈ QL (M ) | ρ(F ) ≤ 0}.
Given f : Y → R, the map F : (Rmax)Y → Rmax defined
by

F (ϕ) = sup
y∈Y

(ϕ(y) − f(y)) for all ϕ ∈ (Rmax)Y (3)

is a continuous (as a quasi-linear form) max-plus linear form
on (Rmax)Y and so on Cb(Y ). A map f satisfying (3) is
called a density of F . Conversely, since Y is a separable
metric space, any element of L (Cb(Y )) has a unique l.s.c.
density [8, Th. 4.8 and Cor. 3.12] (see also [23], [24], [7]),
which is bounded below by some real constant. Note however
that a max-plus linear form is not necessarily continuous.

Let µ be a finite positive measure on Y , let ε > 0 and
consider the map F : Cb(Y ) → Rmax with

F (ϕ) = ε log
(∫

Y

exp
(

ϕ(y)
ε

)
dµ(y)

)
, (4)

for all ϕ ∈ Cb(Y ). Then F is a continuous quasi-linear form
with ρ(F ) ≤ ε log(2). The maps F of the form (4) where µ
is a probability measure occur in large deviations principles.
We shall denote by L Dε(Y ) the set of all such maps.

Let Fi ∈ QL (M ), for i ∈ I , such that supi∈I ρ(Fi) <
+∞. Then the map supi∈I Fi : M → Rmax, ϕ �→
supi∈I Fi(ϕ) is a continuous quasi-linear form on M and it
satisfies ρ(supi∈I Fi) ≤ supi∈I ρ(Fi).

Proposition 3.2: Any F ∈ QL (Cb(Y )) admits a unique
extension to a continuous quasi-linear form on lsc(Y ) (with
values in Rmax) that we also denote by F :

F (ϕ) = sup
ψ∈Cb(Y ), ψ≤ϕ

F (ψ) for all ϕ ∈ lsc(Y ) ,

and a maximal extension to a continuous quasi-linear form
on (Rmax)Y that we also denote by F :

F (ϕ) = inf
ψ∈lsc(Y ), ψ≥ϕ

F (ψ) for all ϕ ∈ (Rmax)Y .

The value of ρ(F ) for the maximal extension of F to
(Rmax)Y and for its restriction to Cb(Y ) coincide.

If A is a subset of Y , we denote by 1A : Y → Rmax the
max-plus characteristic function of A: 1A(y) = 0 if y ∈ A
and 1A(y) = −∞ otherwise. If F is as in Proposition 3.2, we
shall also denote by F the map F : P(Y ) → Rmax, A �→
F (1A). This map is isotone: A ⊂ B =⇒ F (A) ≤ F (B),
and it satisfies some inner and outer-continuity properties. If
F is a continuous max-plus linear form or is an element of
L Dε(Y ), with ε > 0, then the exponential of its restriction
to P(Y ) is a capacity in the sense defined in [25], [26]. Some
other related sets of functions on P(Y ) are defined in [27],
[28].

IV. WEAK CONVERGENCE OF QUASI-LINEAR FORMS

Let F ∈ QL (Cb(Y )) and (Fn)n∈N be a sequence of
QL (Cb(Y )). We say that Fn weakly converges towards F if
limn→∞ Fn(ϕ) = F (ϕ) for all ϕ ∈ Cb(Y ). In that case, we
get that ρ(F ) ≤ lim infn→∞ ρ(Fn). When Fn ∈ L Dε(Y )
is defined from the measure µn, then F ∈ L Dε(Y ) and
the weak convergence of Fn towards F is equivalent to the
weak (or narrow) convergence of µn towards the measure
µ corresponding to F . If all the Fn are continuous max-
plus linear forms with l.s.c. densities fn, then F is also a
continuous max-plus linear form and the weak convergence
of Fn towards F is equivalent to the weak convergence of
the cost measure with density fn towards the cost measure
with density f (see [29]), where f is the l.s.c. density of F .

We say that an element F of QL (Cb(Y )) is tight if
infK⊂Y, K compact F (Kc) = −∞. A sequence (Fn)n∈N of
QL (Cb(Y )) is asymptotically tight if lim supn→∞ ρ(Fn) <
+∞ and

inf
K⊂Y, K compact

lim sup
n→∞

Fn(Kc) = −∞ .

Since Y is a Polish space, any element of L Dε(Y ), with
ε > 0, is tight. An element of L (Cb(Y )) is tight if, and
only if, its l.s.c. density f is inf-compact, that is {y ∈ Y |
f(y) ≤ α} is compact for all α ∈ R.

Theorem 4.1: Let F ∈ QL (Cb(Y )) and (Fn)n∈N be a
sequence of QL (Cb(Y )). Denote also by F and Fn the
extensions given by Proposition 3.2. Consider the following
statements:

Fn weakly converges towards F , (5)

lim inf
n→∞ Fn(ϕ) ≥ F (ϕ) for all ϕ ∈ lsc(Y ) , (6)

lim sup
n→∞

Fn(ϕ) ≤ F (ϕ) for all ϕ ∈ uscb(Y ) , (7)

lim inf
n→∞ Fn(G) ≥ F (G) for all open G ⊂ Y , (8)

lim sup
n→∞

Fn(C) ≤ F (C) for all closed C ⊂ Y , (9)

lim sup
n→∞

Fn(K) ≤ F (K) for all compact K ⊂ Y . (10)

We have (6,7)⇒(5)⇒(6)⇒(8), (7)⇒(9)⇒(10). If ρ(F ) ≤
limn→∞ ρ(Fn) = 0, then (5)⇔(6,7)⇔(8,9). If (Fn)n∈N is
asymptotically tight then (9)⇔(10).

When Fn ∈ L Dεn(Y ) with corresponding probability
measure µn, F is a continuous max-plus linear form with
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density f , and limn→∞ εn = 0, (µn)n∈N obeys the large
deviation principle of Varadhan [30] with rate function f
if, and only if, f is nonnegative and inf-compact and (8,9)
holds. In this context, the implication (8,9)⇒(5) is called the
contraction principle of Varadhan, and some other implica-
tions in Theorem 4.1 are proved in [30] and in [31, Theorem
3.1.3] (see also [13] and [32]). In the context of capacities,
the conditions (8,10) define the vague convergence and the
conditions (8,9) define the narrow (weak) convergence [25].
In the context of continuous max-plus linear forms, some
of the implications in Theorem 4.1 are proved in [29]. The
following result is also classical for large deviations. It was
stated for max-plus linear forms in [29].

Theorem 4.2: Let (Fn)n∈N be a sequence of
QL (Cb(Y )) such that lim supn→∞ Fn(Y ) < +∞
and limn→∞ ρ(Fn) = 0. Then there exists F ∈ L (Cb(Y ))
and a subsequence of (Fn)n∈N such that (8,10) holds for
that subsequence.

V. UNIQUENESS OF PRE-IMAGES OF MOREAU

CONJUGACIES AND CONVERGENCE OF QUASI-LINEAR

FORMS

Let X, Y, B, B◦, b, b◦ be as in Section II.
We say that b is strongly coercive if for all x ∈ X and

all neighbourhoods V of x in X , there exists a finite subset
W of V such that the function bx,W defined as in (1) has
relatively compact finite sublevel sets.

We say that b is upper (strongly) coercive if for all x ∈ X ,
and all neighbourhoods V of x in X , there exists a finite
subset W of V such that b(x, ·) is bounded above on each
finite sublevel set of bx,W .

If b is strongly coercive and continuous in the second
variable, then b is coercive and upper coercive. If b(x, y) =
〈x, y〉, then b is upper coercive (take W = {tx} with t > 1
near enough from 1). If in addition X = Y = R

n, then b is
strongly coercive (take W = {x ± εei | 1 ≤ i ≤ n} with
ε > 0 small enough, and (e1, . . . , en) a basis of R

n).
The following result motivates the study of Problem (P ′).
Theorem 5.1: Let (Fn)n∈N be a sequence of

QL (Cb(Y )) such that limn→∞ ρ(Fn) = 0. Assume
that Fn weakly converges towards F ∈ L (Cb(Y )), with
l.s.c. density f , and that b is continuous in the second
variable and upper coercive. Let g : X → R be defined by:

g(x) = lim sup
n→∞

Fn(b(x, ·)) for all x ∈ X . (11)

Then

Bf ≤ g and Bf = g on idom(g) ∪ g−1(−∞) . (12)
The next result follows from Theorems 4.1, 4.2, 5.1, 2.1,

2.2 and 2.3. It needs the following technical assumption:

(A4) Conditions (A1) or (A1)′ hold; Condition (A2) holds
or b is coercive; b is upper coercive; and B◦g is
quasi-continuous on its domain.

Theorem 5.2: Let (Fn)n∈N be an asymptotically tight
sequence of QL (Cb(Y )), such that lim supn→∞ Fn(Y ) <
+∞ and limn→∞ ρ(Fn) = 0. Let g : X → R be defined

by (11) and denote by F the continuous max-plus linear form
with density B◦g. Assume that (A4) is satisfied. Then

(i) There exists F ∈ L (Cb(Y )), and a subsequence of
(Fn)n∈N which converges weakly towards F .
(ii) {(∂◦g)−1(y)}y∈ldom(B◦g) is a covering of idom(g).
(iii) If F is an accumulation point of (Fn)n∈N for the weak
convergence, and if f is the l.s.c. density of F , then f ≥
B◦g. Hence lim supn→∞ Fn(C) ≤ F (C) for all closed C ⊂
Y .

Assume in addition that the limsup in (11) is a limit, and let
Z be defined as in Theorem 2.2 with X ′ = idom(g).
(iv) If F and f are as in (iii), then f = B◦g on Z. Hence
lim infn→∞ Fn(G) ≥ F (G ∩ Z) for all open G ⊂ Y .
(v) If {(∂◦g)−1(y)}y∈ldom(B◦g) is a topologically minimal
covering of idom(g), then Fn weakly converges towards F .

The following result can be used to obtain the “compact-
ness” of the sequence (Fn)n∈N.

Proposition 5.3: Let (Fn)n∈N be a sequence of
QL (Cb(Y )) such that limn→∞ ρ(Fn) = 0, and let
g : X → R be given by (11). Assume that b is strongly
coercive, and that there exists x0 ∈ idom(g) such that
b(x0, ·) is bounded below by some real constant. Then
lim supn→∞ Fn(Y ) < +∞ and (Fn)n∈N is asymptotically
tight.

Corollary 5.4 (Generalised Gärtner-Ellis theorem):
Let (Fn)n∈N be a sequence of QL (Cb(Y )) such that
limn→∞ ρ(Fn) = 0, let g : X → R be given by (11),
and assume that the limsup there is a limit. Assume
that (A1) or (A1)′ hold, that b is strongly coercive, that
B◦g is quasi-continuous on its domain and that there exists
x0 ∈ idom(g) such that b(x0, ·) is lower bounded by some
real constant. Then the conclusions of Theorem 5.2 hold.

When B is the Legendre-Fenchel transform on R
n, x0 =

0, Fn ∈ L Dεn(Y ) with limn→∞ εn = 0, the statement of
Corollary 5.4 contains the Gärtner-Ellis theorem as stated
in [13, Th. 2.3.6]. Indeed, b(0, ·) ≡ 0, b is strongly coercive
(see above), B◦g is quasi-continuous on its domain (see [10,
Lemma 6.1]), B◦g(y) > −∞ for all y ∈ Y when g is proper,
in particular when idom(g) �= ∅. Moreover, by [10, Propo-
sition 6.3 and Corollary 6.4], {(∂◦g)−1(y)}y∈ldom(B◦g) is a
topologically minimal covering of idom(g), when g is an
essential smooth l.s.c. proper convex function on R

n, which
means that the interior of its domain idom(g) is nonempty,
that g is differentiable in idom(g), and that the norm of the
differential of g at x tends to infinity when x goes to the
boundary of dom(g), see [33, Section 26].

The proof of our generalisation of the Gärtner-Ellis the-
orem essentially uses compactness arguments together with
the uniqueness of the pre-image of an essential smooth con-
vex function by the Legendre-Fenchel transform. This last ar-
gument was made explicit by O’Brien and Vervaat [26, The-
orem 4.1 (c)], and Puhalskii [34, Lemmas 3.2 and 3.5] for the
Gärtner-Ellis theorem, and by Gulinsky [35, Theorems 4.7
and 5.3] for the more general case where B is the Legendre-
Fenchel transform, and Fn(ϕ) = εn log Jn(exp( ϕ

εn
)) with

Jn(ϕ ∨ ψ) ≤ Jn(ϕ) + Jn(ψ).
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If Fn weakly converges towards F with a density f which
is not essentially strictly convex (or equivalently such that its
Legendre-Fenchel transform f∗ is not essentially smooth) the
Gärtner-Ellis theorem only gives the inequalities of Asser-
tions (iii) and (iv) of Theorem 5.2 with Z �= Y , thus the rate
function f cannot be identified. The classical method is to
adapt the proof of the Gärtner-Ellis theorem, whereas using
Theorem 5.2, one may simply consider a different kernel
b than that of the Legendre-Fenchel transform. Moreover,
Proposition 5.3 can be applied to another kernel.

The following result is useful in the study of optimal
control problems.

Theorem 5.5: Assume that, for i ∈ I , (Fn,i)n∈N is an
asymptotically tight sequence of QL (Cb(Y )), such that
lim supn→∞ Fn,i(Y ) < ∞ and limn→∞ ρ(Fn,i) = 0. Let
g : X → R be defined by

g(x) = sup
i∈I

lim sup
n→∞

Fn,i(b(x, ·)) for all x ∈ X ,

and denote by F the continuous max-plus linear form with
density B◦g. Assume that (A4) is satisfied. Then

(i) There exists F ∈ L (Cb(Y )) such that
supi∈I lim supn→∞ Fn,i(G) ≥ F (G) for all open G ⊂ Y ,
and supi∈I lim supn→∞ Fn,i(C) ≤ F (C) for all closed
C ⊂ Y .
(ii) The l.s.c. density f of F satisfies (12). Hence
{(∂◦g)−1(y)}y∈ldom(B◦g) is a covering of idom(g).
(iii) We have f ≥ B◦g, hence, for all closed C ⊂ Y ,
supi∈I lim supn→∞ Fn,i(C) ≤ F (C).
(iv) Let Z be defined as in Theorem 2.2 for X ′ = idom(g).
Then f = B◦g on Z. Hence, for all open G ⊂ Y ,
supi∈I lim supn→∞ Fn,i(G) ≥ F (G ∩ Z).

VI. AN APPLICATION TO THE OPTIMAL LONG-TERM

RATE OF AN INVESTMENT MODEL

We consider here the simple Merton model [36] of an
investor who has the possibility to invest in one bank account
paying a fixed interest rate r > 0 and in one stock or risky
asset whose price is a log-normal diffusion with expected
rate α > r and rate variation σ, and who has the ability to
transfer funds between the assets with no cost. We denote by
Wt the total wealth of the investor at time t, and by ξt the
proportion of fund invested in the risky asset. The process
Wt satisfies the following stochastic differential equation:

dWt = (r + (α − r)ξt)Wtdt + σξtWtdBt ,

where Bt is a Brownian motion. The control process ξ =
(ξt)t≥0 is supposed to be adapted to the Brownian filtration
and stationary. We allow borrowing and shortselling, which
means that ξt can be any real number. One is interested in
maximising some function of the long term growth rate of
the investor. One possibility is to consider the risk-sensitive
problem

sup
ξ

lim sup
T→∞

1
T (1 − γ)

log E[(WT )1−γ ]

where E denotes the expectation and γ is the risk-aversion
coefficient. Another possibility is to consider, for c ∈ R:

sup
ξ

lim sup
T→∞

1
T

log P [(log(WT )/T ≥ c] . (13)

In [14] the latter problem was considered for a different
investment model and the relation with the risk-sensitive
problems with γ < 1 was discussed and used to obtain a
result of the same nature as the Gärtner-Ellis theorem.

We apply here the results of the previous sections to
compute the quantity (13). Let Y = X = R and consider
the quasi-linear form FW0,T,ξ on Cb(Y ) defined by

FW0,T,ξ(ϕ) =
1
T

log E[exp(Tϕ(log(WT )/T )) | W0]

and extended as in Proposition 3.2, together with the
quasi-linear form FW0,T = supξ FW0,T,ξ. Then, for all
W0, T, ξ, FW0,T,ξ(Y ) = FW0,T (Y ) = 0, and FW0,T,ξ and
FW0,T ∈ QL (Cb(Y )). Moreover ρ(FW0,T,ξ) ≤ log(2)/T ,
thus limT→∞ ρ(FW0,T,ξ) = limT→∞ ρ(FW0,T ) = 0.

Let b(x, y) = xy be the kernel of the Legendre-
Fenchel transform. Then for all x ∈ R, FW0,T,ξ(b(x, ·)) =
1
T log E[(WT )x | W0] is a risk-sensitive utility function.
We have the homogeneity property: FW0,T,ξ(b(x, ·)) =
x log(W0)

T + F1,T,ξ(b(x, ·)). Let g : X → R be defined by

g(x) = sup
ξ∈R

x

(
r + (α − r)ξ + (x − 1)

σ2ξ2

2

)
(14)

for x ∈ X . Then g(x) = x(r + (α−r)2

2σ2(1−x) ) if 0 ≤ x < 1
and g(x) = +∞ otherwise. Moreover, for 0 ≤ x < 1, the
proportion ξ̄x = α−r

σ2(1−x) realises the maximum in (14). We
have, for all T > 0 and x ∈ X , F1,T (b(x, ·)) = g(x), and
for all T > 0, W0 > 0 and 0 ≤ x < 1, the constant control
process ξt ≡ ξ̄x maximises FW0,T,ξ(b(x, ·)). Hence

sup
ξ

lim sup
T→∞

FW0,T,ξ(b(x, ·)) (15)

= lim
T→∞

FW0,T (b(x, ·)) = g(x) .

The Legendre-Fenchel transform g∗ of g is given by g∗(y) =
(
√

y − r − α−r√
2σ

)2 if y ≥ z0 := r + (α−r)2

2σ2 and g∗(y) = 0
otherwise. So, if F and Z are defined as in Theorem 5.2, we
get Z = (z0, +∞), and F ((c,+∞) ∩ Z) = F ([c,+∞)) =
−g∗(c) for all c ∈ R. If, for any sequence Tn going
to infinity, the sequence (FW0,Tn

)n≥0 were asymptotically
tight, then Theorem 5.2 would show:

lim inf
T→+∞

FW0,T (G) ≥ F (G ∩ Z) for all open G ⊂ R , (16a)

lim sup
T→+∞

FW0,T (C) ≤ F (C) for all closed C ⊂ R . (16b)

In particular this would show:

lim
T→+∞

sup
ξ

1
T

log P [(log(WT )/T ≥ c | W0]

= lim
T→+∞

FW0,T ([c,+∞)) = −g∗(c) . (17)

However, since 0 �∈ idom(g), one cannot use Proposition 5.3
to show the asymptotic tightness of (FW0,Tn)n≥0.
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Let us thus replace the process log(WT )/T by its max-
imum with some constant a < z0. This amounts to re-
placing FW0,T,ξ by the quasi-linear form GW0,T,ξ(ϕ) :=
FW0,T,ξ(ϕ ◦ χa) where χa(x) = x ∨ a. We also consider
GW0,T = supξ GW0,T,ξ. We take now Y = [a,+∞) and
X = [0, +∞). The kernel b(x, y) = xy is strongly coercive
with respect to these new sets X and Y . The corresponding
Moreau conjugacies B and B◦ are the Legendre-Fenchel
transform composed with the restriction operation to Y and
X respectively. Since ρ(FW0,T,ξ) tends to 0 when T goes
to infinity, and b(x, χa(y)) = b(x, y) ∨ xa for all x ∈
[0, +∞) and y ∈ R, we get that limT→∞ GW0,T (b(x, ·)) =
limT→∞ FW0,T (b(x, ·)) ∨ xa = g(x) for all x ∈ X .
Moreover, B◦g is the restriction of g∗ to Y . With respect
to the new set Y , b(x, ·) is lower bounded for all x ∈ X
and idom(g) = [0, 1), hence Proposition 5.3 shows that
GW0,Tn

is asymptotically tight for any sequence Tn tending
to infinity. Then the conclusions (16) of Theorem 5.2 hold
with FW0,T replaced by GW0,T , and with Z = (z0, +∞)
unchanged. Since 1A ◦ χa = 1A if a �∈ A, and a can be
chosen small enough, we deduce (17).

Let us now apply Theorem 5.5 to the sequences
(GW0,Tn,ξ)n∈N, with Tn tending to infinity, and W0 fixed,
and where the parameter i corresponds to the couple com-
posed of the control process ξ and of the sequence (Tn)n≥0.
We obtain, by the same arguments as before, that for all
c ∈ R:

sup
ξ

lim sup
T→+∞

1
T

log P [(log(WT )/T ≥ c | W0]

= sup
ξ

lim sup
T→+∞

FW0,T,ξ([c,+∞)) = −g∗(c) . (18)

The latter conclusion is of the same nature as the one of [14,
Theorem 3.1]. Note however that for the proof of (18) one
does not need that the supremum in (15) is attained and that
for this maximum the limsup is a limit, as is required in [14],
even if these properties hold in our example. However, these
conditions were useful to prove (17), and so to prove that
in (18) the sup and limsup operations commute.
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C̆SAV, 1976, (in Czech).

[13] A. Dembo and O. Zeitouni, Large deviations techniques and applica-
tions. Boston, MA: Jones and Barlett, 1993.

[14] H. Pham, “A large deviations approach to optimal long term invest-
ment,” Finance Stoch., vol. 7, no. 2, pp. 169–195, 2003.

[15] E. J. Balder, “An extension of duality-stability relations to nonconvex
optimization problems,” SIAM J. Control Optimization, vol. 15, no. 2,
pp. 329–343, 1977.

[16] S. Dolecki and S. Kurcyusz, “On Φ-convexity in extremal problems,”
SIAM J. Control Optimization, vol. 16, no. 2, pp. 277–300, 1978.

[17] P. O. Lindberg, “A generalization of Fenchel conjugation giving gen-
eralized Lagrangians and symmetric nonconvex duality,” in Survey of
mathematical programming (Proc. Ninth Internat. Math. Programming
Sympos., Budapest, 1976), Vol. 1. Amsterdam: North-Holland, 1979,
pp. 249–267.

[18] J.-E. Martı́nez-Legaz, “Quasiconvex duality theory by generalized
conjugation methods,” Optimization, vol. 19, no. 5, pp. 603–652, 1988.

[19] J.-E. Martı́nez-Legaz and I. Singer, “Subdifferentials with respect to
dualities,” ZOR—Math. Methods Oper. Res., vol. 42, no. 1, pp. 109–
125, 1995.

[20] T. Neubrunn, “Quasi-continuity,” Real Anal. Exchange, vol. 14, no. 2,
pp. 259–306, 1988/89.

[21] G. L. Litvinov, V. P. Maslov, and G. B. Shpiz, “Idempotent functional
analysis: An algebraical approach,” Mat. Notes, vol. 69, no. 5, pp.
696–729, 2001.

[22] G. Cohen, S. Gaubert, and J. Quadrat, “Duality and separation theorem
in idempotent semimodules,” Linear Algebra and Appl., vol. 379, pp.
395–422, 2004.

[23] V. N. Kolokoltsov and V. P. Maslov, “The general form of the
endomorphisms in the space of continuous functions with values in
a numerical commutative semiring (with the operation ⊕ = max),”
Dokl. Akad. Nauk SSSR, vol. 295, no. 2, pp. 283–287, 1987, engl.
transl. in Sov. Math. Dokl., 36 (1), 55-59 (1988).

[24] V. Kolokoltsov, On linear, additive, and homogeneous operators, 1992,
appeared in [5, p. 87–102].

[25] G. L. O’Brien and W. Vervaat, “Capacities, large deviations and
loglog laws,” in Stable processes and related topics, ser. Progress
in probability, S. Cambanis, G. Samorodnitsky, and M. Taqqu, Eds.,
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