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Abstract— In this paper convergence properties of piecewise
affine (PWA) systems with discontinuous right-hand sides are
studied. It is shown that for discontinuous PWA systems
existence of a common quadratic Lyapunov function is not
sufficient for convergence. For discontinuous bimodal PWA
systems necessary and sufficient conditions for quadratic con-
vergence, i.e. convergence with a quadratic Lyapunov function,
are derived.

I. INTRODUCTION

Convergent systems are systems that have a globally
asymptotically stable steady state solution which depends
only on the input and does not depend on the initial condi-
tions. This property plays an important role in many control
problems including tracking, synchronization, observer de-
sign, the output regulation problem and performance analysis
of nonlinear systems, see e.g. [1], [2], [3], [4], [5] and
references therein. It is easy to see that a linear time-invariant
system with a stable transfer function is convergent, so the
properties of convergence and stability are closely related.
However for nonlinear systems, there are many examples
showing that a globally asymptotically stable system per-
turbed by an extra input can have more than two steady state
solutions and thus it is not convergent.

Studies related to convergence systems were originated
in the 1960-s, for a short survey see [6]. Recent results on
smooth convergent systems can be found in [7]. In this paper
we continue the previous study of the convergence properties
of piecewise affine systems initiated in [8]. Piecewise affine
systems recently attracted considerable attention, see e.g. [9],
[10], [11] and references therein.

In the first part of our study [8], the case of piece-
wise affine systems with continuous right-hand sides was
considered and conditions for quadratic convergence were
derived in terms of Linear Matrix Inequalities. It turns out
that for PWA systems with continuous right-hand sides the
exponential convergence property follows from the existence
of a common quadratic Lyapunov function for the linear
parts of the system dynamics in every mode. The goal of
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this paper is to study the convergence property for a more
general class of PWA systems which includes also systems
with discontinuous right-hand sides.

The paper is organized as follows. In Section II we pro-
vide preliminaries on systems with discontinuous right-hand
sides. In Section III definitions of (uniformly, exponentially)
convergent systems are provided. Also, in this section we
introduce the notion of quadratic convergence and show its
relation to exponential convergence. In Section IV we first
present a counterexample which shows that for discontinuous
PWA systems existence of a common quadratic Lyapunov
function is not sufficient for convergence. Then necessary
and sufficient conditions for quadratic convergence for bi-
modal PWA systems with (possibly) discontinuous right-
hand sides are presented.

II. PRELIMINARIES

In this paper we consider systems of the form

ẋ = f(x, t), (1)

where x ∈ R
n, t ∈ R and f(x, t) is a possibly discontinuous

vector field. It is assumed that f(x, t) satisfies some mild
regularity assumptions which guarantee the existence of
solutions of the system in the sense of Filippov, see e.g. [12].
According to [12], one can construct a set-valued function
F (x, t) such that a solution of the differential inclusion

ẋ ∈ F (x, t)

is called a solution for system (1). By definition, the solution
x(t, t0, x0) with the initial condition x(t0, t0, x0) = x0 is an
absolutely continuous function of time.

Consider a scalar continuously differentiable function
V (x). Define a time derivative of this function along so-
lutions of system (1) as follows

V̇ :=
∂V (x)

∂x
ẋ(t, t0, x0).

Since V is continuously differentiable and the solution
x(t, t0, x0) is an absolutely continuous function of time,
the derivative V̇ (x(t, t0, x0)) exists almost everywhere in
the maximal interval of existence [t0, T̄ ) of the solution
x(t, t0, x0).

For the function V we can also define its upper derivative
along solutions of system (1) as follows

V̇ ∗(x, t) = sup
ξ∈F (x,t)

(
∂V (x)

∂x
ξ

)
.
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Then for almost all t ∈ [t0, T̄ ) it follows that

V̇ (x(t, t0, x0)) ≤ V̇ ∗(x(t, t0, x0), t). (2)

Remark 1 Notice that in the domains of continuity of the
function f(x, t) the derivative of V (x) along solutions of
system (1) equals V̇ = ∂V (x)

∂x
f(x, t). According to [12]

p.155, for a continuously differentiable function V (x) it
holds that if the inequality

∂V (x)

∂x
f(x, t) ≤ 0

is satisfied in the domains of continuity of the function
f(x, t), then the inequality V̇ ∗(x, t) ≤ 0 holds for all
(x, t) ∈ R

n+1.

III. CONVERGENT SYSTEMS

In this section we give definitions of convergent systems.
These definitions extend the definition given in [13].

Definition 1 System (1) is said to be

• convergent if there exists a solution x̄(t) satisfying the
following conditions

(i) x̄(t) is defined and bounded for all t ∈ R,
(ii) x̄(t) is globally asymptotically stable;

• uniformly convergent if it is convergent and x̄(t) is
globally uniformly asymptotically stable.

• exponentially convergent if it is convergent and x̄(t) is
globally exponentially stable.

The solution x̄(t) is called a steady-state solution. As
follows from the definition of convergence, any solution
of a convergent system “forgets” its initial condition and
converges to some steady-state solution which is independent
of the initial condition. In general, the steady-state solution
x̄(t) may be non-unique. But for any two steady-state so-
lutions x̄1(t) and x̄2(t) it holds that |x̄1(t) − x̄2(t)| → 0
as t → +∞. At the same time, for uniformly convergent
systems the steady-state solution is unique, as formulated
below [8].

Property 1 If system (1) is uniformly convergent, then the
steady-state solution x̄(t) is the only solution defined and
bounded for all t ∈ R.

Remark 2 In the original definition of convergent systems
given in [13], the steady-state solution x̄(t) is required to
be unique. In Definition 1 this requirement of uniqueness is
omitted, since for the practically important case of uniform
convergence uniqueness of the steady-state solution can
be proved as a corollary to the definition of the uniform
convergence.

In systems theory, time dependency of the right-hand side
of system (1) is usually due to some input. This input may
represent, for example, a disturbance or a feedforward con-
trol signal. Below we will consider convergence properties

for systems with inputs. So, instead of systems of the form
(1), we consider systems

ẋ = f(x, w), (3)

with state x ∈ R
n and input w ∈ R

m. In the sequel we will
consider the class PCm of piecewise continuous inputs w(t) :
R → R

m which are bounded for all t ∈ R. We assume that
the function f(x, w) is bounded on any compact set of (x,w)
and the set of discontinuity points of the function f(x,w)
has measure zero. Under these assumptions on f(x,w), for
any input w ∈ PCm the differential equation ẋ = f(x,w(t))
has well-defined solutions in the sense of Filippov.

Below we define the convergence property for systems
with inputs.

Definition 2 System (3) is said to be (uniformly, exponen-
tially) convergent if it is (uniformly, exponentially) conver-
gent for every input w ∈ PCm. In order to emphasize the
dependency on the input w(t), the steady-state solution is
denoted by x̄w(t).

The (uniform, exponential) convergence property is an
extension of stability properties of asymptotically stable
LTI systems. Therefore, convergent systems enjoy various
properties which are encountered in asymptotically stable
LTI systems, but which are not usually met in general asymp-
totically stable nonlinear systems, see [4]. As an illustration,
we provide a statement which summarizes some properties of
uniformly convergent systems excited by periodic or constant
inputs.

Property 2 ([13]) Suppose system (3) with a given input
w(t) is uniformly convergent. If the input w(t) is constant,
the corresponding steady-state solution x̄w(t) is also con-
stant; if the input w(t) is periodic with period T , then the
corresponding steady-state solution x̄w(t) is also periodic
with the same period T .

Below we give an important technical definition of
quadratic convergence.

Definition 3 System (3) is called quadratically convergent
if there exists a positive definite matrix P = PT > 0 and
a constant α > 0 such that for any input w ∈ PCm, the
function V (x1, x2) = 1/2(x1 − x2)

T P (x1 − x2) satisfies

V̇ ∗(x1, x2, t) ≤ −2αV (x1, x2), (4)

where V̇ ∗(x1, x2, t) is the upper derivative of the function
V (x1, x2) along any two solutions of the corresponding
differential inclusion ẋ ∈ F (x, w(t)), i.e.

V̇ ∗(x1, x2, t) = sup
ξ1∈F (x1,w(t))

(
∂V

∂x1
(x1, x2)ξ1

)

+ sup
ξ2∈F (x2,w(t))

(
∂V

∂x2
(x1, x2)ξ2

)
.

Quadratic convergence is a useful tool for establishing
exponential convergence, as follows from the next lemma.
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Lemma 1 If system (3) is quadratically convergent, then it
is exponentially convergent.

Proof: Consider the system

ẋ = f(x,w(t)), (5)

where w(t) is some bounded piecewise-continuous input.
First, we show the existence of a solution x̄w(t) of system
(5) which is defined and bounded on the whole time axis
(−∞,+∞). The existence of such x̄w(t) will be shown
using the following lemma.

Lemma 2 ([14]) Consider system (5) with a given input
w(t) defined for all t ∈ R. Let D ⊂ R

n be a compact
set which is positively invariant with respect to system (5).
Then there is at least one solution x̄(t) satisfying x̄(t) ∈ D
for all t ∈ (−∞,+∞).

In order to apply this lemma, we need to prove the existence
of a compact positively invariant set D. Consider the function
W (x) := 1/2xT Px. The upper derivative of this function
along solutions of system (5) satisfies

Ẇ ∗(x, t) = sup
ξ∈F (x,w(t))

xT Pξ ≤ sup
ξ∈F (x,w(t))

xT Pξ

− inf
ξ1∈F (0,w(t))

xT Pξ1 + sup
ξ2∈F (0,w(t))

xT Pξ2.

Notice that for the function V (x1, x2) from the definition of
quadratic stability it holds that

V̇ ∗(x, 0, t) = sup
ξ∈F (x,w(t))

xT Pξ + sup
ξ1∈F (0,w(t))

(−xT Pξ1)

= sup
ξ∈F (x,w(t))

xT Pξ − inf
ξ1∈F (0,w(t))

xT Pξ1.

Therefore,

Ẇ ∗(x, t) ≤ V̇ ∗(x, 0, t) + sup
ξ2∈F (0,w(t))

|xT Pξ2|. (6)

By the quadratic convergence property it holds that

V̇ ∗(x, 0, t) ≤ −2αV (x, 0) = −α|x|2P , (7)

where |x|2P = xT Px. At the same time, by the Cauchy
inequality it holds that |xT Pξ2| ≤ |x|P |ξ2|P . Hence

sup
ξ2∈F (0,w(t))

|xT Pξ2| ≤ |x|P sup
ξ2∈F (0,w(t))

|ξ2|P . (8)

Recall that the input w(t) is bounded, i.e. |w(t)| ≤ R for
all t ∈ R, for some R > 0. By the assumption on the
right-hand side of system (3) (see Section III), the function
f(x,w) takes bounded values on any compact set of (x, w).
Therefore the set {ξ ∈ R

n : ξ ∈ F (0, w), |w| ≤ R} is
bounded. Therefore, for some constant c̄ > 0 it holds that

sup
ξ2∈F (0,w(t))

|ξ2|P ≤ sup
ξ2 ∈ F (0, w)
|w| ≤ R

|ξ2|P ≤ c̄. (9)

Combining inequalities (6)- (9) we obtain

Ẇ ∗(x, t) ≤ |x|P (−α|x|P + c̄). (10)

Hence, Ẇ ∗(x, t) ≤ 0 for all t ∈ R and all x satisfying
|x|P ≥ c̄/α. Taking into account the relation between the
derivative and upper derivative of W (x) along solutions x(t)
of system (5) (see (2)), we obtain

Ẇ (x(t)) ≤ 0

for almost all t such that |x(t)|P ≥ c̄/α. This implies that
the set D := {x : |x|P ≤ c̄/α} is compact and positively
invariant. By Lemma 2 there exists a solution x̄w(t) which
satisfies x̄w(t) ∈ D for all t ∈ R.

Next, we need to show global exponential stability of
x̄w(t). By the quadratic convergence property it holds that

V̇ ∗(x, x̄w(t), t) ≤ −2αV (x, x̄w(t)).

Consider some solution x(t) := x(t, t0, x0) of system (5).
Recall that V̇ (x(t), x̄w(t)) ≤ V̇ ∗(x(t), x̄w(t), t) for almost
all t (see Section II). Therefore,

V̇ (x(t), x̄w(t)) ≤ −2αV (x(t), x̄w(t))

for almost all t ≥ t0. Since V (x1, x2) is a quadratic form
with respect to the difference (x1 − x2), the last inequality
implies

|x(t) − x̄w(t)| ≤ Ce−α(t−t0)|x(t0) − x̄w(t0)|,

where the number C > 0 depends only on the matrix P .

Remark 3 As follows from Remark 1 (Section II), inequal-
ity (4) is equivalent to the inequality

(x1 − x2)
T P (f(x1, w) − f(x2, w))

≤ −α(x1 − x2)
T P (x1 − x2) (11)

for all w ∈ R
m and all x1 and x2 from the continuity domain

of the function f(x, w).

IV. DISCONTINUOUS PWA SYSTEMS

In this section we study convergence properties for PWA
systems with possibly discontinuous right-hand sides.

Consider the state space R
n divided into polyhedral cells

Λi, i = 1, . . . , l, by hyperplanes given by equations of the
form HT

j z + hj = 0, for some Hj ∈ R
n and hj ∈ R,

j = 1, . . . , k. We will consider piecewise-affine systems of
the form

ẋ = Aix + bi + Dw, for x ∈ Λi, i = 1, . . . , l. (12)

Here Ai ∈ R
n×n, D ∈ R

n×m and bi ∈ R
n, i = 1, . . . , l,

are constant matrices and vectors, respectively. The vector
x ∈ R

n is the state and w ∈ R
m is the input. The hyperplanes

HT
j z + hj = 0, j = 1, . . . , k, are the switching surfaces.

Before proceeding with the case of general (discontinuous)
PWA systems, we review a result from [8] on sufficient
conditions for quadratic convergence for PWA systems with
continuousos right-hand sides.

Theorem 1 ([8]) Consider system (12). Suppose the right-
hand side of system (12) is continuous and there exists a
positive definite matrix P = PT > 0 such that

PAi + AT
i P < 0, i = 1, . . . , l. (13)
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Then system (12) is quadratically convergent.

Remark 4 In fact, in this theorem it is shown that for a
continuous piecewise-affine vector-field f(x,w) of the form

f(x,w) = Aix + bi + Dw, for x ∈ Λi, i = 1, . . . , l,

condition (13) is equivalent to the inequality

(x1 − x2)
T P (f(x1, w) − f(x2, w))

≤ −α(x1 − x2)
T P (x1 − x2) (14)

for some α > 0 and all w ∈ R
m and all x1, x2 ∈ R

n.

Based on the result of Theorem 1, one can conjecture that a
discontinuous piecewise affine system (12) is also convergent
provided there is a common quadratic Lyapunov function for
the linear parts of the system dynamics Aix. However this
is not the case as one can see from the following simple
example. Suppose that the system dynamics is governed by
the following scalar differential equation with discontinuous
right-hand side:

ẋ = a(x), x ∈ R
1,

where the function a(x) is depicted schematically on Fig. 1.
It is seen that the system belongs to the class of piecewise
affine systems and in each region the dynamics is linear.
Moreover, it is not difficult to see that the system is glob-
ally asymptotically stable with common quadratic Lyapunov
function V = x2.

a(x)

x

−u

Fig. 1. Piecewise affine characteristics a(x).

Now suppose that the dynamics of the system is modified
with an additive input signal, that can be either disturbance
or reference signal:

ẋ = a(x) + u(t), x ∈ R
1.

It is clear from the picture that for some input signals
(e.g. constant) the dynamics of the system can depend
on the initial conditions (one can take such a constant
input signal that the system has two asymptotically stable
equilibria), or, in other words, the system is not convergent.
This simple example illustrates that even the existence of
common Lyapunov function for each mode of a piecewise

affine system is not sufficient to guarantee its convergence.
Moreover, this example shows that the continuity conditions
play an important role for the convergence of PWA systems
and we have to be careful when analyzing convergence for
discontinuous PWA systems. In fact, for bimodal piecewise-
affine systems the existence of a common Lyapunov function
and the conditions similar to the continuity requirements are
even necessary and sufficient for the quadratic convergence,
as follows from the result presented hereafter.

Consider the bimodal system

ẋ =

{
A1x + b1 + Dw, for HT x ≥ 0
A2x + b2 + Dw, for HT x < 0,

(15)

where x ∈ R
n, w ∈ R

m and Ai, bi, i = 1, 2, and D are
matrices of the appropriate dimensions. The switching plane
is determined by the constant vector H ∈ R

n. Denote ∆A :=
A1 − A2, ∆b := b1 − b2.

Theorem 2 Consider system (15). The following statements
are equivalent:
(i) System (15) is quadratically convergent.

(ii) There exist a positive definite matrix P = PT > 0 and
constants β > 0 and γ ≥ 0 satisfying the following LMI

(
PA1 + AT

1 P + βI P∆A − 1
2HHT

∆AT P − 1
2HHT −HHT

)
≤ 0, (16)

P∆b = −γH. (17)

(iii) There exist a positive definite matrix P = PT > 0, a
number γ ∈ {0, 1} and a vector G ∈ R

n such that

PAi + AT
i P < 0, i = 1, 2, (18)

∆A = GHT , (19)

P∆b = −γH. (20)

Proof: The theorem will be proved in the following
order: (i)⇒(ii)⇒(iii)⇒(i).

(i)⇒(ii). According to Remark 3, quadratic convergence
of system (15) implies that there exists a positive definite
matrix P̄ = P̄T > 0 and a number α > 0 such that for
any x1 and x2 satisfying the inequalities HT x1 > 0 and
HT x2 < 0 it holds that

(x1 − x2)
T P̄ (A1x1 + b1 − A2x2 − b2)

≤ −α(x1 − x2)
T P̄ (x1 − x2). (21)

By denoting e := x1 − x2 and taking into account the fact
that −αP̄ ≤ −β̄I for some β̄ > 0 and I being the identity
matrix, we conclude that inequality (21) implies

eT P̄ (A1e + ∆Ax2 + ∆b) ≤ −β̄|e|2 (22)

for all e and x2 from the set Ω1 := {(e, x2) : HT x2 <
0, HT e + HT x2 > 0}. Let us show that inequality (22)
yields

eT P̄ (A1e + ∆Ax2) + β|e|2 ≤ 0 (23)

eT P̄∆b ≤ 0 (24)
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for all (e, x2) ∈ Ω1. Consider some point (e, x2) ∈ Ω1. Then
for all λ > 0 it holds that (λe, λx2) ∈ Ω1. As follows from
inequality (22), this yields

λ2(eT P̄ (A1e + ∆Ax2) + β̄|e|2) + λeT P̄∆b ≤ 0

for all λ > 0. One can easily check that this inequality is
satisfied for all λ > 0 iff the inequalities (23) and (24) hold.
Due to arbitrary choice of (e, x2) ∈ Ω1, we conclude that
inequalities (23) and (24) are satisfied for all (e, x2) ∈ Ω1.

Repeating the same steps as in the first part of the proof,
but this time for points x1 and x2 satisfying HT x1 < 0 and
HT x2 > 0, we conclude that the inequality

eT P̄ (A1e − ∆Ax1) + β̄|e|2 ≤ 0 (25)

holds for all (e, x1) ∈ Ω2, where Ω2 := {(e, x1) : HT x1 <
0, −HT e+HT x1 > 0}. By denoting x̃1 := −x1, we obtain
that

eT P̄ (A1e + ∆Ax̃1) + β̄|e|2 ≤ 0 (26)

holds for all (e, x̃1) ∈ Ω̃2, where Ω̃2 := {(e, x̃1) : HT x̃1 >
0, HT e + HT x̃1 < 0}. Now we can show that (16) is
feasible.

Combining inequalities (23) and (26) we obtain that the
quadratic form F(e, ξ) := eT P̄ (A1e+∆Aξ)+β̄|e|2 satisfies

F(e, ξ) ≤ 0 for (e, ξ) : G(e, ξ) < 0, (27)

where G(e, ξ) := ξT H(HT e + HT ξ). Due to continuity of
F and non-strict inequality for F in (27), the last inequality
is equivalent to

F(e, ξ) ≤ 0 for (e, ξ) : G(e, ξ) ≤ 0. (28)

Applying the S-procedure, see e.g. [15], [16], we obtain
that the conditional inequality (28) is equivalent to the
unconditional inequality

F(e, ξ) − τG(e, ξ) ≤ 0 (29)

for some τ ≥ 0 and all (e, ξ) ∈ R
2n. The equivalence holds

because the S-procedure is lossless in case of one quadratic
constraint, see e.g. [15]. Notice that since the quadratic form
F(e, ξ) is not negative semidefinite, τ �= 0 (otherwise the
equivalence between (28) and (29) does not hold). Notice
that inequality (29) is equivalent to the following LMI(

P̄A1 + AT
1 P̄ + 2β̄I P̄∆A − τHHT

∆AT P̄ − τHHT −2τHHT

)
≤ 0. (30)

Since τ > 0, this inequality is equivalent to (16) with P :=
P̄ /(2τ) and β := β̄/τ .

It remains to show that inequality (17) holds for the
presented P and some γ ≥ 0. To this end, consider
inequality (24), which holds for all (e, x2) ∈ Ω1. Notice
that for all e satisfying HT e > 0 there exists x2 such that
(e, x2) ∈ Ω1. Therefore, eT P̄∆b ≤ 0 for all e satisfying
HT e > 0. One can easily check that this is possible
iff P̄∆b = −γ̄H for some γ̄ ≥ 0. After dividing both
sides of the obtained equation by 2τ , we obtain (17) with
P = P̄ /(2τ) and γ := γ̄/(2τ). This finishes the proof of

implication (i)⇒(ii).

(ii)⇒(iii) First, we will show that conditions (18)-(20) hold
for some matrix P = PT > 0, vector G ∈ R

n and some
γ ≥ 0. If γ = 0 this proves this implication. If γ > 0, then
by dividing (18) and (20) by γ we obtain that relations (18)
and (20) hold for P̃ := P/γ and γ̃ = 1. This proves the
remaining part of the implication.

Let us show that conditions (18)-(20) hold for some
matrix P = PT > 0, vector G ∈ R

n and some γ ≥ 0.
We only need to show (18) and (19), since (20) coincides
with (17). One can easily see that inequality (16) implies
PA1 + AT

1 P ≤ −βI < 0. Next we show that inequality
PA2 + AT

2 P ≤ −βI < 0 holds. Denote the matrix in (16)
by M . The inequality (16) yields(

x
−x

)T

M

(
x
−x

)
≤ 0 (31)

for all x ∈ R
n. After elaborating the left-hand side of (31)

we obtain xT (PA2 + AT
2 P + βI)x ≤ 0 for all x ∈ R

n.
Hence, we have shown (18). Let us show that (19) holds
for some G ∈ R

n. This is done in the same way as in [2].
Suppose χ ∈ ker(HT ). From the structure of the matrix M
we obtain (

0
χ

)T

M

(
0
χ

)
= 0.

Since M = MT ≤ 0, this equality implies M(0, χT )T = 0.
Taking into account the structure of M , we obtain that
P∆Aχ = 0. Since P is non-degenerate, we conclude that
∆Aχ = 0. Thus we have shown that ker(HT ) ⊂ ker(∆A).
This relation, in turn, implies the existence of a vector
G ∈ R such that ∆A = GHT . This concludes the proof of
the implication (ii)⇒(iii).

(iii)⇒(i) Let us write the system (15) in the following
form

ẋ = f(x, w) + b(x), (32)

where

f(x, w) :=

{
A1x + Dw, for HT x ≥ 0
A2x + Dw, for HT x < 0,

(33)

b(x) :=

{
b1, for HT x ≥ 0
b2, for HT x < 0.

(34)

As follows from Remark 3, for quadratic convergence of
system (32) it is sufficient that, for some matrix P = PT > 0
and scalar α > 0, the inequality

(x1 − x2)
T P (f(x1, w) + b(x1) − f(x2, w) − b(x2))

≤ −α(x1 − x2)
T P (x1 − x2)

(35)

holds for all x1 and x2 such that HT x1 �= 0 and HT x2 �= 0,
i.e. in the continuity points of the right-hand side of system
(32). The vector-field f(x, w) is piecewise affine. Moreover,
one can easily check that condition (19) implies continuity
of f(x, w) (see [8], Lemma 1). Since the matrices A1 and
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A2 satisfy (18) for some P = PT > 0, then by Theorem 1
(see Remark 4) the inequality

(x1 − x2)
T P (f(x1, w) − f(x2, w))

≤ −α(x1 − x2)
T P (x1 − x2) (36)

holds for all x1 and x2 ∈ R
n. Hence,

(x1 − x2)
T P (f(x1, w) + b(x1) − f(x2, w) − b(x2))

≤ −α(x1 − x2)
T P (x1 − x2)

+(x1 − x2)
T P (b(x1) − b(x2)).

(37)

It remains to show that

(x1 − x2)
T P (b(x1) − b(x2)) ≤ 0 (38)

for all x1 and x2 such that HT xi �= 0, i = 1, 2. If x1 and
x2 belong to the same cell, i.e. either HT xi > 0, i = 1, 2
or HT xi < 0, i = 1, 2, then b(x1) = b(x2) and, therefore,
the left-hand side of (38) equals zero. If HT x1 > 0 and
HT x2 < 0, then b(x1)− b(x2) = b1 − b2 = ∆b. Taking into
account equality (20), we see that the left-hand side of (38)
satisfies

(x1 − x2)
T P∆b = −γ(x1 − x2)

T H

= −γ(HT x1 − HT x2) ≤ 0.

In the same way inequality (38) is proven for all x1 and
x2 satisfying HT x1 < 0 and HT x2 > 0. Thus, we have
shown that inequality (38) holds for all x1 and x2 such that
HT xi �= 0, i = 1, 2. Inequalities (38) and (37) jointly imply
(35). This completes the proof of the implication (iii)⇒(i).

Remark 5 In part (iii) of Theorem 2 there are two options:
γ = 0 and γ = 1. For the case γ = 0 condition (20) yields
∆b = 0. This, together with condition (19), implies that
the right-hand side of system (15) is continuous (see [8],
Lemma 1). In the case of γ = 1, we see that discontinuity
may occur only due to the affine terms bi. In this case
conditions (18) and (20) mean that the two linear systems
(A1,∆b,HT ) and (A2,∆b,HT ) with the state matrices A1,
A2, input matrix ∆b and output matrix HT are simulta-
neously strictly passive with the same quadratic storage
function V (x) = xT Px.

V. CONCLUSIONS

In this paper we have continued our studies of convergence
properties of piecewise affine systems started in [8]. In [8]
it has been shown that for a PWA system with a continu-
ous right-hand side, the existence of a common quadratic
Lyapunov function for linear parts of the system dynamics
in each mode is sufficient for exponential convergence. For
PWA systems with discontinuous right-hand sides this is
not true, as has been demonstrated by a counterexample
presented in this paper. Therefore, the case of discontinuous
PWA systems requires separate treatment. In order to study
convergence properties of discontinuous PWA systems, we

have introduced the notion of quadratic convergence, i.e. con-
vergence with a quadratic Lyapunov function. This quadratic
convergence serves as a useful tool for establishing the
exponential convergence. For discontinuous bimodal PWA
systems we have presented necessary and sufficient condi-
tions for the quadratic convergence. According to this result,
a discontinuous bimodal PWA is quadratically convergent
iff the discontinuity occurs only due to affine terms and, in
addition to that, two certain linear systems, related to the
PWA system dynamics in each mode, are simultaneously
strictly passive with the same quadratic storage function.
The obtained results provide tools for studying convergence
properties for hybrid systems. They can be used, for example
in observer design for discontinuous hybrid systems.
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