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Abstract— In this paper we consider the computability of the
evolution of hybrid systems, or equivalently, the computability
of finite-time reachable sets. We use the framework of type-
two computability theory and computable analysis, which gives
a theory of computation for points, sets and maps by Turing
machines, and is related to computable approximation. We show
that, under suitable hypotheses, the system evolution may be
lower or upper semicomputable, but cannot be both in the
presence of grazing contact with the guard sets.

Index Terms— Computable analysis; Hybrid system; Reach-
able set.

I. INTRODUCTION

In the past decade, the study of hybrid systems has

attracted considerable attention in the control theory and

computer science communities. Hybrid systems are dynamic

systems which involve the interaction of discrete and contin-

uous dynamics. Hybrid system models are particularly useful

in the area of embedded control, where digital devices are

used to control an analogue environment.
Hybrid systems are of considerably higher complexity

than the analogous continuous or discrete systems. Even for

the relatively innocuous class of piecewise-affine systems,

the dynamics exhibits nonlinear characteristics. Worse, the

presence of tangential contact with the guard sets governing

the reset relations, and the possibility of multiply-enabled

discrete transition, means that the system evolution may

depend discontinuously on the initial conditions, even on a

finite time interval. This discontinuous dependence on initial

conditions suggests that the accurate simulation of hybrid

systems may be difficult, or even impossible.
In this paper, we consider the computation of reachable

sets over finite time intervals, and for finitely many dis-

crete transitions. This includes the problem of computing

simulations for deterministic hybrid systems. We show that

for correctly formulated problems, the reachable set may be

lower-semicomputable or upper-semicomputable, but is not

computable in general. Computability of the reachable set for

discrete-time systems was considered in [1], and viable and

invariant sets in [2]. Computation of reachable and control

sets for continuous-time systems have been considered by

Puri, Varaiya and Borkar [3] and Szolnoki [4]. Upper-

semicontinuity of solutions of impulse differential inclusions,

was considered in [5].
We consider computations using type-two Turing ma-

chines, which work with infinite input and output tapes.

The computable analysis used here is based on the work

of Weihrauch [6]. The framework is inherently based upon

approximation. Positive results on computability show that

it is possible to compute approximations to desired output

using only approximations to the inputs. Negative results

show that it is impossible to compute approximations to

the output if the only usable information about the input

is approximations. Uncomputability in this framework does

not necessarily imply uncomputability in some algebraic

framework in which the system and sets of interest can be

specified exactly [7]. Related work on computable analysis

includes the texts [8], [9], [10]. We stress that all com-

putations are performed on Turing machines (and hence

can be implemented using existing computers), unlike the

computability theory of [11] in which computations are

performed using machines which can store arbitrary real

numbers (and cannot be implemented by existing hardware).

Many of the set-theoretic operators of computable analysis

have been implemented in the software package GAIO [12].

The paper is organised as follows. In Sec. II, we give

a brief introduction to the results of computable analysis

which we require, including computability results for mul-

tivalued mappings. In Sec. III we discuss the computability

of solutions of differential inclusions. In Sec. IV, we discuss

the computability of reachable sets for hybrid systems in

which the guard sets are general open or closed sets. In

Sec. V, we consider computability of reachable sets of hybrid

systems in which the guard sets are specified as codimension-

1 submanifolds. Finally, we give some conclusions and

directions for future research in Sec. VI.

II. COMPUTABLE ANALYSIS

A. Computable topological spaces

Throughout this section, Σ will denote a finite alphabet.

Definition 1: A computable topological space is a quad-

ruple (M, τ, σ, ν) such that M is a non-empty set, τ ⊂
P(M) is a topology on M , σ ⊂ τ is a countable sub-base

of τ , and ν :⊂ Σ∗ → σ is a bijective partial function.

Definition 2: A representation of a set M is a partial

surjective function δ :⊂ Σω → M .

Definition 3: The standard representation δS of a com-

putable topological space S = (M, τ, σ, ν) is given by

δS(p) = x :⇐⇒ {ν(w) : w � p} = {J ∈ σ : x ∈ J}.
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Here, w � p means that p is a list of words wi separated

by blanks, and w = wi for some i. Informally, we think

of the standard representation δ of (M, τ, σ, ν) as encoding

a sequence (Ji)i∈N
containing all sets Ji ∈ σ for which

x ∈ Ji.

Definition 4: For i = 0, . . . , k, let Xi be a set, and

δi :⊂ Σω → Xi a representation of Xi. Then a function

f : X1 × · · · × Xk → X0 is (δ1, . . . , δk; δ0)-computable

if there is a Turing machine computing a function M :⊂
Σω × · · · × Σω → Σω such that f(δ1(w1), . . . δk(wk)) =
δ0(M(w1, . . . , wk)).

The main result of computable analysis is that a com-

putable function is continuous.

Theorem 5: For i = 0, . . . , k let Si = (Mi, τi, σi, νi)
be a computable topological space, and δi the standard

representation of Si. Then every (δ1, . . . , δk; δ0)-computable

function f : M1 × · · · × Mk → M0 is (τ1, . . . , τn; τ0)-
continuous.

B. Representations of Euclidean space

A computable topological space (X, τ, β, ν) is a com-
putable Hausdorff space if X is a locally-compact Hausdorff

space, and β is a base for τ . If J ∈ β, then J is a basic (open)
set and J is a basic compact set. If X = R

n, then the basic

sets can be chosen to fit the application or numerical methods

used; typical choices are cuboids, spheres, ellipsoids, paral-

lelepipeds, simplexes or convex polyhedra, and each of these

choices leads to the same notion of computability.

The standard representation ρ of a computable Hausdorff

space is equivalent to a representation which encodes a

sequence of basic sets (Ji)i∈N
such that J i+1 ⊂ Ji and

{x} =
⋂∞

i=1 Ji. For the real numbers R, this give the interval
representation, where a point is represented by a nested

sequence of intervals with rational endpoints.

We can describe continuous functions R
m → R

n using the

compact-open representation. A δco-name of a continuous

function f encodes a sequence of pairs (I, J), where I is a

basic compact set and J a basic open set, such that f(I) ⊂ J .

C. Representations of sets

Let O denote the open subsets, A the closed subsets and

K the compact subsets of Euclidean space R
n. The standard

representations of these spaces are based on the topologies

of lower and upper convergence, and are defined as follows.

Definition 6 (Representations of sets):
1) A θ<-name for U ∈ O encodes a list of all basic

compact sets I such that I ⊂ U .

2) A ψ<-name for A ∈ A encodes a list of all basic open

sets J such that J ∩ A �= ∅.

3) A ψ>-name for A ∈ A encodes a list of all basic

compact sets I such that I ∩ A = ∅.

4) A κ>-name for C ∈ K encodes a list of all tuples of

basic open sets (J1, . . . , Jk) such that C ⊂
⋃k

i=1 Ji.

A ψ-name for A ∈ A encodes both a ψ<-name and a ψ>-

name of A, and a κ-name for C ∈ K encodes both a ψ<-

name and a κ>-name of C.

We will also need to consider the basic operations of

intersection, union and negation on closed and open sets.

Theorem 7:
1) U 	→ cl(U) on O is (θ<; ψ<)-computable.

2) (A, B) 	→ A ∪ B on A is (ψ<, ψ<; ψ<)-computable,

(ψ>, ψ>; ψ>)-computable and (ψ, ψ; ψ)-computable.

3) (U, V ) 	→ U ∩ V on O is (θ<, θ<; θ<)-computable.

4) (A, B) 	→ A ∩ B on A is (ψ>, ψ>; ψ>)-computable,

but not (ψ, ψ; ψ<)-computable.

5) (C, A) 	→ C∩A on K×A is (κ>, ψ>; κ>)-computable.

6) (U, A) 	→ cl(U ∩ A) on O × A is (θ<, ψ<; ψ<)-
computable.

7) (A, U) 	→ A\U on A×O is (ψ>, θ<; ψ>)-computable.

The lack of lower-semicomputability of A ∩ B is one of

the major sources of difficulty in computing the evolution

of a hybrid system, since it makes it impossible to check

whether the reachable set has nonempty intersection with a

closed guard set at any stage of the computation. To work

around this difficulty, we instead take open guard sets, and

use the lower-semicomputability of cl(A∩U) to obtain lower-

semicomputability.

D. Semicontinuous functions

We now consider semicontinuous multivalued functions

F : X ⇒ Y . There are two natural set-valued preimages

of a multivalued function, the weak preimage F−1(B) =
{x ∈ X : F (x) ∩ B �= ∅}, and the strong preimage,

F⇐(B) = {x ∈ X : F (x) ⊂ B}. We say F is lower-
semicontinuous if F−1(U) is open whenever U is open, or

equivalently, if F⇐(A) is closed whenever A is closed. F
is upper-semicontinuous if F−1(A) is closed whenever A
is closed, or equivalently, if F⇐(U) is open whenever U is

open. A multivalued function is continuous if it is both lower-

semicontinuous and upper-semicontinuous. If F is lower-

semicontinuous, then so is the map x 	→ cl(F (x)), and for

any set B, cl(F (B)) = cl(F (cl(B))).
We have the following representations for multivalued

maps, where I , J and Ji denote basic open sets:

Definition 8:
1) A µψ

<-name of closed-valued lower-semicontinuous F
encodes a list of all pairs (I, J) such that I ⊂ F−1(J).

2) A µκ
>-name of compact-valued upper-semicontinuous

F encodes a list of all tuples (I, J1, . . . , Jk) such that

I ⊂ F⇐(
⋃k

i=1 Ji).

A µκ-name of compact-valued continuous F encodes both a

µψ
<-name and a µκ

>-name of F .

As shown in [1], the set-image operator is computable:

Theorem 9:
1) (F, A) 	→ cl(F (A)) is (µψ

<, ψ<; ψ<)-computable.

2) (F, C) 	→ F (C) is (µκ
>, κ>; κ>)-computable and

(µκ, κ; κ)-computable.

E. Denotable elements and approximation

The standard representations of sets are particularly useful

for theoretical analysis, since they are closely related to the

topology. For actual computation, we are more interested in

computing approximations to the set of interest.
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Definition 10: A compact set C is denotable if C is

a finite union of basic compact sets, C =
⋃k

i=1 Ii. A

lower-semicontinuous map F is denotable if Graph(F ) =⋃k

j=1 Jj × Kj .

As discussed in [1, Section 3], we can compute denotable

approximations to sets and maps from the standard repre-

sentation, and the standard representation from convergent

sequences of denotable sets or maps.

If the basic sets are cuboids or rectangles in Euclidean

space, we say C is a rectangular set, and F a rectangular
map. It is clear that if C and F are rectangular, then so

is F (C), and can be computed exactly. By approximating

arbitrary sets and maps by rectangular ones, we can lower-

or upper- approximate the set-image.

III. DIFFERENTIAL INCLUSIONS

A differential inclusion is a generalisation of a differential

equation in which the right-hand side may be multivalued.

Consider the differential inclusion ẋ ∈ F (x), where F :
X ⇒ TX on X = R

n. A solution to the differential

inclusion ẋ ∈ F (x), where F : X ⇒ TX , is an absolutely

continuous function x : [0, T ] → X such that ẋ(t) ∈
F (x(t)) almost everywhere on [0, T ]. There is a considerable

literature on the existence of solutions for a given initial

condition; for an introduction see [13], [14].

The flow of a differential inclusion within a domain D is

given by the multivalued map

ΦF,D
T (x0) = {x(T ) | x(·) is a solution of ẋ ∈ F (x) with

x(0) = x0 and x(s) ∈ D ∀s ∈ [0, T ]},

and satisfies ΦF,D
T1+T2

= ΦF,D
T1

◦ ΦF,D
T2

for all T1, T2 � 0.

Computability of solutions of a differential inclusion has

been studied by Puri, Varaiya and Borkar [3]. The following

theorem is a reformulation of [3, Theorem 3.3] in the

language of computable analysis:

Theorem 11: If F is Lipschitz continuous with compact

convex values and a known Lipschitz constant L, the set

C is compact, then (F, C, T ) 	→ ΦF,X
T (C) is (µκ, κ, ρ; κ)-

computable.

The proof is based on computation of Euler steps of the

differential inclusion. If C ⊂ R
n is compact, F : R

n ⇒ R
n

is lower-semicontinuous and closed-valued, define C+hF =
{x+hv | x ∈ C and v ∈ F (x)}. If C and F are rectangular,

then so is C + hF , and can be computed exactly. The result

follows on taking a sequence of approximations Fn → F ,

Cn → C, and Tn → T , and considering the convergence of

Cn,n, where Cn,0 = Cn and Cn,i+1 = Cn,i + (Tn/n)Fn.

From Theorem 11, we can compute the reachable set

for the time interval T = [T1, T2], since the map

(F, C, T1, T2) 	→ ΦF,X

[T1,T2](C) is (µκ, κ, ρ, ρ; κ)-computable

by Theorem 9.

IV. HYBRID SYSTEMS

In the case of discrete-time and continuous-time systems,

the finite-time evolution is usually computable. Uncom-

putability only occurs when considering the infinite-time

evolution. However, for hybrid-time systems, discontinuities

in the solution can occur due, for example, to grazing contact

with guard sets. It is therefore important to either find classes

of hybrid systems for which the solution varies lower- or

upper-semicontinuously with respect to the initial state set,

or to give new solution concepts which are lower- or upper-

semicontinuous.

A class of hybrid systems for which the solution is an

upper-semicontinuous function of the initial state set was

given by Aubin et al. [5]. In this section we will show

that solutions of this class of system are indeed upper-

semicomputable, and find a class of system with lower-

semicomputable solutions.

A. Definition of a hybrid system

The following definitions are adapted from [5] and [15].

Definition 12: A hybrid system, H , is a tuple H =
(X, G, D, R, F ), where X = R

n is the state space, G ⊂
dom(R) ⊂ X is the guard set, D ⊂ dom(R) ⊂ X is the

domain of the flow, R : dom(R) ⇒ X is the reset map and

F : dom(F ) ⇒ TX defines a flow.

In this paper we will restrict attention to finite solutions

of hybrid systems. A hybrid time domain τ is a collection

of intervals {τi = [ti, ti+1]}N
i=0.

Definition 13: A solution x of a hybrid system, (X , G, D,

R, F ) on a hybrid time domain τ is a sequence of functions

x = {xi(·)}N
i=0, with xi(·) : [ti, ti+1] → X that satisfy:

• Discrete Evolution: for i = 0, 1, . . . , N − 1, xi(ti+1) ∈
G and xi+1(ti+1) ∈ R(xi(ti+1))

• Continuous Evolution: for all i with ti < ti+1, xi(·) is a

solution to the differential inclusion ẋ ∈ F (x) over the

interval [ti, ti+1], with xi(t) ∈ D for all t ∈ [ti, ti+1].
For a hybrid system H = (X, G, D, R, F ), a set of initial

states X0 ⊂ X , a real interval T = [T1, T2] ⊂ R
+ and an

interval of natural numbers N = [N1, N2] ⊂ Z
+, we define

the reachable set by

Reach(T ,N )(X0, H) = {xn(t) | n ∈ N , t ∈ T and x a

solution of H with x0(0) ∈ X0}

with closure clReach(T ,N )(X0, H).

B. Discontinuity of evolution

Hybrid-time dynamics naturally introduces discontinuities

of the solution set with respect to initial conditions. Discon-

tinuity can arise from three main sources:

• Grazing contact of the guard set by the continuous flow.

• Grazing contact of the boundary of the domain set by

the continuous flow.

• Discontinuities of the reset map R.

Discontinuities of the first type arise when the solution of the

differential inclusion comes tangent to the guard set, G. If G
is closed, the solution may make a discrete transition at the

tangency point, whereas there may exist solutions arbitrarily

nearby that do not enter the guard set and therefore cannot

make a discrete transition. Similarly, if G is open, then the

solution cannot make a discrete transition at the tangency

point, whereas arbitrarily close solutions may.
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Discontinuities of the second type arise when the solution

of the differential inclusion comes tangent to the boundary of

the domain D. Continuous evolution is then blocked on one

side of the tangency, and allowed to continue on the other.

Discontinuities of the third type arise when the guard sets

corresponding to two different discrete transitions intersect.

Roughly speaking, in this case, both discrete transitions are

possible and one actually occurs nondeterministically [16].

These discontinuities are often intrinsic in the system and

can be difficult or impossible to eliminate. Even though the

set of initial conditions for which such discontinuities occur

is typically a set of zero measure [17], eliminating such

discontinuities completely requires one to restrict the class

of systems considered quite severely [16]. Discontinuities

in the evolution induce a lack of computability of the

solution. Fortunately, as we shall show in this paper, it may

still be possible to obtain semicontinuous evolution, and

semicomputable solutions.

C. Uncomputability of the Reach operator

To show that Reach is not in general computable, we pro-

vide simple counter-examples for which it is not continuous.

Example 14: Consider a hybrid system with a two-

dimensional continuous state space. The reset map R takes

(x, y) to (x, y + 1), and the flow F is given by (ẋ, ẏ) =
(1, 2x), with solution (x, y) = (x0 + t, t2 +2x0t+ y0). Con-

sider the initial state (−1, s) and the set Y (s) of reachable

y-values after time 2. It is clear that elements of Y (s) are of

the form s+n, where n is the number of discrete transitions.

First consider the open domain D = {(x, y) | y > 0} and

the guard set G = {(x, y) | y < 1}. If 0 < s < 1, then

the solution leaves D and is forced to reset, and later re-

enters G, so may reset again. Hence Y (s) = {s + 1, s + 2}.

If s = 1, the solution leaves D and is forced to reset, but

never re-enters G, so Y (s) = {s + 1}. If 1 < s < 2, then

the solution remains in D, but enters G, so may reset, but

is not forced to, so Y (s) = {s, s + 1}. If 2 � s, then the

solution never enters G, and Y (s) = {s}. In all cases, Y (s),
and hence Reach, is not upper-semicontinuous at s = 1, 2.

Now consider the closed domain D = {(x, y) | y � 0}
and the guard set G = {(x, y) | y � 1}. It is easy to see that

Y (s) = {s+ 1, s+ 2} for s < 1, {s, s+ 1, s+ 2} for s = 1,

{s, s + 1} for 1 < s � 2 and {s} for 2 < s. Again, Y (s),
and hence Reach, not lower-semicontinuous at s = 1, 2.

Combining Example 14 with Theorem 5, we obtain

Theorem 15: Let H = (X, G, D, R, F ) be a hybrid sys-

tem R is continuous with compact values, and F is Lipschitz

continuous with compact values, and let X0 be a compact

state set.

1) If G and D are closed, then the operator

(X0, G, D, R, F ) 	→ Reach(T ,N )(X0, H) is not

(κ, ψ, ψ, µκ, µκ; ψ<)-computable.

2) If G and D are open, then the operator

(X0, G, D, R, F ) 	→ clReach(T ,N )(X0, H) is

not (κ, θ, θ, µκ, µκ; ψ>)-computable.

D. Continuous-time evolution in restricted domains

We need to extend Theorem 11 to the case in which

solutions of ẋ ∈ F (x) are restricted to a domain D in the

state space. However, we cannot use the lower representation

ψ< for the domain D of a system, since any domain is then

approximated by a finite set which prevents any continuous

evolution. To obtain lower-semicomputability, we take D to

be open, since we need to block solutions which graze the

boundary of D.

Theorem 16:
1) If F is upper-semicontinuous with compact values

and linear growth at infinity and D is closed, then

ΦF,D
T is a compact-valued upper-semicontinuous map,

and (F, D, C, T ) 	→ ΦF,D
T (C) is (µκ

>, ψ>, κ>, ρ; κ>)-
computable.

2) If F is Lipschitz continuous with closed values and D
is open, then ΦF,D

T is a lower-semicontinuous map and

(F, D, A, T ) 	→ cl(ΦF,D
T (A)) is (µψ

<, θ<, ψ<, ρ; ψ<)-
computable.

Notice that in (2), we need to take the closure of ΦF,D
T (A),

since ΦF,D
T (A) need not be closed if the evolution reaches

the boundary of D.

The proof follows that of Theorem 11, except that in (1)

we intersect at each Euler step with a set Dn ⊃ D, and in

(2) we intersect with a set Dn ⊂ D.

E. Semicomputability of the Reach operator

The aim of this section is to establish the semicomputabil-

ity of the operator Reach(T ,N ) under certain conditions. To

evolve the system in continuous time within the domain, we

will use the operator ΦF,D
T to convert flows to maps. Theo-

rem 16 provides conditions under which the states reachable

by the hybrid system without taking a discrete transition can

be semi-computed. These conditions can then be generalised

to conditions for computing the states reachable with N
discrete transitions.

To ensure that bounds on the continuous time are not

violated when multiple discrete transitions are taken we

introduce an auxiliary variable, y ∈ R to keep track of

continuous time. We define an augmented hybrid system,

Ĥ = (X̂, Ĝ, D̂, R̂, F̂ ), by X̂ = X × R, Ĝ = G × R, D̂ =
D×R, R̂(x, y) = (R(x), y), and F̂ (x, y) = (F (x), 1). Given

a set of initial conditions X0, we also define X̂0 = X0×{0}.

From a ρ-name of T , we can semi-compute Ŷ0 =

ΦF̂ ,D̂

[0,T ](X̂i), and then X̂1 = cl(R̂(Ŷ0 ∩ Ĝ)). Continuing

recursively, we compute sets Ŷn such that Ŷn contains all

points which can be reached at time s0 + s1 + · · · sn,

with transitions occurring at time intervals s0, . . . sn−1 for

s0, . . . , sn ∈ [0, T ]. Therefore Ŷn contains all points which

can be reached after n transitions at time t for any t < T ,

and some other points besides. To obtain the reachable

set, we take Ŷ =
⋃

n∈N
Ŷn, Ẑ = Ŷ ∩ X × T , and

ReachT ,N (H, X0) = π(Ẑ), where π : X × R → X is

given by π(x, y) = x. In the lower-semicomputable case, we

instead need to take Ẑ = cl(Ŷ ∩ X×(T1, T2)) We obtain

the following result.
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Theorem 17: Let H = (X, G, D, R, F ) be a hybrid sys-

tem, and X0 an initial state set.

1) Suppose G and D are closed, R is upper-

semicontinuous with compact values, F is upper-

semicontinuous with compact values and linear growth

at infinity, and X0 is compact. Then the operator

(X0, G, D, R, F ) 	→ Reach(T ,N )(X0, G, D, R, F ) is

(κ>, ψ>, ψ>, µκ
>, µκ

>; κ>)-computable.

2) Suppose G and D are open, R is lower-semicontinuous

with closed values, F is Lipschitz continuous

with closed values, and X0 is closed. Then

the operator clReach(T ,N )(X0, G, D, R, F ) is

(ψ<, θ<, θ<, µψ
<, µψ

<; ψ<)-computable.

In other words, the finite-time reachable set is semicom-

putable for appropriately-defined hybrid systems.

V. HYBRID SYSTEMS WITH JUMP SETS

In the previous section, we considered hybrid systems for

which the mechanism forcing a discrete transition was the

system leaving the domain of definition of the continuous

evolution. However, hybrid systems are often defined by

specifying jump sets, with a discrete transition being forced

to occur whenever the trajectory crosses a jump set. The

jump sets are typically codimension-one manifolds, which

partition the state space into domains on which continuous

evolution is possible.

In this section, we shall consider hybrid systems H =
(X, G, J, R, F ) such that G and J are finite unions of closed,

codimension-1 manifolds with J ⊂ G, R : dom(R) ⇒ X is

defined on some neighbourhood of G, and F : X ⇒ TX is

globally defined.

A. Codimension-one manifolds

To consider computability for such systems, we need a

representation of a codimension-1 hypersurface M which

allows us to determine domains of continuous evolution

and crossings of the jump sets. The most convenient such

representation is as the zero set of a map f : X → R.

Definition 18: Let M be a codimension-1 manifold. An η-

name of M is a δco-name of a continuous map f : X → R

such that M = f−1(0) and f changes sign across M .

By [6, Theorem 6.2.9] we can compute an ψ>-name of M
from an η-name.

The jump set is a finite union of manifolds, J =
⋃m

i=1 Mi,

each of which is defined by a function fi, so the entire set

can be described by the function f : X → R
m defined by

f(x) = (f1(x), . . . , fm(x)). Since X \ M = f−1{y ∈ R
m |

yi �= 0 ∀i = 1, . . . , m}, it θ<-computable from a δco-name

of f . The components of X\M form open domains in which

solutions may evolve continuously.

Given a point x �∈ J , we are interested in finding

closure of the component of X \ J containing x. Define

Qx = {y ∈ R
m | fi(x) · yi > 0 ∀i = 1, . . . , m}. Then

Dx = f−1(cl(Qx)) is a closed set containing x, and any

path in Dx does not cross J , though it may touch J . Hence

the sets Dx form a natural subdivision into closed domains

in which solutions may evolve continuously.

B. Transverse crossings
We now consider the problem of computing the set of

points at which trajectories cross a jump manifold. The

computation depends crucially on the semantics used for

defining a “crossing”.

Definition 19: Let M be a connected codimension-1 man-

ifold, and let U and V be the components of X \ M . Let

x(·) be a continuous function x : [0, T ] → X . Then x(·)
crosses M from U to V at time t if for all ε > 0, there exist

u, v with t− ε < u < t < v < t + ε such that x(u) ∈ U and

x(v) ∈ V .

In the lower-semicontinuous case, difficulties arise when

trajectories, instead of crossing transversely at a single point,

flow along the manifold for some time interval. We therefore

restrict the class of systems we consider.

Definition 20: Let M be a connected codimension-1 man-

ifold, U, V the components of X \M , and Φ : T ×X ⇒ X
a flow. We say that the crossings of M from U to V are

lower-detectable if there exists δ > 0 such that for all

x ∈ M ∩ cl(U), either

• Φt(x) ⊂ cl(U) for all t < δ, or

• ∀ ε > 0, ∃ t ∈ (0, ε) such that Φt(x) ∩ V �= ∅.

In other words, either all trajectories stay in cl(U) for a

known time δ, or there exist trajectories which leave cl(U)
after arbitrary small times. This precludes a situation where

all trajectories starting at x remain in M for some unknown

nonzero time δ′ before leaving cl(U). Using this condition,

the crossing set is lower-semicomputable:

Lemma 21: Let M be a manifold, U, V the components of

X\M , Φ a lower-semicontinuous flow with detectable cross-

ings from U to V , and A ⊂ cl(U) closed. Let cr(Φ, M, A, T )
be the set of points at which the flow of Φ with initial

set A crosses M in time t < T . Then (Φ, M, A, T ) 	→
cr(Φ, M, A, T ) is (µψ

<, η, ψ<ρ; ψ<)-computable.

Note that we have not used any differentiability assump-

tions on the jump manifold in this section. Of course, differ-

entiability of the jump manifold may be used to verify the

lower-detectability of the crossing set, and in implementation

strategies, but is not necessary for lower-semicomputability.

C. Computing reach for systems crossing guard manifolds

For semicontinuity of the system evolution, and hence

semicomputability, we need to use a proper semantics for

triggering discrete events. We use crossing semantics for the

lower-semicontinuous case, and grazing semantics for upper-

semicontinuous.

Definition 22: A solution {xi(·)} of the hybrid system

H = (X, G, J, R, F ) has

• grazing semantics, if xi(t) ∈ cl(Di) for all t ∈ [ti, ti+1],
and xi(ti+1) ∈ G for all i < N .

• crossing semantics, if xi(t) ∈ Di for all t ∈ (ti, ti+1),
and xi(ti+1) is a crossing point of G for all i < N .

To compute the reachable set in the upper-semicontinuous

case, we introduce discrete states corresponding to the quad-

rants Q of R
m for the jump set J , and partition elements

D = f−1(Q) for each quadrant. Upper-semicomputability

of Reach follows directly from Theorem 17(1).
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For lower-semicontinuity, we use the crossing seman-

tics, which means that a trajectory which grazes the guard

set neither resets nor continues to flow. To compute the

reachable set, we separately evolve within X \ D, and

compute the crossing set for each discrete transition. Lower-

semicomputability of Reach follows from Theorem 16(2),

Lemma 21 using the proof technique of Theorem 17.

Theorem 23: Let H = (X, G, J, R, F ) be a hybrid system

where G and J are codimension-1 manifolds with J ⊂ G,

and let X0 be a set of initial states.

1) Suppose R is upper-semicontinuous with compact

values and F is upper-semicontinuous with com-

pact values, trajectories of H are defined using the

grazing semantics, T is compact and X0 is com-

pact. Then the operator ReachT ,N (X0, G, J, R, F ) is

(κ>, η, η, µκ
>, µκ

>; κ>)-computable.

2) Suppose R is lower-semicontinuous with closed

values, F is Lipschitz with convex closed val-

ues, trajectories of H are defined using the cross-

ing semantics, T is open and X0 is closed.

Then the operator clReachT ,N (X0, G, J, R, F ) is

(ψ<, η, η, µψ
<, µψ

<; ψ<)-computable.

3) Suppose R is continuous with compact values, F
is Lipschitz with convex compact values and linear

growth at infinity, and X0 is a compact set. Suppose

further that all trajectories are transverse to G, and

that no discrete events occur at the endpoints of

T . Then the operator clReachT ,N (X0, G, J, R, F ) is

(ψ, η, η, µκ, µκ; κ)-computable.

VI. CONCLUSIONS

In this paper we have studied the computability of finite-

time reachable sets for hybrid systems from the point of

view of type-two computability and computable analysis. We

showed that under suitable assumptions, the system evolution

may be lower-semicomputable or upper-semicomputable, but

not both. The fundamental obstruction to computability is the

possibility of grazing contact with guard and/or jump sets,

which causes discontinuities in the system evolution. This

lack of computability may be avoided by restricting to the

case of transverse crossing of guard sets.

Although the results contained here are only for finite-time

system evolution, they form a basis for the computability of

other system properties. Using results of [2] for discrete-time

systems, we can easily semicompute infinite-time reachable

sets, and also viable and invariant sets for semicontinuous

hybrid systems. This extends the results of [5] for viability

kernels of upper-semicontinuous hybrid systems.

Our computability results can be used to produce

algorithms for the computations involved. However, naive

implementations of these algorithms are likely to be

prohibitively expensive. Due to the high level of complexity

of general nonlinear systems, we expect even highly-

optimised algorithms to only be useful for highly robust

systems or in low dimensions. Finally, most existing tools

for hybrid systems analysis use floating-point computation

and do not control the error, and so do not give algorithms

for the computable problems discussed.
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