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Abstract— The paper proposes robust fault detection methods
that take advantage of a recently proposed set-membership
identification procedure based on parallelotopes for systems
linear in the parameters. It is shown that consistency checks
indicating faults can be performed in a natural manner with a
parallelotope description of the feasible parameter set. Fault
detection algorithms are presented for systems with invari-
ant parameters, with parameter variation bounded between
samples and with unbounded variation. Finally, an example
is given which demonstrates how the algorithms work on a
multivariable process.

I. INTRODUCTION

Model-based fault detection is based on the use of math-
ematical models of the monitored system. Reliability and
performance of fault diagnosis algorithms depend on the
quality of the model used. Fault detection algorithms can
often be improved by improving the models they are based
on. However, high fidelity models are costly and modelling
errors and disturbances in complex engineering systems are
inevitable. Hence there is a need to develop robust fault
detection algorithms where model uncertainty is explicitly
taken into account. The robustness of a fault detection system
indicates its ability to distinguish between faults and model
uncertainty, see [1].

Investigation of robust fault diagnosis has roughly focused
on two distinct approaches. In one of the approaches, char-
acterized as active, the central idea is to decouple the effect
of the uncertainty [1]. The other approach, known as passive,
is based on enhancing the robustness of the fault detection
system at the decision-making stage [2]. The aim with the
passive approach is usually to determine, given a set of
models, if there is any member in the set that can explain
the measurements. A common approach to this problem is
to propagate the model uncertainty to the alarm limits of the
residuals. When the residuals are outside of the alarm limits
it is argued that model uncertainty alone can not explain the
residual and therefore a fault must have occurred, see [3] for
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a recent article using this approach. This approach has the
drawback that faults that produce a residual deviation smaller
than the residual uncertainty due to parameter uncertainty
will not be detected.

Another approach to the passive robust fault detection
problem is to explicitly calculate the set of parameters that
are consistent with the measurements [4]. When a measure-
ment is found to be inconsistent with this set, a fault is
assumed to have occurred. As an exact representation of the
set of parameters consistent with the measurements is hard
to calculate, outer bounds are often used instead. This is the
approach adopted in the present work. Other authors have
used this approach, see for example [5]. There, the feasible
parameter set was approximated with an ellipsoid. In [6] a
similar fault detection scheme based on orthotopic sets was
presented.

In the current article, the parameter set is bounded with
parallelotopes. In [7] a set-membership identification algo-
rithm was presented which results in a parallelotopic repre-
sentation of the parameter uncertainty. In [8] an extension
was presented to deal with time variant systems. It will be
shown that this representation is particularly suitable for fault
detection based on consistency tests.

Set-membership identification methods have been the sub-
ject of a number of publications. They can be classified
according to how the approximation of the feasible set of
parameters is represented or parameterized. In [9] the set was
over bounded by an ellipsoid. Other authors have focused on
orthotopic approximations, see [10].

When using set-membership identification there is a trade-
off between set size (conservativeness) and complexity of
the identification method. Simpler methods generally lead
to more conservative set estimates. In [7] it was claimed
that parallelotopic estimates may be consistently better than
ellipsoidal estimates while complexity is similar. As better
estimates lead directly to a better tradeoff between false
alarms and missed detections, it is clear that parallelotopic
estimates deserve attention from the fault detection commu-
nity.

In [11] a consistency based fault detection scheme was
presented which used the recursive optimal bounding paral-
lelotope (ROBP) algorithm presented in [12]. They proposed
a moving horizon strategy where an outer bound of the
initial state was propagated using the ROBP and a fault was
detected when no noise sequence within deterministic bounds
could explain the observed data. Uncertainty in process
parameters was not considered. Robust fault diagnosis using
parallelotope estimates of parameter uncertainty has not been
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proposed to the knowledge of the authors.
The problem of parameter tracking or ”recovering” the

parameter estimate is important to isolate the type and to
estimate the size of fault that has occurred once a fault has
been detected since allows to know where in the parameter
space the parameter set has moved. In [13] this problems
was discussed and will be addressed as well in the current
article. In [7] it was claimed that the parallelotope method
was more suitable to recover new parameter estimates after
a large change in parameters had occurred.

The paper is organized in the following manner. In section
II, the problem is introduced. In section III, polytopes are
introduced and tools to manipulate them discussed. In section
IV, the fault detection strategies are introduced. Finally in
section V, an example is given.

II. MODEL-BASED CONSISTENCY DIAGNOSIS

The principle of model-based consistency diagnosis is to
test whether the measured sequence of inputs U and outputs
Y available for N points, available at every time instant
k from the system lies within the behaviour described by
a model of the faultless system. If the measurements are
inconsistent with the model of the faultless system, the exis-
tence of a fault is proved concluding the fault detection task.
For isolation and fault identification, information about the
effects of the faults under consideration has to be available,
allowing application of the same principle as in the case of
fault detection.

In this paper it is assumed that the system output can be
described by

y(k) = ϕT (k)θ(k) + e(k) (1)

θ(k + 1) = θ(k) + w(k) (2)

θ(k) ∈ Θ (3)

where θ(k) ∈ R
n is the parameter vector whose values are

assumed to be unknown but to belong to a compact bounded
initial set Θ, ϕ(k) ∈ R

n is the regressor vector which can
contain any function of inputs and outputs, and the two noise
terms are limited as

|e(k)| ≤ σ and |w(k)| ≤ λ (4)

As the parameter vector is assumed to belong to R
n so does λ

and the last inequality is an element wise inequality. Notice
that this system description includes any system linear in
the parameters. Parameter uncertainty comes from physical
modelling or from the set-membership parameter estimation
algorithms applied in a non-faulty situation.

Notice that Eq. (2) specifies the allowed variance of
uncertain parameters θ. Depending on the value of λ, three
different cases can be considered:

• Time invariant case, λ = 0
• Time-varying case 1, λ = λ̄
• Time-varying case 2, λ = ∞

In the first case, the parameter is unknown within Θ but it is
known that it will not vary. In the second case, the parameter
variation is bounded specifically by a vector λ̄ while in the

last case, the variation is implicitly bounded only by the
initial parameter set Θ and can vary at will within that set.

The first case could represent situations when an initial
variance comes from components specifications that are
known only with a mean and variance in the beginning
of the fault detection. The second case could represent a
system that has been identified over a number of operation
conditions, each with a different θ within Θ, but with the
variance between samples bounded by λ̄.

A. Fault detection

A definition of what constitute a fault for a series of data is
now given. From the model description above the following
sequences are defined.

ΦN = {ϕ(k)}k=1,...,N YN = {y(k)}k=1,...,N (5)

To define what constitute a fault the feasible solutions set at
time N is defined.

Definition 1: (Feasible Solution Set) For given data se-
quences ΦN and YN , the parameter θ is said to belong to
the Feasible Solution Set at time N , (denoted FSSN ), if there
exist θ(1), θ(2), . . . , θ(N) such that:

• θ = θ(N) (6)

• |y(k) − ϕT (k)θ(k)| < σ k = 1, . . . , N (7)

• |θ(k) − θ(k − 1)| < λ k = 2, . . . , N (8)

• θ(k) ∈ Θ k = 1, . . . , N (9)
Using the definition of the feasible solution set, a fault is

now defined for the sequences ΦN and YN and considering
that each measurement gives a set of feasible parameters that
are consistent with it:

Fk = {θ ∈ R
n : −σ ≤ y(k) − ϕ(k)T θ ≤ σ} (10)

Fk is the region between two hyperplanes. The normalized
form of the strip is written as

Fk = {θ ∈ R
n : |

y(k)

σ
−

ϕ(k)

σ

T

θ| ≤ 1}

= {θ ∈ R
n : |cT θ − d| ≤ 1} (11)

Definition 2: For given data sequences ΦN and YN , a
fault is said to have occurred if the set FSSN is empty.

In practice, the computation of FSSN is difficult. The fault
detection algorithms presented in this paper are based on
using an approximated feasible solution set, AFSSN , that
fulfills FSSN ⊆ AFSSN for which consistency is checked.
In the case when λ > 0, the set AFSSN is expanded to
take the allowed parameter variance into account in the next
sample. The expanded set is denoted AFSSN+1.

A general form of the suggested fault detection algo-
rithms is to execute the following procedures at each sam-
ple:

1: Expand AFSSN−1 taking into account λ to obtain
AFSSN .

2: Obtain input-output data and build FN .
3: If AFSSN ∩FN = ∅ conclude that a fault has occurred
4: calculate AFSSN that fulfills FN ∩ AFSSN ⊂ AFSSN
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In this paper, the approximate feasible solution set will be
represented with a parallelotope.

B. Fault-isolation and estimation task

Once the fault has been detected, the next task consists in
fault isolation and estimation. Fault isolation and estimation
are very straightforward since it just consists in looking
where in the parameter space the parameter set has moved.
This can be done by resetting the feasible parameter set
to a set that contains all possible values even in faulty
situation and applying algorithm presented in section II-
A. Then, by iteratively applying the refinement introduced
in step 4 of such algorithm, the faulty parameter set can
be identified (fault isolation) and the size of change can
be estimated (fault estimation). This fault isolation scheme
allows to isolate several faulty parameters at the same time
without any problem.

III. POLYTOPES

To describe the fault detection tests different polytope set
representations will be used. The treatment follows closely
the presentation given by [12]. Given m strips as defined by
Eq. (11), where m ≥ n, the set of consistent parameters can
be described as the polytope, P , given by the intersection of
the strips. This is written as

P = ∩m
i=1Fi (12)

In the case n = m the simplest bounded polytope is called
a parallelotope. In this case, P = {θ : |cT

i θ − di| ≤
1, i = 1, . . . n}. A parallelotope can also be expressed in
an alternative form as

P = {θ : θ = p + Hθ̃, ‖θ̃‖∞ ≤ 1} (13)

where H = [h1 h2 . . . hn] = P−1, P = [c1 c2 . . . cn]T

and p = P−1D where D = [d1 d2 . . . dm]T . Notice that by
assuming the polytope to be bounded, the inverse of matrix
P necessarily exists. Formally, a parallelotope can be thought
of as a Minkowski sum of a finite set of line segments. A
shorthand notation of paralletotopes is p ⊕ HB

m where H
is a n×n matrix with column vectors hi and B

m is the unit
cube in m dimensions.

If columns are added to H and the vector θ̃ is in the
same way expanded the resulting set falls in the group of
zonotopes.

Notice that the bound on parameter variation can be
expressed as |θ(k + 1) − θ(k)| < Λ which in turn can be
expressed as

θ(k + 1) ∈ θ(k) ⊕ ΛB
n (14)

where Λ is a square matrix with the diagonal equal to λ. One
of the principal features of zonotopes is that the Minkowski
sum of a box and a zonotope is another zonotope. Therefore,
if at time k it is known that the parameter belongs to set
Zk = p ⊕ HB

m then using Eq. (14) the parameter set at
time k + 1 can be expressed as

Zk+1 = p ⊕ HB
m ⊕ ΛB

n = p ⊕ [H Λ]Bm+n

In what follows, certain properties of zonotopes and paral-
lelotopes will be presented as well as tools to manipulate
them. Due to space limitations, details of the algorithms will
not be presented.

A. Supporting hyperplane of a parallelotope

A hyperplane S = {x : cT x = q} is a supporting
hyperplane of a parallelotope P = p⊕HB

m if either cT x ≤
q,∀x ∈ P or else cT x ≥ q,∀x ∈ P with equality occurring
for some x ∈ P . The two constants qu and qd characterizing
the supporting hyperplanes are easily calculated as

qu = cT p + ‖HT c‖1 (15)

qd = cT p − ‖HT c‖1 (16)

where ‖ · ‖1 is the 1-norm of a vector.

B. Checking consistency of a parallelotope with a strip

Here it is assumed that FSSk ⊆ P where P = p⊕HB
m

is a parallelotope. Given a new data point {y(k), ϕ(k)},
consistency can be assessed by checking if

P ∩ Fk = ∅ (17)

Notice that this check is very easy to perform. Calculating
the supporting hyperplane constant qu and qd the intersection
is empty if and only if

qu < y(k) − σ or qd > y(k) + σ (18)

This condition of inconsistency was reported in [7].

C. Bounding the intersection between a parallelotope and a
strip with a minimum-volume parallelotope

The method proposed in [7], [12] is used to bound the
intersection of a parallelotope and a strip. First, a tight
representation of the parallelotope and the strip is computed.
Next, the minimum-volume parallelotope that bounds the
intersection of n + 1 tight strips is obtained.

D. Calculating a parallelotope that bounds a zonotope

There are various ways to calculate a parallelotope that
bounds a zonotope. A straight forward approach is to cal-
culate the box M in which the zonotope is included by
calculating the two hyperplanes for each dimension. An other
approach which gives good compromise between complexity
and conservativeness is to use singular value decomposi-
tion. Given a zonotope Z = p ⊕ HB

m a parallelotope
P = p ⊕ PB

n is sought so that Z ⊆ P . Assume that a
singular value decomposition has been calculated for H and
is parameterized as H = UΣV T . Matrix P is assumed to
have the form UD where n × n matrix D is diagonal with
elements di. Then, the problem is reduced to finding the
elements di so that the above set inclusion holds. Notice
that as U is a unitary matrix, this problem is equivalent to
guaranteeing that ΣV T

B
m ⊆ DB

n. This can be guaranteed
by selecting di = ‖σiVi‖1 where Vi is the column vector of
matrix V and σi is the diagonal element of matrix Σ.
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IV. IMPLEMENTATION OF THE FAULT DETECTION

ALGORITHM USING POLYTOPES

Using the computational tools presented in section III
the fault detection algorithm introduced in section II will
implemented as follows:

1: PN = Update(PN−1, λ).
2: Obtain input-output data and build FN .
3: If PN ∩ FN = ∅ then a fault has occured
4: Else obtain an outer bound of PN ∩ FN and denote it

PN

The initial value of PN is the parameter set Θ. To check
consistency in step 3, the procedure described in section III-
B is used. What differentiates the algorithm for the three
cases of allowed parameter variance is the update procedure
in step 1. In all cases, PN is an outer bounding of the feasible
solution set FSSN .

Certain steps are performed the same way for all cases
of parameter variance. The consistency check in step 3 is
performed using the procedure presented in III-B. In step 4,
the procedure presented in section III-C is used.

A. Time invariant case, λ = 0

In this case, the least conservative approach consists of
solving a linear program with the 2N linear inequalities
given by Eq. (10) in addition to the 2n inequalities given
by the restriction of θ to belong to Θ. It is clear that
the linear program would have a solution if and only if
no fault was present in the series. As the size of the LP
grows in each sample, this approach is not practical in
actual applications and relaxations have to be introduced.
One relaxation approach is to solve an LP for only the last
M data points. As in this case not all data points are used,
it is clear that a fault can go undetected.

Referring to the algorithm above, the procedure in step 1,
returns the set unchanged as λ = 0. It is clear that if it would
be possible to calculate an exact representation of PN ∩FN

to use as PN then the procedure could be made equally
stringent as the linear programming test described before.
As this is generally not feasible, the approach proposed here
is to calculate an outer bound of PN ∩ FN in each sample,
as in the other cases.

B. Time-varying case, λ = λ̄

In this case, the update procedure in step 1 consists of two
steps.

1: Expand parallelotope PN−1 to zonotope ZN using
Eq.(14).

2: Calculate PN as the parallelotope that bounds ZN using
the procedures presented in section III-D.

C. Time-varying case, λ = ∞

This case is the simplest of all cases. As the parameters
can vary at will within the initial parameter set Θ, the update
procedure consists of putting parallelotope PN equal to the
initial parameter set Θ.

V. APPLICATION EXAMPLE

A simulation of a quadruple-tank process (see [14]) is
used to illustrate the proposed fault diagnosis algorithm. A
diagram of the process is shown in figure 1. The process
inputs are v1 and v2 (input voltages to the pumps). The
continuous model derived from the mass balances and the
Bernoulli’s law is:

d h1

dt
= −

a1

A1

√
2gh1 +

a3

A1

√
2gh3 +

γ1k1

A1

v1 (19)

d h2

dt
= −

a2

A2

√
2gh2 +

a4

A2

√
2gh4 +

γ2k2

A2

v2 (20)

d h3

dt
= −

a3

A3

√
2gh3 +

(1 − γ2)k2

A3

v2 (21)

d h4

dt
= −

a4

A4

√
2gh4 +

(1 − γ1)k1

A4

v1 (22)

where Ai is the cross section of the tank i and ai is the
cross section of the outlet hole of the tank i. The vector of
measured outputs is composed by the levels of four tanks,
denoted hi. The parameters γ1, γ2 ∈ (0, 1) determine the
flow to different tanks, that is, the flow to tank 1 is γ1k1v1

and the flow to tank 4 is (1−γ1)k1v1 and similarly for tank
2 and tank 3.

The fixed values used in the simulations are A1 = A3 =
28 cm2, A2 = A4 = 32 cm2, k1 = 3.33 cm3/V s,
k2 = 3.35 cm3/V s and g = 981 cm/ss. To obtain a
system of the form given by Eq. (1), an euler discretization
with step size equal to 1 of two equations of the model is
used:

h1(k + 1) = h1(k) + 1 ∗ (−
a1

A1

√
2gh1(k)

+
a3

A1

√
2gh3(k) +

γ1k1

A1

v1(k)) + e1(k) (23)

h2(k + 1) = h2(k) + 1 ∗ (−
a2

A2

√
2gh2(k)

+
a4

A2

√
2gh4(k) +

γ2k2

A2

v2(k)) + e2(k) (24)

where |ei(k)| ≤ 1 with i = 1, 2 is a bounded random
error. Then, the parameter vector θ is composed of: θ =
[a1 a2 a3 a4 γ1 γ2]

T , the regressor vector corresponding
to the first output y1 = h1 is

ϕy1
(k) =

[
−

√
2gh1(k)

A1

0

√
2gh3(k)

A1

0
k1v1(k)

A1

0

]T

while the regressor vector corresponding to the second output
y2 = h2 is

ϕy2
(k) =

[
0 −

√
2gh2(k)

A2

0

√
2gh4(k)

A2

0
k2v2(k)

A2

]T

Note that the results obtained in this section could be
improved using the other two equations of the model.
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Fig. 1. Quadruple-tank process

A. Time-invariant parameters

In this case, the initial parameter uncertainty set is as-
sumed to be:

Θ = {θ : θ = p0 + H0θ̃, ‖θ̃‖∞ ≤ 1}

where: p0 = [0.4 0.3 0.4 0.3 0.5 0.5]
T , H0 =

diag
(
[0.4 0.3 0.4 0.3 0.5 0.5]

T
)

. Since uncertain pa-
rameters are considered time-invariant, then λ = 0 in Eq. (4),
and fault detection algorithm is implemented as described
in Section IV.A. The non-faulty system is simulated with
parameters equal to a1 = a3 = 0.71 cm2, a2 = a4 =
0.57 cm2, γ1 = 0.7 and γ2 = 6. The first fault considered is
a variation in the parameter a2. Figure 2 shows the evolution
of this parameter. The dotted line represents the exact value
of parameter a2. It can be seen that a2 changes its value to
0.35 at sample time 516. The solid lines represent the outer
bounds obtained by the detection algorithm. Before sample
time 516, the detection algorithm bounds the parameter with
0.55 ≤ a2 ≤ 0.58. This bound is considered a non-faulty
situation. The algorithm considers a window of five detected
faults to overcome outliers. In the figures, the sample times
where faults are detected are indicated with diamonds. As
it can be seen in figure 3, at sample time 530 the window
of faults is reached and the fault diagnosis process starts.
The parallelotope is initialized and at sample time 645 the
fault has been diagnosed because the diagnosis algorithm
assures that the new value of parameter a2 is less than
0.55. On the other hand, if we had looked at any of the
other parameters, namely, a1,a3, a4, γ1 or γ2 their associated
fault isolation test is not activated. Here, these tests are not
presented because of the lack of space. This allows to isolate
a2 as the faulty parameter. A second fault scenario is a
variation in the parameter γ2. Figure 4 shows the evolution
of this parameter. The dotted line represents the exact value
of parameter. The solid lines represent the outer bounds
obtained by the detection algorithm. It can be seen that γ2

changes its value to 0.7 at sample time 516. At sample time
540 the fault is detected and at sample time 900 is diagnosed.
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Fig. 2. Detection and fault diagnosis of parameter a2
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θ 2

a
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Fig. 3. Window of fault detection of parameter a2

B. Time-varying parameters

In this case, the initial parameter uncertainty set is as-
sumed to be:

Θ = {θ : θ = p0 + H0θ̃, ‖θ̃‖∞ ≤ 1}

where: p0 = [0.696 0.559 0.696 0.559 0.686 0.588]
T

H0 = diag
(
[0.036 0.029 0.036 0.028 0.035 0.030]

T
)

.
Uncertain parameters are considered time-varying with λ =
∞, in Eq. (4). This means that variation is bounded only by
the initial parameter set Θ varying at will within this set.
Then, fault detection algorithm is implemented as described
in Section IV.C. Figure 5 shows the evolution of parameter
a2. Dotted line represents the exact value of parameter a2.
The solid lines represent the outer bounds obtained by the
detection algorithm. It can be seen that a2 changes its value
to 0.54 at sample time 68. The new value belongs to the
bound of non-faulty situation and the algorithm does not
detect fault. At sample time 260, parameter a2 changes its
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Fig. 4. Fault detection and isolation of parameter γ2

value to 0.5. This value is out of considered non-faulty
bound. The algorithm detect the fault at sample time 366
and diagnoses the fault at sample time 387. A bound of the
new value of the parameter is obtained at sample 740. Figure
6 shows the evolution of parameter γ2. Dotted line represents
the exact value of parameter γ2. The solid lines represent the
outer bounds obtained by the detection algorithm. It can be
seen that γ2 changes its value to 0.7 at sample time 260. This
value is out of considered non-faulty bound. The algorithm
detect the fault at sample time 342 and diagnoses the fault at
sample time 540. A bound of the new value of the parameter
is obtained at sample 620.
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Fig. 5. Fault detection and isolation of parameter a2

VI. CONCLUSIONS

A robust fault diagnosis method has been proposed that
takes advantage of a recently proposed set-membership
identification procedure based on parallelotopes for systems
linear in the parameters. A general algorithm was presented
based on proving that the feasible solution set of parameters
for a series of data, is empty. Three distinct cases of allowed
parameter variance have been considered. Computational
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Fig. 6. Fault detection and isolation of parameter γ2

procedures were given for each step in the algorithm. Fi-
nally, the method was applied to a simulation model of a
multivariable process showing its effectiveness.
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