
Concrete Delivery using a combination of GA and ACO

C.A. Silva, J.M. Faria, P. Abrantes, J.M.C. Sousa, M. Surico and D. Naso

Abstract— The timely production and distribution of rapidly
perishable goods such as concrete is a complex combina-
torial optimization problem in the context of supply chain
management. The problem involves several tightly interrelated
scheduling and routing problems that have to be solved
considering a trade-off of production and delivery costs. A
hybrid meta-heuristic method combining genetic algorithms
with constructive heuristics has been previously presented.
This paper introduces a novel approach, by replacing the
constructive heuristic with another meta-heuristic, the ant
colony optimization approach. The simulation examples show
that the concrete supply chain improves the performance with
the novel GA-ACO algorithm.

I. INTRODUCTION

Recently, the concrete production industry is experiencing

a strategic evolution towards a supply chain business model,

based on the decentralization of the concrete production

activities. In general, a supply chain is a network of exter-

nal partners (suppliers, warehouses and distribution centers)

through which raw materials are acquired, transformed into

products and delivered to customers [1]. In the concrete

production case, the supply chain consists of a group of

independent production centers and outsourcing delivery

companies that agree to collaborate, by synchronizing their

activities in order to reduce production and delivery costs.

The management of supply chains is a complex automa-

tion problem and the control and optimization of material,

information and financial flows in supply chains is currently

a very important research field [2]. It involves the solu-

tion of interdependent combinatorial problems such as the

scheduling of production facilities or the routing of transport

vehicles. It is necessary to guarantee not only that each of

these problems is solved in a satisfactory way in short com-

putation times, but also that the local optimization solutions

are compliant with the global supply chain performance.

On the ready-made concrete production supply chain, it

is necessary to schedule the orders from the clients among

the different production centers and deliver the material to

the client within strict time-windows, since the concrete is

a perishable good. Presently, many companies tend to either

rely on skilled operators that work out production plans based

on their experience [3] or plan production operations on

C.A. Silva, J.M. Faria, P. Abrantes, J.M.C. Sousa are with the Dept.
of Mechanical Eng., GCAR/IDMEC, Instituto Superior Técnico, Technical
University of Lisbon, 1049-001 Lisbon, Portugal. The work is partially
supported by the Portuguese Foundation for Science and Technology (FCT)
under Grant no. SFRH/BD/6366/2001 and partially supported by the project
POCI/EME/59191/2004, co-sponsored by FEDER, Programa Operacional
Ciência e Inovação 2010, FCT, Portugal. jmsousa@ist.utl.pt

M. Surico and D. Naso are with the Dep. Electrotechnics and Electronics,
Politecnico di Bari, 70125 Bari, Italy naso@poliba.it

short time horizons, sacrificing the optimization on longer

horizon to achieve a reduced risk of delayed delivery [4].

Recently, Naso et al proposed in [5] a hybrid meta-heuristic

approach to solve the optimization of concrete-ready made

supply chain. The proposed approach decomposes the global

problem into two main stages: 1) scheduling of job produc-

tion and loading at the production centers, optimized through

a genetic algorithm (GA); 2) routing the fleet of trucks to

deliver the jobs to customers, using a fast problem-specific

constructive heuristic. This method was designed to achieve

effective solutions for large-size instances (a supply chain

with 5 production centers, servicing about 300 jobs with 50

trucks) in short computational times.

This paper presents a new approach for the second stage

of the concrete supply chain decision, regarding job-to-truck

assignment and the consequent truck routing. Routing prob-

lems are usually large combinatorial optimization problems,

with complex constraints that cannot be efficiently handled

by simple heuristics. The best known solutions for most

of routing problems were obtained with meta-heuristics [6].

The Ant Colony Optimization (ACO) algorithm is one of

the most recent optimization meta-heuristics that has been

successfully used in complex routing problems [7]. This

method provides competitive solutions when compared with

other methods such as GA [6]. Therefore, this paper pro-

poses a new hybrid GA-ACO approach for the just-in-time

optimization of concrete-ready made delivery, by replacing

the constructive heuristic that solves the truck assignment

problem, with an ACO algorithm.

The paper proceeds as follows. Section II describes the

concrete delivery problem as a combination of a scheduling

and a routing problem, and includes a brief description of

the GA optimization method for the first problem and the

constructive heuristic for the second problem. Section III

describes in detail the new ACO approach for the routing

problem. The simulation results of the new method are pre-

sented and compared to the results of the previous approach

in Section IV. Section V concludes the paper and describes

the future research steps.

II. CONCRETE DELIVERY

Ready-mixed concrete (RMC) is a quickly perishable good

that has to be produced on-demand and delivered at the

construction sites within strict time-windows specified by

customers. For strategic and logistic reasons, RMC suppliers

have independent production centers (PCs) distributed on

the serviced geographical area and organized as a supply

network. In the most general case, a number of PCs in the

network host a fleet of trucks for RMC delivery, while the

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

ThIB19.4

0-7803-9568-9/05/$20.00 ©2005 IEEE 7633

remaining ones do not own carriers, and explicitly rely on

the other PCs for transportation. Usually, orders exceed the

capacity of a single carrier and must be split into several

sequential loads, hereafter called jobs.

Sequential job deliveries must necessarily be synchronized

because the unload process at the customer site must be

continuous (there cannot be significant pauses between the

completion of a truck unload and the start of the next

one) to avoid joints or other product-specific problems. The

operational goals of PCs are multifaceted. Each PC aims at

organizing its activities associating high resource utilization

to low transportation costs and timeliness of the deliveries,

the latter being particularly crucial for the characteristics

of the supplied good. From a global viewpoint, operating

the network involves the coordination of the various PCs,

synchronizing production activities and tasks of the shared

resources (trucks) in order to meet constraints and achieve

production goals. Thus, scheduling the network is extremely

challenging, not only for the typical combinatorial com-

plexity that is particularly prohibitive in such large scale

environments, but also for the high number of constraints

deriving from the perishable nature of RMC, and for the

conflicting nature of the cost and timeliness objectives.

The concrete delivery can be modeled as follows. As-

sume that there are r = 1, . . . , R different demands to be

scheduled. Each demand r is characterized by: the location

of the customer, the maximal unloading rate URr, the

maximal delivery size Mdsr, the quantity of concrete Qr,

the setting time of the concrete Tsetr, the percentage of
the truck that must be empty Perr, the fixed waiting time
at the customer Fixr, and the earliest and latest delivery
times for accomplishing the deliveries EDTr and LDTr.

We assume a homogeneous fleet of vehicles (same maximum
capacity Cmax and average speed V). If a demand exceeds

the capacity of a single truck, it is equally divided into Zr

jobs, each of which will be delivered by a single vehicle.

Jobs are defined as

Zr =
Qr

min{Cmax × (1 − Perr), Mdsr} . (1)

At the end, the production problem can be described in terms

of the different i = 1, . . . , N jobs to be assigned to the

different PCs, with N =
∑R

r=1 Zr.

Each job can be described as a set of time parcels

presented in Fig. 1. The parcels are: the loading waiting time

Fig. 1. Time parcels of a job.

at the dock LWT ; the loading and unloading time LT and

UT ; the source to destination travel time and return SDT
and DST ; the fixed waiting time Fix and the unloading wait

time UWT at the customer. The starting time of loading
(STL) and end time of unloading (ETU) indicate the time

parcel that a truck needs to deliver a job.

The concrete delivery consists of finding for each job

the production center where it is produced, determining the

production and delivery time windows, and finally assign that

job to a truck. The objective function f to be minimized is

the one presented in [5], that can be succinctly described as:

f = ftransport + fun/loading + foutsource (2)

The first term groups the transportation costs associated with

the distances covered by the fleet of trucks; the second

term takes into account the loading and unloading times;

the third term includes the costs associated with the number

of outsourced concrete demands, the number of hired trucks,

and the number of extra truck driver’s working hours.

Finally, the optimization of the concrete supply chain

is done by splitting the supply chain problem into two

consecutive optimization problems: the concrete production

and the truck assignment. The first problem consists of

assigning the r demands to the D production centers – this

is done by a genetic algorithm and is hereafter called the

job-PC assignment problem. After the GA has generated

the different possible solutions, the truck routing problem

is solved for each chromosome – this can be done either

by a constructive heuristic, or using an ACO algorithm as

proposed later in this paper, and is hereafter called the

job-truck assignment problem. The cost function for each

individual is evaluated and the genetic algorithm proceeds

as depicted in Fig. 2

Fig. 2. Concrete supply chain optimization.

A. Job-PC assignment problem

The first problem consists of assigning the demands to

the PCs. This assignment is done through the GA. The

chromosomes contain two parts, both containing R elements

(number of demands r), as shown in Fig. 3, for an example

of R = 6. The first part (in black) defines the assignment of

demands to PCs, with each gene being an integer between

1 and D number of production centers. The second part

7634

of the chromosome (in gray) establishes the sequence in

which the R requests are produced. This second part of the

chromosome is a permutation between 1 and R.

Fig. 3. Example chromosome for R = 6, with 5 PCs.

The GA implementation is straightforward. The initial

population of 100 individuals is randomly created. The

selection is done through the tournament method, with two

individuals for each tournament. The crossover method is

applied to couples of two individuals and was introduced in

[5]. A single crossover point is randomly selected: if it falls

on the first part of the chromosome, it performs a single point

crossover on the first part of the chromosome; otherwise it

performs an order-based crossover on the remaining part.

For further details, see also [8]. The mutation works as the

crossover method: a mutation point is chosen and the value

of that gene is swapped with the value of another gene of

the same part of the crossover. The algorithm runs for 200
generations.

Notice that many of the GAs solutions are not feasible, due

to constraint violations. These violations include: solutions

where the unloading starts before the customers specified

EDT or end after Tset; and solutions that describe produc-

tion sequences that cannot be followed. In these cases, the

solutions are fixed following the depot scheduling construc-

tion heuristic (DSCA), that consists mainly on shifting the

demands forward or backward in time within the same PC

or, in case it is not possible, reassign the jobs to the nearest

closest PC to the customer. For a detailed description, please

see [5].

B. Job-Truck assignment problem

When all the GA solutions have been fixed into feasible

solutions, the jobs have to be assigned to trucks. In [5], this

is done through the truck scheduling construction heuristic

(TSCA).

In a first phase, the heuristic tries to assign the jobs

produced at a given PC to the fleet of vehicles based on

the same location. This set is composed by trucks that either

have not left yet the base PC or have already completed

some transport operations and can return to the PC at time

instant t < STL. When both types of trucks are available,

the TSCA always tries to assign the jobs to the previously

used vehicles first, in order to use the minimal amount of

trucks for servicing all the requests - this assignment strategy

is referred to as Shortest Idle Time, because the truck with

the smallest idle time at the PC is the one assigned first.

This strategy not only minimizes the number of used trucks,

but also avoids an evenly distribution of idle times, which

can be useful since it allows trucks with long idle times to

deliver jobs at other PCs.

At the end of this phase, there are still some unassigned

jobs to trucks, usually because there are PCs that do not have

its own fleet of trucks. At this stage, the heuristic assigns

those jobs in order of increasing SLT , using the idle times of

the used trucks or the trucks that were not yet used, sorted by

completion time of the last operation. If no truck is available,

a new one is hired.

The assignment of jobs to trucks is also a combinatorial

problem and the described heuristic cannot efficiently search

for an optimal solution in the large solution space of this

problem. Therefore, this paper proposes the replacement of

this heuristic by an Ant Colony Optimization algorithm.

III. JOB-TRUCK ASSIGNMENT USING ACO

The Ant Colony Optimization (ACO) methodology is an

optimization method suited to find minimum cost paths in

optimization problems described by graphs. ACO has proved

to be a competitive meta-heuristic for many different types

of combinatorial optimization problems [9].

The job-truck assignment problem is a routing problem in

the sense that aims to minimize the routing costs, traveling as

less distances and using as less trucks as possible. However,

this problem can be seen as assigning tasks to resources,

which makes this problem a typical job shop scheduling

problem, where the machines are in this case trucks. There-

fore, the ACO approach to solve this problem is based on

the ACO implementation for job-shop problems proposed in

[10].

The problem can be described by a graph as in Fig. 4. The

Fig. 4. Nodes model

nodes x of the graph represent all the possible assignments

of jobs i = 1, . . . , N to trucks j = 1, . . . , K. Each row

represents one of the K trucks (including possible trucks to

hire) and each column represents one of the N jobs, sorted

by STL values. The total number of nodes is N × K + 1,

where node 1 represents a dummy source node. Figure 4 also

represents the duration of the jobs.

The ACO algorithm consists usually of letting the ants

wander on the graph arcs, such that each ant finds a path

7635

that describes a feasible solution. However, as described in

Section I, the problem can easily reach large dimensions,

and the graphs may have 15000 nodes (300 jobs × 50
trucks). Therefore, the algorithm does not consider walks on

(NK +1)×(NK +1) arcs of the graph, which would make

the algorithm implementation prohibitive. Instead, it only

considers the ants visits to the nodes. Nevertheless, the initial

number of nodes can be very high, but, with the construction

of the solution, the graph size can be significantly reduced.

Consider that the first node chosen by the ants is node x =
4 in Fig. 4 (represented in black). This node represents the

assignment of job 1 to truck 3. Considering the job duration,

node K +4 (job 2 assigned to truck 3, represented in white)

cannot be further assigned to the same truck, since job 2
has to be loaded before the end of the job 1. Therefore,

the next job that can be assigned to truck 3, is job 3 (node

2K + 4). Notice also that each job is selected only once,

thus, no more trucks can pick that specific job. For example,

as soon as job 1 is assigned to truck 4, this job can no longer

be assigned to truck 1 (node 2) or truck 2 (node 3) or truck

K (node K + 1). That corresponds to the elimination of all

the nodes in the first column, as represented in Fig. 4, also

in white. Therefore, with the selection of a job, many nodes

are automatically eliminated.

A. The algorithm

The ant colony optimization algorithm constructs the so-

lution based on the pheromone deposit information τ and

the heuristic information η specific to the problem, which

are, in this case, concentrated on the nodes. These matrices

have dimensions 1 × KN and are always defined in the

interval [0, 1]. Observe however, that in this implementation

(as explained in Section III-B), the heuristic on the nodes

depends on the ant, thus, each l ant has its own heuristic

matrix ηl. The algorithm works as follows. Consider a colony

of g ants, initially located at node 1. The probability of an

ant l, with l = 1, . . . , g located in node x to choose node

x + 1 is given by

pl
x(t) =

⎧⎪⎪⎨
⎪⎪⎩

τx
α·ηl

x
β

KN∑
y /∈Γl

τy
α·ηl

y
β

if k /∈ Γl

0 otherwise

(3)

where Γl is the tabu list of ant l, i.e. the list of nodes

that cannot be visited by this ant. This list includes the

list of nodes already visited, or the ones that do not satisfy

the different constraints. When all the g ants have found a

complete solution and scheduled all the jobs, the pheromone

matrix τ is updated by

τ(t + 1) = τ(t) × (1 − ρ) + ∆τ q (4)

where ρ ∈ [0, 1] expresses the pheromone evaporation

phenomenon and ∆τ q are the pheromones deposited on the

nodes x followed by the ant q that found the best solution

for the cost function f defined as in (2):

∆τ q

{ ω
fq if node x was used by the q ant

0 otherwise
(5)

The parameter ω is a normalization weight for the cost

function value. The pheromone update mechanism balances

the reinforcement of good solutions with the evaporation of

old solutions, in order to avoid early convergence to local

optima. Since τ ∈ [0, 1], if the cost function f solutions have

a high order of magnitude, e.g. 10000, the pheromone update

does not compensate the pheromone evaporation phenomena.

On the other hand, if the cost function solutions have a low

value, e.g. 0.001, there is hardly no evaporation and early

converge will happen. To allow a balanced evaporation and

pheromone reinforcement, ω < fq must be used.
The pseudo-code of the algorithm is as follows:

1) INITIALIZATION:

a) Initialization of the pheromone matrix τ
b) Initialization of the g heuristic matrix ηl;

c) Initialization of the g tabu lists Γl;

2) FOR the number of iterations specified:

a) Place the g ants at node 1 in the tabu lists;

b) FOR l = 1, . . . , g:

i) FOR x = 1, . . . , KN

A) Choose the next node to visit using (3);

B) Update the solution f l of the ant;

C) Update the tabu list Γl;

D) Update the heuristic matrix ηl;

c) Evaluate the fitness of the g solutions.

3) Find fq = min(f l);
4) Update the τ matrix using using (4) and (5);

5) Select the best solution;

The pheromone matrix τ is initialized with its maximum

value 1. The initialization and the update of the ηl and Γl

matrices are described in detail in the next sections.

B. The heuristic matrix η

The objective of the heuristic matrix ηl, is to provide a

greedy guidance to each ant in order to improve the solution.

In our implementation, each node of the matrix is initialized

with one of three different constants ηO, ηN , ηD, all defined

in η = [0, 1], that describe different truck states:

1) IF node corresponds to a hired truck, then ηl
x = ηO;

2) ELSE IF node corresponds to jobs produced at the PC

were the truck is placed, then ηl
x = ηD;

3) ELSE, ηl
x = ηN ;

During the optimization process, it is important to observe

the Shortest Idle Time heuristic, that assigns the jobs to

vehicles that have been previously used, in order to use the

minimal amount of trucks for servicing all the requests (see

Section II-B and [5]). This information has to be updated

during the solution construction by each l ant, through con-

stant ηT . Therefore, each ant updates its ηl matrix according

to the rule:

1) After a truck has been assigned, all the nodes that

correspond to jobs produced in the same PC of the

added job are set to ηl
x = ηT .

In order to respect the heuristics relative importance, the

constants must respect the inequalities

ηO << ηN < ηD < ηT . (6)

7636

C. The Tabu matrix Γ
The Tabu list Γl describes all the nodes that cannot be

visited by ant l. The update of this matrix follows the next

rules (imposed by the constraints):

1) Elimination of the nodes concerning the assignment of

other trucks to the selected job (column elimination);

2) Elimination of the nodes representing jobs that cannot

be attended by the selected truck, because they start

before the truck has finished the actual job (partial row

elimination).

IV. EXPERIMENTAL RESULTS

The new truck assignment algorithm was tested using two

different test instances, with increasing complexity:

• Instance T1 consists of R = 5 demands to be produced

in 2 different PCs, that generate 16 jobs, with 1 truck

located at PC1 and 5 trucks at PC2;

• Instance T2 has a total of 10 demands to be produced

in 2 different PCs, that generate 169 jobs. The trucks

are distributed as for Instance T1.

In order to compare directly the constructive heuristic

(TSTA) performance with the ACO implementation, the

ACO is used only with the best GA solution. That also

saves a lot of computational time, since the computational

effort of the ACO meta-heuristic is much higher than the

computational effort of the TSTA heuristic. The results refer

to the best solution found by each methodology, for both test

instances.

A. ACO parameters sensitivity analysis

The proposed ACO algorithm has many parameters that

have to be set: α, β, ρ; the heuristic constants ηO, ηN , ηD and

ηT ; the cost function normalization factor ω; and the number

of g ants, in terms of % of total number of nodes. To find the

best parameter set for the ACO algorithm, we performed a

sensitivity analysis: an initial parameters setting was defined

and then different values for each parameter were tried at

a time. The initial set was: α = 1, β = 1, ρ = 0.1, ηN =
0.5, ηO = 0.01, ηD = 0.7, ηT = 0.8, ω = 500, ω/fq ≈ 0.1
and g = 5%. The ηN value, the visibility of nodes of jobs

produced in PCs with no trucks, is fix for all the analysis.

The remaining constants were tuned using this value and

rule (6). All the tests were performed on instance T1. The

sensitivity analysis is presented in Table I, in terms of cost

function f as in (2), for each parameter variation.

For the α and β parameters, it is clear that the algorithm

performs better if α < β: in the row varying α (with β = 1),

the best results are achieved for α < 1; when β varies (with

α = 1), the best results are achieved for β > 1. Observe

however that when α � β, the optimization performance

degrades, since in this case, the algorithm is following mostly

the heuristic information.

The evaporation coefficient ρ analysis shows that it must

be low (0.1), but if it is to low, the algorithm suffers from

early convergence to a local optima.

For the heuristic matrix constant analysis, and assuming

that ηN = 0.5, it is obvious that the ηO value must be very

TABLE I

SENSITIVITY ANALYSIS

α 0.1 0.5 0.8 1.5 2
f 7855 3655 5140 6975 8440

β 0.1 0.5 1.5 2 4
f 16280 5240 3760 3625 3760

ρ 0.01 0.05 0.1 0.2 0.3
f 8890 4005 3625 8454 8565

ηO 0.008 0.1 0.7
f 3625 5060 21980

ηD 0.1 0.6 0.7 1
f 7015 4255 3655 4190

ηT 0.1 0.7 0.8
f 11310 3790 3625

ω/f 0.1 0.15 0.2
f 3655 3790 5090

g 5% 10% 25% 100%
f 5240 4255 3625 3625

TABLE II

COMPARISON RESULTS: INSTANCE T1

Method TSCA heuristic ACO

Best f 6700 3625
Time [s] 1 133.03

low, i.e. the nodes corresponding to outsourced trucks must

be avoided by the ants. Notice further that for ηO = 0.7,

i.e. ηO > ηN the optimization result is extremely bad. For

constant ηN = 0.5, it is also visible that the best values

are obtained when ηD = 0.7, i.e. ηN < ηD < ηT . Finally,

for constant ηN = 0.5, the best result of the algorithm are

obtained for ηT ≥ ηD. All these results confirm the heuristic

relative importance rule defined in (6).

The ω normalization weight shows that the ratio ω/f must

be low. As soon as the pheromone reinforcement mechanism

is too high, the algorithm converges to sub-optimal solutions.

The total number of ants g analysis shows that it must

represent at least 25% of the total number of nodes. It

also shows that the use of more ants does not improve the

algorithms performance, while the computational effort is

much higher.

The final parameters set is: α = 0.5, β = 1.0; ρ = 0.1,

ηO = 0.008, ηN = 0.5, ηD = 0.6, ηT = 1.0; g = 25%. For

instance T1, ω = 500 and for instance T2, ω = 10000. The

total number of iterations is 200.

B. Instance T1

The results for instance T1 are presented in Table II. The

ACO algorithm is able to find a solution that represents

almost a 50% reduction of costs, when compared to the

solution proposed by the heuristic method. As expected, the

major drawback is that the computational time required by

the ACO algorithm is much higher.

Figure 5 shows further that the best solution is achieved

around iteration 100, which means that in practice the ACO

algorithm needs half of the computational time indicated in

Table II. Further, it also shows that the ants first solutions

of the ACO algorithm is worse than the heuristic. This also

means that if the ACO algorithm uses explicitly the heuristic

solution, the computational effort can be reduced.

7637

Fig. 5. Instance T1

TABLE III

COMPARISON RESULTS: INSTANCE T2

Method TSCA heuristic ACO

Best f 101195 81945
Time [s] 12 28950

C. Instance T2

The results for test instance T2 are similar. Although

the problem complexity increases significantly, the ACO

algorithm is able to find a solution that is 20% better than

the solution found by the heuristic. Notice however that this

reduction is in absolute value much higher than the 50%
reduction obtained for instance T1. This means that for large

problems, even if the improvement is not high in relative

terms, it represents large cost saves in absolute terms. Again,

the results show that the ACO algorithm computational effort

drastically increases with the optimization problem size.

However, as shown in Fig. 6, if the ACO algorithm used

the solution provided by the heuristic, a lot of computational

effort could be saved.

Fig. 6. Instance T2

V. CONCLUSIONS AND FUTURE WORK

This paper introduced a new combination of GA and

ACO algorithms for the optimization of a concrete delivery

problem. This problem can be seen as a composition of two

problems, the job-production center assignment and the job-

truck assignment combinatorial problems. The problem had

been solved in [5], through an hybrid GA-heuristic approach.

The approach proposed in this paper is an evolution of that

algorithm, by replacing the heuristic that solves the job-truck

assignment problem by an ACO algorithm.

ACO algorithms have proven in the last decade that they

are competitive meta-heuristics for optimization problems

that can be modeled in a graph environment. In this problem,

the replacement of the heuristic with the ACO algorithm

led to significant improvements of the final solution, which

means in practice a large reduction of the concrete deliv-

ery costs. However, this improvement was obtained with a

drastic increase of the computational time. Nevertheless, as

observed, the computational cost of the ACO algorithm can

be reduced, which is already under development.

The future research direction is the comparison of the

GA implementation for the job-PC problem with an ACO

implementation. The objective is to optimize the concrete

supply chain using the distributed optimization paradigm

proposed in [11], which obtained good results for other

supply chains examples.

REFERENCES

[1] M. Barbuceanu and M. Fox, “Coordinating multiple agents in the
supply chain,” in Proceedings of the Fifth Workshops on Enabling
Technology for Collaborative Enterprises, WET ICE’96. IEEE
Computer Society Press, 1996, pp. 134–141.

[2] N. Viswanadham, “The past, present, and future of supply-chain
automation,” IEEE Robotics & Automation Magazine, vol. 9, no. 2,
pp. 48–56, 2002.

[3] N. F. Matsatsinis, “Towards a decision support system for the ready
concrete distribution system: A case of a greek company,” European
Journal of Operational Research, vol. 152, no. 2, pp. 487–299, 2004.

[4] I. Tommelein and A. Li, “Just-in-time concrete delivery: Mapping
alternatives for vertical supply chain integration,” in Proceedings of
the Seventh Annual Conference of the International Group for Lean
Construction IGLC-7, 1999, pp. 97–108.

[5] D. Naso, M. Surico, B. Turchiano, and U. Kaymac, “Just-in-time pro-
duction and delivery in supply chains: a hybrid evolutionary approach,”
in Proceedings of the IEEE SMC 2004, International Conference on
Systems, Man and Cybernetics, 2004, pp. 1932–1937.

[6] O. Bäysy, “Efficient local search algorithms for the vehicle routing
problem with time windows,” in Proceedings of MIC’2001 - 4th

Metaheuristics International Conference, 2001.
[7] L. M. Gambardella, Éric Taillard, and G. Agazzi, “MACS-VRPTW:

A Multiple Ant Colony System for Vehicle Routing Problems with
Time Windows,” in New Ideas in Optimization, D. Corne, M. Dorigo,
and F. Glover, Eds. McGraw-Hill, 1999, pp. 63–76.

[8] A. Nearchou, “The effect of various operators on the genetic search
for large scheduling problems,” International Journal of Production
Economics, vol. 88, no. 2, pp. 191–203, 2004.

[9] M. Dorigo and T. Stützle, Ant Colony Optimization. Cambridge, MA:
MIT Press/Bradford Books, 2004.

[10] M. Dorigo, V. Maniezzo, and A. Colorni, “The Ant System: Opti-
mization by a colony of cooperating agents,” IEEE Transactions on
Systems, Man, and Cybernetics Part B: Cybernetics, vol. 26, no. 1,
pp. 29–41, 1996.

[11] C. Silva, J. Sousa, T. Runkler, and J. S. da Costa, “A multi-agent
approach for supply chain management using ant colony optimization,”
in Proceedings of the IEEE SMC 2004, International Conference on
Systems, Man and Cybernetics, 2004, pp. 1938–1943.

7638

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

