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Abstract— The paper provides a solution to the standard H∞ control
problem with multiple i/o delays. The derivation is considerably simpler
than previous solutions.

I. INTRODUCTION

Input/output time delays arise naturally in numerous control
application, both from physical delays in processes and control
interfaces and from the use of delays to model complicated high-
frequency dynamics. Optimal control of time-delay systems has
been an active research area since the late 60’s, first in the H2

(LQG) [1], [2] and then in the H∞ [3], [4] settings.
Time-delay systems can in principle be treated in the framework

of a general theory of infinite-dimensional systems, both in the time
[5] and in the frequency [3] domains. These approaches, however,
result in rather abstract results (i.e., in terms of operator Riccati
equations), from which it may not be clear what the structures of
solvability conditions and controllers are and how (if) they can be
computed and implemented. This motivated researchers to seek for
more problem-oriented approaches that exploit the special structure
of the delay operator, see the review paper [4] and the references
therein.

Although substantial progress has been made in this direction
during the last two decades, the vast majority of the results
(in both H2 and H∞ settings) is still limited to systems with
a single delay. On the other hand, in MIMO systems different
input/output channels can have different delays, so that multiple
delay results are of great importance. Earlier treatments of multiple-
delay systems either produced quite complicated solutions [2], [3]
or were heavily based on the simplifying assumption that the delay
operator commutes with the plant [7]. An exception to this is a
recent work by Kojima and Ishijima [8], who derive explicit H∞

solution for the case when the disturbance and/or control inputs
are delayed. Yet in [8] only input delays are considered and it is
assumed that the controller has access to the full plant state.

The general problem was recently solved in [6], but the machin-
ery needed in that paper is still rather involved. The purpose of
the present paper is to setup a mathematical theory in which most
of the technicalities disappear. This brings about a simplification of
the theory and a short-cut in the derivation of the solution presented
in [6].

a) Notation: Borrowing from [11] we define the completion
operator πh, which completes the impulse response of an h-delay
system to a delay-free system. Informally:

0 0 hh

πhp(t) πh p(t)
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The completion operator for delayed systems of the form e−sh P =

e−shC(sI − A)−1 B is defined as

πh(e−sh P) =

[
A B

Ce−Ah 0

]
− e−sh

[
A B
C 0

]

(for h > 0). This way the sum of e−sh P and its completion
πh(e−sh P) is finite dimensional.

A mapping Q ∈ H∞ is contractive if ‖Q‖∞ < 1. A transfer
matrix Q is bistable if Q, Q−1 ∈ H∞.
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Fig. 1. Reduction of standard problem

II. PROBLEM FORMULATION

The standard H∞ problem without delay, as we all know it, is
to determine for a given plant P in Fig. 1(a) a stabilizing causal
controller K that renders the closed loop system mapping H from
w to z is contractive (or to show that none such K exists). Under the
usual assumptions the problem is converted — using two Riccati
equations and a coupling condition — to a simpler problem with
different external signals w̃ and z̃ but of the same structure — see
Fig. 1(b) — where now

•

[
z̃
y

]
=

[ P̃11 P̃12
P̃21 P̃22

][
w̃
u

]
with P̃12 and P̃21 invertible and biproper,

• The closed loop is stable iff the closed loop system mapping
Q is stable.

• ‖Q‖∞ < 1 ⇐⇒ ‖H‖∞ < 1.

This then solves the problem in the delay-free case because the
mapping from K to Q is invertible, so any Q may be achieved
by appropriate choice of K, and the assumptions on the plant P
are typically such that Q = 0 is achieved for some proper or even
strictly proper rational K.

This conversion of the H∞ problem to a simpler H∞ problem
also has some bearing on the case where there are input and
output delays, see Fig. 2(a). In this configuration �u and �y denote
multiple delay operators

�u(s) =

⎡
⎢⎢⎢⎣

e−hu,1s

e−hu,2s

. . .
e−hu,nu s

⎤
⎥⎥⎥⎦ ,

�y(s) =

⎡
⎢⎢⎢⎣

e−hy,1s

e−hy,2s

. . .
e−hy,ny s

⎤
⎥⎥⎥⎦ .
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Fig. 2. Reduction of standard problem with delays

Since delay operators �u and �y impose constraints on the mapping
�u K�y it is clear that the H∞ problem with delays is solvable
only if so is the delay-free case. Hence when considering the H∞

problem for systems with delays we may without loss of generality
begin our analysis with the converted system with plant P̃ as in
Fig. 2(b). It turns out to be useful to perform yet another, quite
standard, conversion at this point: since P̃12 and P̃21 are invertible
we may describe the closed loop of Fig. 2(b) also as in Fig. 3 where
now G is the mapping from

[ u
y

]
to

[
z̃
w̃

]
. It is well known that this

mapping G when derived this way from P̃ is actually bistable [15].
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Fig. 3. A chain scattering description

From now on we will assume that G(s) is bistable and that it
has realization

G =

[
A B
C I

]
. (1)

Essentially the only assumption here is that the direct feedthrough
matrix G(∞) equals identity, but also this can be relaxed (see [6,
page 208]).

A final conversion that turns out to be useful is to combine the
two delay operators �u and �y into a single joint delay operator
� that maps

[ uK
yK

]
to

[ u
y

]
, see Fig. 4. Clearly this is achieved if we

take

� =

[
�u 0
0 �−1

y

]
(mind the inverse). Due to the inverse the joint delay operator may
have advance elements. However, by advancing

[ uK
yK

]
(which does

not affect the controller K) the mapping � from
[ uK

yK

]
to

[ u
y

]
may

be made causal, or, to put it differently, Q does not change if the
joint delay operator �(s) is replaced with e−sT�(s). Hence we may
without loss of generality assume that � is causal, if so desired:

�(s) =

⎡
⎢⎢⎢⎣

e−h0s

e−h1s

. . .
e−hms

⎤
⎥⎥⎥⎦ , hk ≥ 0. (2)

(It turns out to be convenient to begin with zero indexed delay h0.)
So then we finally arrive at the H∞ problem that we shall address

in this paper:

Consider Fig. 4 and assume G is bistable with realiza-
tion (1) and that � is as in (2). Determine all causal
controllers K that render Q stable and contractive or show
that no such K exists.

z̃
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u
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Fig. 4. Chain scattering representation

III. INTERMEZZO: DELAY OPERATORS

The main point of this paper is to set up the mathematical
language in such a way that technicalities are reduced. Such an
approach is particularly important for multiple-delay problems as
the results tend to be rather technical. In this section we recap
some easy but handy rules of calculus for multiple delay operators
on some finite horizon signal space L2[0, T].

Consider the multiple delay operator � : L2[0, T] → L2[0, T]
defined as

�u(t) =

⎡
⎢⎢⎢⎣

u1(t − h0)1[h0,T](t)
u2(t − h1)1[h1,T](t)

...
um(t − hm)1[hm ,T](t)

⎤
⎥⎥⎥⎦ (with 0 ≤ h j ≤ T)

where uk denotes the kth entry of u and 1[a,b] denotes the indi-
cator function on [a, b]. The indicator function is added to avoid
confusion about the extend of the domain on which u is defined.

The dual of � is readily seen to satisfy

�∗z(t) =

⎡
⎢⎢⎢⎣

z1(t + h0)1[0,T−h0](t)
z2(t + h1)1[0,T−h1](t)

...
zm(t + hm)1[0,T−hm](t)

⎤
⎥⎥⎥⎦ . (3)

Now the mapping �∗�u shifts u forward and then backward where
each time the support of the result is clipped to [0, T], so

�∗�u(t) =

⎡
⎢⎢⎢⎣

u1(t)1[0,T−h0](t)
u2(t)1[0,T−h1](t)

...
um(t)1[0,T−hm](t)

⎤
⎥⎥⎥⎦ . (4)

Now something less standard. Even though �∗� is not invertible,
the equation

�∗�u = �∗z

for any z ∈ L2[0, T] always does have a solution u ∈ L2[0, T]
(though not unique) which is evident from the support of �∗�u
and �∗z, cf. (3) and (4). We will denote this mapping as

u = (�∗�)−1�∗z

and we want to stress that this mapping only identifies u on⎡
⎢⎣

[0, T − h0]
...

[0, T − hm]

⎤
⎥⎦ . (5)

Loosely speaking the nonuniqueness is that the “tail” of u is
completely left unspecified by the equation u = (�∗�)−1�∗z. If
however we delay the unspecified “tail” of u enough y := �u then
y ∈ L2[0, T] is uniquely determined by z. That is, the mapping from
z to y defined as

y = �(�∗�)−1�∗z
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is unique. It is such that y j(t) = z j(t) on [h j−1, T] and zero
elsewhere, i.e., �(�∗�)−1�∗ is a multiplication operator

�(�∗�)−1�∗ =

⎡
⎢⎣

1[h0,T] 0 0

0
. . . 0

0 0 1[hm ,T]

⎤
⎥⎦ . (6)

IV. THE MAIN RESULT

Consider the H∞ problem as defined at the end of Section II
and depicted in Fig. 4. For the moment we restrict attention to
some finite horizon [0, T] and wonder whether there exists a causal
controller K such that∫ T

0
‖z̃(t)‖2 − ‖w̃(t)‖2 dt ≤ 0, ∀w̃.

Now clearly we have from
[

z̃
w̃

]
= G�

[ uK
yK

]
that∫ T

0
‖z̃(t)‖2 − ‖w̃(t)‖2 dt =

∫ T

0

[ uK (t)
yK (t)

]∗
�∗G∗ JG�

[ uK (t)
yK (t)

]
dt

where ∗ denote adjoints for mappings on L2[0, T] and

J =

[
I 0
0 −I

]
. (7)

Lemma IV.1. Suppose G satisfies (1). Then the operator

�∗G∗ JG� : L2[0, T] �→ L2[0, T]

is singular in the sense that ∃v ∈ L2[0, T] such that

�v = 0, �∗G∗ JG�v = 0

iff det�22(T ) = 0, where J is as in (7), and �22(t) is the lower-right
block of �(t) defined as

�̇(t) = H(t)�(t), �(0) = I

with

H(t) =

[
A 0

−C′ JC −A′

]

−

[
B

−C′ J

]
�(�∗ J�)−1�∗

[
JC B′

]
.

(8)

Proof. Standard duality theory shows that �∗G∗ JG�v = 0 iff⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
ẋ
ṗ

]
=

[
A 0

−C′ JC −A′

][
x
p

]
+

[
B

−C′ J

]
�v

0 = �∗
[

JC B′
] [

x
p

]
+�∗ J�v

(9)

with the boundary conditions x(0) = p(T ) = 0. The second
of the two equations partly determines v on [0, T] as v =

−(�∗ J�)−1�∗
[

JC B′
] [ x

p

]
, which when inserted in the first

equation shows that state and costate x an p satisfy
[

ẋ
ṗ

]
= H(t)

[ x
p

]
.

The mapping H(t) is uniquely defined (even though �∗ J� is not
invertible over [0, T], see Section III). Now[

x(t)
p(t)

]
= �(t)

[
x(0)

p(0)

]
.

So a nontrivial solution
[ x

p

]
exists for which x(0) = p(T ) = 0 iff

�22(T ) is singular. Finally if
[ x

p

]
is trivial then �v is trivial, and

conversely if �v is trivial then
[

ẋ
ṗ

]
=

[
A 0

−C′ JC −A′

][ x
p

]
which with

the given boundary conditions means
[ x

p

]
is trivial.

Now we are in a position to formulate our main result. We want to
point out here that the result in a way is available in the literature [6]
but the formulation and proof below is more transparent.

Theorem IV.2. Consider Fig. 4 and assume G satisfies (1) and that
� is as in (2). Then there exists a causal K such that ‖Q‖∞ < 1
iff det�22(t) = 0 for all t ∈ [0, T], with T := max hk and � as in
Lemma IV.1.

For the moment we only prove one direction.

Proof (only if). Assume to the contrary that �22(t) is singular for
some t∗ ∈ [0, T]. In what follows all mappings and inner products
are with respect to L2[0, t∗]. By Lemma IV.1 this means that a
nonzero v ∈ L2[0, t∗] exists such that

�∗G∗ JG�v = 0, �v = 0.

Now for any such v define the “worst” signals[
z◦

w◦

]
.
= G�v.

(Notice that w◦ = 0 because G(∞) = I has full column rank, �v =

0 and by construction, ‖z◦‖L2[0,t∗] = ‖w◦‖L2[0,t∗]). Take w̃ := w◦ as
input to the system of Fig. 4. Then given any causal K the resulting
closed loop signals

[ uK
yK

]
are unique and they are such that[

Qw◦

w◦

]
= G�

[
uK

yK

]
.

Hence

〈Qw◦, z◦〉 − 〈w◦,w◦〉 =
〈[

Q
I

]
w◦, J

[
z◦

w◦

]〉
=

〈
G�

[ uK
yK

]
, JG�v

〉
= 0.

This together with the fact that 〈z◦, z◦〉 = 〈w◦,w◦〉 shows that

〈Qw◦, z◦〉 = 〈w◦,w◦〉 = 〈z◦, z◦〉.

Cauchy-Schwartz inequality yields then that the induced norm
‖Q‖L2[0,t∗] ≥ 1 (and equality holds only if Qw◦ = z◦, in which
case ‖Qw◦‖2 = ‖w◦‖2, hence the name “worst disturbance” for
w◦). The proof of the necessary part is complete on noting that
‖Q‖L2[0,t∗] ≤ ‖Q‖L2[0,T], ∀t∗ ≤ T .

Theorem IV.2 does not specify a controller K. For actual com-
putation of K it is necessary to introduce more structure. First of
all we shall assume that the delays are ordered ascendingly, with
the first delay equal to zero (which is without loss of generality),
and that equal delays are grouped,

�(s) =

⎡
⎢⎢⎢⎣

e−h0s In0

e−h1s In1

. . .
e−shm Inm

⎤
⎥⎥⎥⎦ , 0 = h0 < h1 < · · ·

(10)
Then we partition G compatibly with � as

G(s) =

[
A B
C I

]
=

⎡
⎢⎢⎢⎣

A B0 . . . Bm

C0 In0 0 0
... 0

. . . 0
Cm 0 0 Inm

⎤
⎥⎥⎥⎦ (11)

The Hamiltonian H(t) of (8) is piecewise constant and switches
only at the delays t = hk. This is because �(�∗ J�)−1�∗ is the
piecewise constant multiplication operator (see Section III)

�(�∗ J�)−1�∗ = J

⎡
⎢⎢⎢⎣

1[h0=0,T] In0 0 0 0
0 1[h1,T] In1 0 0

0 0
. . . 0

0 0 0 1[hm ,T] Inm

⎤
⎥⎥⎥⎦ .

(12)
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Because of the ordering of the delays, see (10), this matrix (12) is
in fact a matrix whose “J-block” grows in dimension with time:

�(�∗ J�)−1�∗(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
J0 0

0 0

]
if t ∈ [0, h1)⎡

⎢⎣
J0 0 0

0 J1 0

0 0 0

⎤
⎥⎦ if t ∈ [0, h2)

...
...

J t > hm

where Ji denote the corresponding ni × ni blocks of J. (In most
cases Ji is either +I or −I but for one i it can happen that Ji is of
the form

[
I 0
0 −I

]
.) If t ∈ [0, h1) then H(t) equals the constant matrix

H1 :=

[
A 0

−C′ JC −A′

]
−

[
B0

−C′
0 J0

]
J0

[
J0C0 B′

0

]
.

On the following interval t ∈ [h1, h2) the Hamiltonian H(t) of (8)
becomes

H2 :=

[
A 0

−C′ JC −A′

]
−

[
B0

−C′
0 J0

]
J0

[
J0C0 B′

0

]
−

[
B1

−C′
1 J1

]
J1

[
J1C1 B′

1

]
etcetera. Continuing in this way, with Hi the Hamiltonian on
[hi−1, hi), we can express the Hamiltonians Hi recursively as

H0 : =

[
A 0

−C′ JC −A′

]
, (13a)

Hi+1 = Hi −

[
Bi

−C′
i Ji

]
Ji

[
JiCi B′

i

]
. (13b)

Since H(t) is piecewise constant, the transition matrix �(t) defined
as �̇(t) = H(t)�(t) is a finite product of symplectic matrix
exponentials. For instance

�(t) = eHi (t−hi−1 )eHi−1(hi−1−hi−2 ) · · · eH1h1 if t ∈ [hi−1, hi] (14)

and in particular we have for the largest delay t = hm that

�(hm) = eHm (hm−hm−1 ) · · · eH2(h2−h1 ) eH1h1 . (15)

In summary, we specialized Theorem IV.2 to:

Theorem IV.3. Consider Fig. 4 and assume G has realization (11)
and that � is as in (10). Then there exists a causal K such that
‖Q‖∞ < 1 iff det�22(t) = 0 for all t ∈ [0, hm], with �22 the lower-
right block of � as defined in (14).

A final note about the choice of T = hm: Theorems IV.2 and IV.3
claim that Q can be made contractive over infinite horizon iff it
can be done so over the finite horizon [0, hm]. Then clearly this
should also be equivalent to solvability over any finite horizon [0, T]
with T ≥ hm. Therefore it should be that nonsingularity of �22(t)
for all t ∈ [0, hm] should imply nonsingularity of �22(t) for all
t > hm. Indeed that is the case because for t > hm we have that
�(�∗ J�)−1�∗ = J and as a result that the H(t) is block-upper
triangular

H(t) = H∞ :=

[
A − BC −BJ B′

0 −(A − BC)′

]
.

Therefore

�(t) = eH∞(t−hm )�(hm) for all t > hm

resulting in �22(t) = e−(A−BC)′(t−hm )�22(hm).

V. CONSTRUCTION OF CONTROLLER

So far we only proved necessity of the nonsingularity of �22(t)
for all t ∈ [0, T]. In this section we prove sufficiency by constructing
a controller K that solves the problem if this nonsingularity condi-
tion is met. In the remainder of this paper systems are assumed to
operate over all time, not just the finite horizon of previous sections.
We shall assume the notation of the previous section, to be precise
we assume that � is as in (10) which together with realization (11)
renders �(t) as in (14) with Hi defined by (13).

The construction of the controller hinges on J-spectral factoriza-
tion of

�0 := �∼G∼ JG�.

Because of the delay operator � this �0 has delay and advance
elements. These elements we will sequentially peel off by applying
Sk-transformation, which is the self-inverse transformation that
corresponds to i/o-swapping of the kth signal block. To define Sk-
transformation associate with �0 the equation⎡

⎢⎢⎢⎣
ζ0

ζ1

...
ζm

⎤
⎥⎥⎥⎦ = �0

⎡
⎢⎢⎢⎣

η0

η1

...
ηm

⎤
⎥⎥⎥⎦ , ηk(t), ζk(t) ∈ R

nk

where the partitioning is compatible with that of the delay operator.
Now S0(�0) is defined by the property that it corresponds to
swapping the first block of inputs and outputs, ζ0 and η0:⎡

⎢⎢⎢⎣
η0

ζ1

...
ζm

⎤
⎥⎥⎥⎦ = S0(�0)

⎡
⎢⎢⎢⎣

ζ0

η1

...
ηm

⎤
⎥⎥⎥⎦ .

Similarly Sk(�0) corresponds to swapping ζk and ηk. A useful
property of S-transformation is that it transforms a certain type
of multiplication into addition: If �k has rk := n0 + · · · + nk−1 rows
and ck := nk + · · · + nm columns then

S0S1 · · ·Sk−1

([ I 0
�∼

k I

]
�

[
I �k
0 I

])
= S0S1 · · ·Sk−1(�) +

[ 0 −�k
�∼

k 0

]
.

(16)

Note that S0S1 · · ·Sk−1 means swapping all first k signal blocks, i.e.,
it means swapping all first rk := n0 + · · · + nk−1 signal entries. This
turns out be a handy rule and allows to reduce factorization of �0

to that of a rational matrix:

Lemma V.1. Let rk = n0 + · · · + nk−1 and ck = nk + · · · + nm and
define the ck × ck delay operators �k as

�0 := �,

[
Ink−1 0

0 e−s(hk−hk−1 )�k(s)

]
:= �k−1(s).

For �k defined as

�0 = �∼G∼ JG�, �k+1 = Sk(�k ) +
[ 0 −�k

�∼
k 0

]
with �k the rk × ck stable FIR systems

�k = −πh

([
Irk 0

]
Sk−1(�k−1)

[ 0
Ick

]
�−1

k

)
�k

we have that �m is rational and that

�0 = Z∼(Sm(�m))−1 Z, (17)

where Z is the bistable

Z =
[ Irm −�m

0 Icm

][ Irm−1 −�m−1
0 Icm−1

]
· · ·

[ Ir1 −�1
0 Ic1

]
= I −

m∑
k=1

[
0rk �k

0 0ck

]
.
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Proof. This is a condensed version of an idea originating from [10]
and further elaborated upon in [6]. We first prove that �m is rational.
Because � =

[ I 0
0 e−sh1 �1

]
we have that

S0(�0) =

[
�11 e−sh1�12�1

esh1�∼
1 �∼

12 �∼
1 �22�1

]

for rational � := S0(G∼ JG). Given that �1 = −πh1 (e−sh1�12) we
arrive at

�1 = S0(�0) +
[ 0 −�k

�∼
k 0

]
=

[
�11 �12�1

�∼
1 �∼

12 �∼
1 �22�1

]

=:

⎡
⎣ �11 �12a e−s(h2−h1 )�12b�2

�∼
12a �22aa e−s(h2−h1 )�22ab�2

es(h2−h1 )�∼
2 �∼

12b es(h2−h1 )�∼
2 �∼

22ab �∼
2 �22bb�2

⎤
⎦ .

The delay operator �2 in �1 has m − 1 delay blocks (i.e., one less
than �1 has in �0). Continuing this process m times results in a
delay free �m. Remains to establish (17) and the following formula
for Z.

Using (16) we get that

S0

([ In0 �1
0 I

]∼
�0

[ In0 �1
0 I

])
= S0(�0) +

[ 0 −�1
�∼

1 0

]
= �1.

Now as Sk is a self inverse transformation we have that[ In0 �1
0 I

]∼
�0

[ In0 �1
0 I

]
= S0(�1), which is the same as

�0 =
[ In0 −�1

0 I

]∼
S0(�1)

[ In0 −�1
0 I

]
.

Repeating this procedure a couple of times similarly gives

�0 =
[

I −�1
0 I

]∼
· · ·

[
I −�m
0 I

]∼
S0 · · ·Sm−1(�m)

[
I −�m
0 I

]
· · ·

[
I −�1
0 I

]
.

Note that S0 · · ·Sm is the same inversion so the above is equivalent
to (17). That Z defined as a product can also be written as a sum
Z = I −

∑m
k=1

[
0 �k
0 0

]
follows from the dimensions of �k.

The state space formula for �k and �k actually follow quite
elegantly. Bring in the “state-space realization” of �0,

�0 := �∼G∼ JG� = �∼

[
H0

[
B

−C′ J

][
JC B′

]
J

]
�, (18)

where H0 is the Hamiltonian matrix defined in (13). Partition this
realization as

�0 = �∼

⎡
⎢⎢⎢⎢⎢⎢⎣

H0 B̂0 B̂1 . . . B̂m

Ĉ0 J0 0 . . . 0
Ĉ1 0 J1 . . . 0
...

...
...

...
...

Ĉm 0 0 . . . Jm

⎤
⎥⎥⎥⎥⎥⎥⎦

� (19)

with the partitioning compatible with that of the delay operator
�. (Note that J−1

i = Ji for all i.) Since Sk(�
∼��) = Sk(�) we

have that swapping the first i/o signal block �0 amounts to that of
G∼ JG:

S0(�0) =
[ I 0

0 �∼
1

]
⎡
⎢⎢⎢⎢⎢⎢⎣

H1 B̂0 J0 B̂1 . . . B̂m

−J0Ĉ0 J0 0 . . . 0
Ĉ1 0 J1 . . . 0
...

...
...

...
...

Ĉm 0 0 . . . Jm

⎤
⎥⎥⎥⎥⎥⎥⎦

[
I 0
0 �1

]

where H1 = H0 − B̂0 J0Ĉ0. From this realization we read that

�1 =πh1

(
e−sh1

[
H1 B̂1 B̂2 . . . B̂m

J0Ĉ0 0 0 . . . 0

])
�1

and hence

�1 := S0(�0) +
[ 0 −�1

�∼
1 0

]

=
[ I 0

0 �∼
1

]
⎡
⎢⎢⎢⎢⎢⎢⎣

H1 �1 B̂0 J0 B̂1 . . . B̂m

−J0Ĉ0�
−1
1 J0 0 . . . 0

Ĉ1 0 J1 . . . 0
...

...
...

. . .
...

Ĉm 0 0 . . . Jm

⎤
⎥⎥⎥⎥⎥⎥⎦

[
I 0
0 �1

]
,

where �1 := eH1h1 . Swapping the second input-output block of �1

results in

S1(�1) =
[ I 0

0 �∼
1

]
⎡
⎢⎢⎢⎢⎢⎢⎣

H2 �1 B̂0 J0 B̂1 J1 . . . B̂m

−J0Ĉ0�
−1
1 J0 0 . . . 0

−J1Ĉ1 0 J1 . . . 0
...

...
...

. . .
...

Ĉm 0 0 . . . Jm

⎤
⎥⎥⎥⎥⎥⎥⎦

[
I 0
0 �1

]

with H2 := H1 − B̂1 J1Ĉ1. Then, similarly, we can read of immedi-
ately that

�2 = πh2−h1

⎛
⎝e−s(h2−h1 )

⎡
⎣ H2 B̂2 . . . B̂m

J0Ĉ0�
−1
1 0 . . . 0

J1Ĉ1 0 . . . 0

⎤
⎦

⎞
⎠�2

yielding

�2 = S1(�1) +
[ 0 −�2

�∼
2 0

]
=

[ I 0
0 �∼

2

]
⎡
⎢⎢⎢⎢⎢⎢⎣

H2 �2�1 B̂0 J0 �2 B̂1 J1 . . . B̂m

−J0Ĉ0�
−1
1 �−1

2 J0 0 . . . 0
−J1Ĉ1�

−1
2 0 J1 . . . 0

...
...

...
. . .

...
Ĉm 0 0 . . . Jm

⎤
⎥⎥⎥⎥⎥⎥⎦

[
I 0
0 �2

]

where �2
.
= eH2(h2−h1 ). We may continue in this fashion and each

time the dimension of the number of delay blocks in the delay
operator �k decreases and in the end vanishes resulting in the
rational

�m =⎡
⎢⎢⎢⎢⎢⎢⎣

Hm �m · · ·�1 B̂0 J0 . . . �m B̂m−1 Jm−1 B̂m

−J0Ĉ0�
−1
1 · · ·�−1

m J0 . . . 0 0
...

...
. . .

...
...

−Jm−1Ĉm−1�
−1
m 0 . . . Jm−1 0

Ĉm 0 . . . 0 Jm

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where Hk = H0 −
∑k−1

i=0 B̂i JiĈi and �k = eHk (hk−hk−1 ). In (17) we
need

Sm(�m) =⎡
⎢⎢⎢⎢⎢⎢⎣

H∞ �m · · ·�1 B̂0 J0 . . . �m B̂m−1 Jm−1 B̂m Jm

−J0Ĉ0�
−1
1 · · ·�−1

m J0 . . . 0 0
...

...
. . .

...
...

−Jm−1Ĉm−1�
−1
m 0 . . . Jm−1 0

−JmĈm 0 . . . 0 Jm

⎤
⎥⎥⎥⎥⎥⎥⎦

,

and its inverse. Here H∞ := H0 −
∑m

i=0 B̂i JiĈi. It is readily ver-
ified (as Hi = �i Hi�

−1
i ) that the “A” matrix of (Sm(�m))−1 is

�m · · ·�2�1 H0 �−1
1 �−1

2 · · ·�−1
m , i.e., it is similar to the “A” matrix
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H0 of �0. This, in turn, leads to

(Sm(�m))−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

H0 B̂0 �−1
1 B̂1 . . . �−1

1 · · ·�−1
m B̂m

Ĉ0 J0 0 . . . 0
Ĉ1�1 0 J1 . . . 0

...
...

...
. . .

...
Ĉm�m · · ·�1 0 0 . . . Jm

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Application of standard factorization techniques (see e.g. [6])
says that

(Sm(�m))−1 = G̃∼ JG̃

for the bistable G̃ equal to

G̃ =

[
A B̃
C̃ I

]
(20a)

in which

B̃ =
[

In 0
] [

B̂0 �−1
1 B̂1 · · · �−1

1 · · ·�−1
m B̂m

]
(20b)

C̃ = J

⎡
⎢⎢⎢⎢⎣

Ĉ0

Ĉ1�1

...
Ĉm�m · · ·�1

⎤
⎥⎥⎥⎥⎦

[
In

M

]
(20c)

M = −�−1
22 (hm)�21(hm). (20d)

uK

yK

G̃−1Z−1 Q̃

K

Fig. 5. All solutions K

Theorem V.2. Consider Fig. 4 and assume that � is as in (10) and
that G is bistable with realization (11). Then there exists a causal
K such that ‖Q‖∞ < 1 iff det�22(t) = 0 for all t ∈ [0, hm], with
� as in (14), (13). In that case, using the short hands of (18) and
(19), K is a solution iff it is of the form shown in Fig. 5 in which
‖Q̃‖∞ < 1 and G̃ is as in (20) and Z is as in Lemma V.1 where

�i = πhi−hi−1

⎛
⎜⎜⎜⎜⎜⎜⎝

e−s(hi−hi−1 )

⎡
⎢⎢⎢⎢⎢⎢⎣

Hi B̂i . . . B̂m

J0Ĉ0�
−1
1 · · ·�−1

i−1 0 . . . 0
J1Ĉ1�

−1
2 · · ·�−1

i−1 0 . . . 0
...

...
...

...
Ji−1Ĉi−1 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

�i

with �i as in Lemma V.1 and �i = eHi (hi−hi−1 ).

Proof. These follow well documented arguments: By construction
G�Z−1G̃−1 is J-unitary. In fact it is J-lossless, which follows from
a continuity argument (see [6]). Consequently the mapping Q in
Fig. 4 is contractive if-and-only-if so is Q̃ (see for instance [6]).
The proof is complete on noting that K is causal iff Q̃ is causal.
This is consequence of the fact that lims→∞ G̃(s)Z(s) = I.

VI. CONCLUDING REMARKS

There are a number of issues not addressed in this paper due to
space limitations: (a) the controller has interesting interpretations
owing to its specific structure (for example, the FIR systems �i

from which Z is defined have non-overlapping support), (b) the

H2 problem for systems with multiple delays can be handled quite
easily as well using the machinery presented in this paper, and (c)
J-spectral factorization can also be done through completion of
squares much like the way it is often done for delay-free systems.
This last approach will further simplify the derivation.
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